Exp. No.8 Multiplexer (MUX) and Demultiplexer(DEMUX)

0

Multiplexer

- A multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line.
- The selection of a particular input line is controlled by a set of selection lines. Normally, there are 2^{*n*} input lines and *n* selection lines whose bit combinations determine which input is selected.

• $Y = I_o \cdot \overline{S} + I_1 \cdot S$

- When the select line, S=0, the output of the lower AND gate is zero, but the upper AND gate is I₀. Thus, the output generated by the OR gate is equal to I₀.
- □ Similarly, when S=1, the output of the upper AND gate is zero, but the output of lower AND gate is I₁. Therefore, the output of the OR gate is I₁.
- □ Thus, the Boolean expression for the output becomes I_0 when S=0 and output is I_1 when S=1.

Four-to-one-line multiplexer

The size of a multiplexer is specified by the number 2ⁿ of its data input lines and the single output line. The *n* selection lines are implied from the 2ⁿ data lines.

8-to-1 line MUX

8-to-1 line MUX using 4-to-1 MUX and 2-to-1 MUX

8-to-1 line MUX using 2-to-1 MUX

5-to-1 line MUX using 4-to-1 MUX and 2-to-1 MUX

Demultiplexer

- The demultiplexer takes one single input data line and then switches it to any one of a number of individual output lines one at a time.
- The demultiplexer converts a serial data signal at the input to a parallel data at its output lines.

a	b	o/p
0	0	А
0	I	В
I	0	С
I	I	D

I – to- 4 line Demultiplexer

I – to- 4 line Demultiplexer logic diagram

