Exp. No. 7 Counters

Registers and counters

- A register is a group of flip-flops, each one of which shares a common clock and is capable of storing one bit of information.
- An n-bit register consists of a group of n flip-flops capable of storing n bits of binary information
- A counter is essentially a register that goes through a predetermined sequence of binary states(MOD)
- Number of states $=\mathbf{2}$ (number of flip flops)
- An \boldsymbol{n}-bit binary counter $(\bmod \boldsymbol{n})$ consists of \boldsymbol{n} flip-flops and can count in binary from 0 through $2^{n}-1$.

Counter Types

In a synchronous (parallel) counter, the Clock inputs of all flip-flops receive the common clock.
The synchronous counter
can be triggered with either the positive or the negative clock edge

Asynchronous Up counter and Asynchronous Down counter

- A four-bit binary ripple counter, can count in up counter from 0000 to 1111 and can count in down counter from 1111 to 0000 because number of states $=2^{4}=16$
- The polarity of the clock is important in asynchronous (ripple) counter.
- A binary countdown counter is a binary ripple counter provided that all flip-flops trigger on the positive edge of the clock.
- A binary count-up counter is a binary ripple counter provided that all flip-flops trigger on the negative edge of the clock.

H.W plot 2-bit ripple

2-bit ripple up counter and its timing diagram

down counter and plot its timing diagram

74107 Dual J-K flip-flop with reset; negative-edge trigger

Decade (BCD) Counter

it counts from o to 9

Pin No	Function	Name
1	Clock input 2	Input2
2	Reset1	R1
3	Reset2	R2
4	Not connected	NC
5	Supply voltage; 5V (4.75V -5.25V)	Vcc
6	Reset3	R 3
7	Reset4	R 4
8	Output 3, BCD Output bit 2	Q_{C}
9	Output 2, BCD Output bit 1	Q_{B}
10	Ground (0V)	Ground
11	Output 4, BCD Output bit 3	Q_{D}
12	Output 1, BCD Output bit 0	Q_{A}
13	Not connected	NC
14	Clock input 1	Input1

- To count in decimal from 0 to 99 , we need a two-decade counter. To count from 0 to 999 , we need a three-decade counter.
- Multiple decade counters can be constructed by connecting BCD counters in cascade, one for each decade. A three-decade counter is shown below. The inputs to the second and third decades come from Q8 of the previous decade. When Q8 in one decade goes from 1 to 0 , it triggers the count for the next higher order decade while its own decade goes from 9 to 0 .

