# Chapter One: Fourier Series 

By: Maha George Zia

Assistant Professor
Electrical Engineering Department

## Definitions:

1. Periodic Function: A function $f(\mathrm{t})$ is said to be periodic if it is defined for all real t and if there is some positive number $T$ such that:

$$
f(t)=f(t+n T), \quad n=0,1,2, . . \quad \text { is an integer value }
$$


2. The function $\mathrm{f}(\mathrm{t})$ is said to be an even function if $f(t)=f(-t)$. It is always symmetrical about y-axis. Sometimes its dc value is zero.

- Note: the dc value is a horizontal line that divide the function area into two equal areas.

- 3. The function $\mathrm{f}(\mathrm{t})$ is said to be an odd function if $f(-t)=-f(t)$. It is always symmetrical about x -axis. its dc value is always zero.

- Any periodic function other than sinusoidal function ( e.g., square wave) applied as an input to a linear circuit can be analyzed and represented by several sinusoidal sources considered as harmonics.

- e.g.,= for example
- $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n w_{0} t+b_{n} \sin n w_{0} t\right), n=1,2,3, \ldots$ (harmonics) ...(1)
- Dc value $=\frac{a_{0}}{2} \quad$, rad frequency $=w_{0}=\frac{2 \pi}{T}, \quad \mathrm{~T}=$ one period

$$
\begin{equation*}
a_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) d t \tag{2}
\end{equation*}
$$

$a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos n w_{0} t d t$
$b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin n w_{0} t d t$

- Notes:
$\int_{-T / 2}^{T / 2} \cos m w_{0} t \cos n w_{0} t d t=\left\{\begin{array}{cc}0 & m \neq n \\ T / 2 & m=n, \quad m \neq 0 \\ T & m=n=0\end{array}\right.$
- $\int_{-T / 2}^{T / 2} \sin m w_{0} t \sin n w_{0} t d t=\left\{\begin{array}{cc}0 & m \neq n \\ T / 2 & m=n\end{array}\right.$
- $\int_{-T / 2}^{T / 2} \cos m w_{0} t \sin n w_{0} t d t=0 \quad$ for all $m$ and $n$.


## Ex: Find the Fourier series of the function

$$
\begin{aligned}
& a_{0}=\frac{1}{4} \int_{-2}^{2} k d t=\frac{1}{4} \int_{-1}^{1} k d t=\frac{1}{4} k(1-(-1))=\frac{k}{2} \\
& a_{n}=\frac{2}{4} \int_{-2}^{2} \frac{k}{2} \cos \left(n \frac{\pi}{2} t\right) d t=\frac{1}{2} \int_{-1}^{1} \frac{k}{2} \cos \left(\frac{n \pi}{2} t\right) d t=\frac{2 k}{n \pi} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

If $n$ is even then $a_{n}=0$, then:

$$
\begin{array}{cll}
a_{n}=2 k / n \pi & \text { if } & n=1,5,9, \cdots \\
a_{n}=-2 k / n \pi & \text { if } & n=3,7,11, \cdots
\end{array}
$$

$$
b_{n}=\frac{2}{4} \int_{-2}^{2} \frac{k}{2} \sin \left(n \frac{\pi}{2} t\right) d t=\frac{1}{2} \int_{-1}^{1} \frac{k}{2} \sin \left(\frac{n \pi}{2} t\right) d t=0, \quad w h y ?
$$

$$
f(t)=\frac{k}{2}+\frac{2 k}{\pi}\left(\cos \frac{\pi}{2} t-\frac{1}{3} \cos \frac{3 \pi}{2} t+\frac{1}{5} \cos \frac{5 \pi}{2} t-\cdots+\cdots .\right)
$$

- H.W1: Find FS for the function shown using the trigonometric form of F.S:

- H.W2: Find FS for the function shown using the trigonometric form of F.S: $f(t)=t^{2}, \quad-2 \leq t \leq 2$
- Definitions:
* Full range expansion is a series consisting of both cosine and sine terms.
* Half-Range expansion is a series consisting of cosine terms only or series consisting of sine terms only


## Exponential (Complex) form of Fourier Series

- By substituting $\cos n w_{0}=\frac{e^{j n w_{0}}+e^{-j n w_{0}}}{2}$ and $\sin n w_{0}=\frac{e^{j n w_{0}}-e^{-j n w_{0}}}{2 j}$

Into equation (1) and rearrange values, then:

- $f(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{j n w_{0} t}$
- $C_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j n w_{0} t} d t$
- Were,

$$
c_{0}=a_{0}
$$

$$
c_{n}=\frac{1}{2}\left(a_{n}-j b_{n}\right)
$$

$$
c_{-n}=c_{n}^{*}=\frac{1}{2}\left(a_{n}+j b_{n}\right)
$$

- $\left|C_{n}\right|=\frac{\sqrt{a_{n}{ }^{2}+b_{n}{ }^{2}}}{2}$
- Ex: Find and plot the complex form of FS for the function shown below for $\mathrm{T}=4,8$, and 16 .
- Using eq. (6)

$$
C_{n}=\frac{1}{T} \int_{-1}^{1} 1 e^{-j n w_{0} t} d t
$$


$\left.=\frac{1}{T} \frac{e^{-j n w_{0} t}}{-j n w_{0}}\right]_{-1}^{1}=\frac{2}{T} \frac{e^{j n w_{0}}-e^{-j n w_{0}}}{2 j n w_{0}}=\frac{2}{T} \frac{\sin n w_{0}}{n w_{0}}$
For $\mathrm{T}=4, w_{0}=\frac{2 \pi}{T}=\pi / 2$
Then $C_{n}=\frac{1}{2} \frac{\sin n \pi / 2}{n \pi / 2}$

- $C_{n}=0$ when $\sin n \pi / 2=0$, i.e., $\frac{n \pi}{2}= \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots \ldots$.
- Then $n= \pm 2, \pm 4, \pm 6, \ldots \ldots$

| $\boldsymbol{n}$ | $\left\|\boldsymbol{C}_{\boldsymbol{n}}\right\|$ |
| :---: | :---: |
| 0 | $1 / 2$ |
| 1 | $1 / \pi$ |
| 3 | $1 / 3 \pi$ |
| 5 | $1 / 5 \pi$ |



- H.W : solve for $\mathrm{T}=8$, and 16 . As T is increased the spectrum $\left(\left|\boldsymbol{C}_{\boldsymbol{n}}\right|\right)$ becomes denser and as $T \longrightarrow \infty$, the spectrum becomes continuous rather than discrete, i.e., the function becomes non periodic.

