Exp. No. 9 Constructing BCD Adder

4-bit BCD adder using IC- 7483

- A BCD adder adds two BCD digits and produces output as a BCD digit. A BCD or Binary Coded Decimal digit cannot be greater than 9 .
- The two BCD digits are to be added using the rules of binary addition. If sum is less than or equal to 9 and carry is 0 , then no correction is needed. The sum is correct and in true BCD form.
- But if sum is greater than 9 or carry $=1$, the result is wrong and correction must be done. The wrong result can be corrected adding six (0110) to it.

For implementing a BCD

 adder using a binary adder circuit IC 7483, additional combinational circuit will be required, where the Sum Output $S_{3}-S_{0}$ is checked for invalid values from 10 to 15 . Then the truth table and The Boolean expression (bold columns) is, $\mathrm{Y}=\mathrm{S}_{3} \mathrm{~S}_{2}+\mathrm{S}_{3} \mathrm{~S}_{1}$[^0]| I/P | | | | O/P |
| :---: | :---: | :---: | :---: | :---: |
| 53 | 52 | S1 | 50 | Y |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

Table1 . Ttuth table for BCD numbers
-The BCD adder is shown below. The output of the combinational circuit should be 1 if Cout of adder- 1 is high. Therefore Y is ORed with Cout of adder 1.
\square The output of combinational circuit is connected to $B_{1} B_{2}$ inputs of adder-2 and $B_{3}=B_{1}+0$ as they are connected to ground permanently. This makes $B_{3} B_{2} B_{1} B_{0}=0110$ if $Y^{\prime}=1$.
\square The sum outputs of adder- 1 are applied to $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ of adder-2. The output of combinational circuit is to be used as final output carry and the carry output of adder-2 is to be ignored.

Fig. BCD addition using IC 7483

Case1: Sum ≤ 9 and carry $=0$

- The output of combinational circuit $Y^{\prime}=0$. Hence $B_{3} B_{2} B_{1} B_{0}$ $=0000$ for adder-2.
- Hence output of adder-1 is same as that of adder-2

Case2: Sum >9 and carry = 0

- If $S_{3} S_{2} S_{1} S_{0}$ of adder -1 is greater than 9 , then output Y^{\prime} of combinational circuits becomes 1.Therefore $B_{3} B_{2} B_{1} B_{0}=$ 0110 (of adder-2).
- Hence six ($\left.\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)$ will be added to the sum output of adder-1. We get the corrected BCD result at the output of adder-2.
- Case3: Sum ≤ 9 but carry = 1
- As carry output of addere- 1 is high, $\mathrm{Y}^{\prime}=1$. Therefore $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=0110$ (of adder-2).
- Hence six ($\left.0 \begin{array}{lll}1 & 1 & 0\end{array}\right)$ will be added to the sum output of adder-1. We get the corrected BCD result at the output of adder- 2 . Thus the Four bit BCD addition can be carried out using the binary adder.
- Example: Operations Of : $(0111)_{B C D}+(1001)_{B C D}$
- Thus,
- Cout = 1
- $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0000$

Here sum<9 but carry=1

1	1	1	1	
	0	1	1	1
+	1	0	0	1
	0	0	0	0

- Hence, for adder, inputs will be $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=$ 0000 and $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=0110$ give final output as Cout $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=10110$.
Therefore, $(0111)_{\mathrm{BCD}}+(1001)_{\mathrm{BCD}}=(00010110)_{\mathrm{BCD}}$.
Q. Why do we need to add 6 sometimes to BCD addition?

Four binary digits count up to 15 (1111) but in BCD we only use the representations up to 9 (1001). The difference between 15 and 9 is 6.
\square To perform BCD subtraction: $B C D$ number B and nines compliment of A is added by using conventional BCD adder.
\square If carry output is 0 then nines compliment of BCD adder output is taken out
Dif carry out put is 1 then 0001 is added to the BCD adder output to get the corrected valid magnitude subtraction output.
\square In each case carry out of the BCD adder is complimented and taken as Barrow output.
\square The nines' complement of a decimal digit is the number that must be added to it to produce 9 ; the complement of 3 is 6 , the complement of 7 is 2 .

[^0]: Invalid $B C D$ numbers, hence $Y=1$

