CHAPTER TWO : FOURIER TRANSFORMS

Maha George Zia
Assistant Professor
Electrical Engineering Department

Some Special Functions

1. Impulse Function $\delta(t)$ or $\delta(x)$, if $t=x$.
$\delta(t)=\left\{\begin{array}{cc}0 & t \neq 0 \\ \infty & t=0\end{array}\right.$

2. Unit step function $u(\mathrm{t})$ $u(t)=1 \quad t \geq 0$

Reflection and shifting of unit step function

Shifted Unite Step
Function
$\mathrm{u}(-(t-\tau))=\mathrm{u}(\tau-t)$

Reflected and Shifted
Unite Step Function

EX1: Plot
$3 \mathrm{u}(\mathrm{t}-1)-3 \mathrm{u}(\mathrm{t}-2)$

Continuous Fourier transform (C F T)

\square Fourier transform (F.T) provides the link between the timedomain and frequency domain descriptions of a signal.
\square Fourier transform can be used for both periodic and nonperiodic signals.

$$
\begin{equation*}
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad \text { Fourier Transform } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \quad \text { Inverse Fourier Transform } \tag{2}
\end{equation*}
$$

Fourier transform (FT) and inverse Fourier transform (IFT) of $\delta(t)$

$$
\begin{aligned}
& \mathfrak{J}\{\delta(t)\}=\int_{-\infty}^{\infty} \delta(t) e^{-j w t} d t=\int_{-\infty}^{\infty} \delta(t) e^{-j w(0)} d t=1 \\
& \text { t } \\
& \text { W }
\end{aligned}
$$

$\mathfrak{J}^{-1}\{\delta(w)\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(w) e^{j w t} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(w) e^{j(0) t} d t=\frac{1}{2 \pi}$

$\delta(w)$		$\mathfrak{J}^{-1}\{\delta(w)\}$	$1 / 2 \pi$	$f(\mathrm{t})$	$\mathfrak{J}\{f(\mathrm{t})\}$
				$\delta(t)$	1
				1	$2 \pi \delta(w)=\delta(f)$
	W			$\delta\left(t-t_{0}\right)$	$e^{-j w t_{0}}$
			t	$e^{ \pm j w t_{0}}$	$\begin{aligned} & 2 \pi \delta\left(w \pm w_{0}\right)= \\ & \delta\left(f \pm f_{0}\right) \end{aligned}$

Properties of delta- Dirac function

Fig. 1 Properties of delta- Dirac function

Ex2: Find and plot the Fourier transform (F.T) for the rectangular function shown

$$
\begin{aligned}
& f(t)=\operatorname{Arect}\left(\frac{t}{\tau}\right)=\left\{\begin{array}{lr}
A & -\tau / 2 \leq t \leq \tau / 2 \\
0 & \text { otherwise }
\end{array}\right. \\
& F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t=\int_{-\tau / 2}^{\tau / 2} A e^{-j \omega t} d t
\end{aligned}
$$

$$
=\frac{A}{-j \omega}\left[e^{-j \omega t}\right]_{-\tau / 2}^{\tau / 2}=A \frac{e^{j \omega \tau / 2}-e^{-j \omega \tau / 2}}{j \omega}=A \tau \frac{e^{j \omega \tau / 2}-e^{-j \omega \tau / 2}}{2 j \omega \tau / 2}
$$

Since $\sin x=\frac{e^{j x}-e^{-j x}}{2 j}$

$$
F(\omega)=A \tau \frac{\sin (\omega \tau / 2)}{\omega \tau / 2}=A \tau \operatorname{Sinc}\left(\frac{\omega \tau}{2}\right)
$$

Ex3: Find FT of $f(t)=e^{-a t} u(t), \quad a>0$

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-j \omega t} d t
$$

$F(\omega)=\int_{0}^{\infty} e^{-(a+j \omega) t} d t$
$F(\omega)=\frac{1}{-(a+j \omega)}\left[e^{-(a+j \omega) t}\right]_{0}^{\infty}=\frac{1}{-(a+j \omega)}[0-1]$
$F(\omega)=\frac{1}{a+j \omega}$
H.W : Find and plot FT of the function shown

Fourier Transform Pair (FTP) of even and odd non-periodic functions

\square Fourier Transform Pair (FTP) of even non-periodic functions is:
$f(t)=\frac{1}{\pi} \int_{0}^{\infty} F(w) \cos w t d w$
$F(w)=2 \int_{0}^{\infty} f(t) \cos w t d t=\mathfrak{J}\{f(t)\}$

Fourier Transform Pair (FTP) of odd non-periodic functions is:
$f(t)=\frac{1}{\pi} \int_{0}^{\infty} F(w) \sin w t d w$
$F(w)=2 \int_{0}^{\infty} f(t) \sin w t d t=\Im\{f(t)\}$

Ex4: Find and Plot the spectrum of the function:

- Its even function

- $F(w)=2 \int_{0}^{1} 2(1-t) \cos w t d t=\frac{4}{w^{2}}(1-\cos w) \frac{2}{2}$.
- We have $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$, and assuming $2 \theta=\mathrm{w}$, then
- $\theta=\frac{w}{2}$. Therefore:
- $F(w)=\frac{4}{w^{2}} \sin ^{2}\left(\frac{w}{2}\right)=2\left(\frac{\sin \frac{w}{2}}{\frac{w}{2}}\right)^{2}$
- H.W : Plot its spectrum.

Table 1: Fourier transform properties

Property		Time domain $x(t)$	Fourier transform $\boldsymbol{X}(\mathbf{j} \omega$)
1)	Linearity	$x(t)=A x_{1}(t)+B x_{2}(t)$	$X(j \omega)=A X_{1}(j \omega)+B X_{2}(j \omega)$
2)	Time shifting	$\boldsymbol{x}\left(\mathrm{t}-\mathrm{t}_{0}\right)$	$e^{-j \omega t_{0}} \boldsymbol{X}(\boldsymbol{j} \omega)$
3)	Conjugation	$x^{*}(t)$	$\boldsymbol{X}^{*}(-\boldsymbol{j} \omega)$
4)	Differentiation in time	$\frac{d^{n} x(t)}{d t^{n}}$	$(\boldsymbol{j} \omega)^{\boldsymbol{n}} \cdot \boldsymbol{X}(\boldsymbol{j} \omega)$
5)	Differentiation in frequency	-jt $\boldsymbol{x}(\mathrm{t})$	$\frac{d X(j \omega)}{d \omega}$
6)	Time Integration	$\int_{-\infty}^{t} x(\tau) d \tau$	$\frac{1}{j \omega} X(j \omega)+\pi \cdot X(0) \cdot \delta(\omega)$
7)	Time scaling	$x(a t)$	$\frac{1}{\|a\|} x\left(j \frac{\omega}{a}\right)$
8)	Time reversal	$\boldsymbol{x}(-t)$	$\boldsymbol{X}(-\boldsymbol{j} \omega)$
9)	Frequency shifting	$x(t) \cdot e^{j \omega_{0} t}$	$\boldsymbol{X}\left(\boldsymbol{j}\left(\boldsymbol{\omega}-\omega_{0}\right)\right.$)
10)	Duality	$\boldsymbol{X}(t)$	$2 \pi x(-j \omega)$
11)	Time convolution	$\boldsymbol{x}(\mathrm{t}) * \boldsymbol{h}(t)$	$\boldsymbol{X}(\boldsymbol{j} \omega) . \mathrm{H}(\boldsymbol{j} \omega)$
12)	Parseval's Theorem	$E=\int_{-\infty}^{\infty}\|x(t)\|^{2} d t$	$E=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\|X(j \omega)\|^{2} d t$
13)	Modulation	$z(t)=x(t) \cdot y(t)$	$Z(\omega)=\frac{1}{2 \pi} \cdot X(j \omega) * Y(j \omega)$

Some examples of Fourier Transform properties:
1- Scaling property:
Time and frequency scaling:

$$
x(\mathrm{at}) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|\mathrm{a}|} \times\left(\frac{\omega}{a}\right)
$$

Example:

$$
e^{-a t} u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{a+j \omega}=\frac{1}{a} \frac{1}{1+j\left(\frac{\omega}{a}\right)}
$$

2- Time shifting(delay):

Time shifting:

$$
x\left(t-t_{0}\right) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j \omega t_{0}} \times(\omega)
$$

$$
\mathfrak{J}\{\delta(t-3)\}=e^{-j w(3)} .1
$$

3-Modulation (frequency shifting):
EX5: $\mathfrak{J}\left\{f(t) \cos w_{0} t\right\}=\mathfrak{J}\left\{f(t)\left[\frac{e^{j n w_{0}}+e^{-j n w_{0}}}{2}\right]\right\}=\frac{1}{2}\{F(w-$ $\left.\left.w_{0}\right)+F\left(w+w_{0}\right)\right\}$

Ex6: $\mathfrak{\Im}\left\{\frac{\left\{e^{j n w_{0}}+e^{-j n w_{0}}\right.}{2}\right\}=\frac{1}{2}\left\{\delta\left(\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right\}=\right.$ $\pi\left\{\delta\left(\left(w-w_{0}\right)+\delta\left(w+w_{0}\right)\right\}\right.$

4- Duality property:

Example 4.10:

- Convolution

1. Change the axis to τ for both functions.
2. Let $f_{1}(\tau)$ to be fixed function.
3. Reflect (invert) the function $f_{2}(\tau)$ to be $f_{2}(-\tau)$.
4. Multiply and integrate both functions, the fixed function $f_{1}(\tau)$ with the reflected function $f_{2}(-\tau)$.
5. Now Shift $f_{2}(-\tau)$ by a value of t, multiply and integrate with the fixed function $f_{1}(\tau)$.
6. The sifting of $f_{2}(-\tau)$ is stopped when there is no area (no relations) to be calculated.

Note: convolution in time = multiplication in frequency domain

- $\mathfrak{J}\left\{f_{1}(t) \otimes f_{2}(t)\right\}=\Im\left\{\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau\right\}=F_{1}(w) \cdot F_{2}(w)$

Discrete Fourier Transform(DFT)

- Given a sequence $\mathrm{x}(\mathrm{n}), 0<\mathrm{n}<\mathrm{N}$, its DFT is defined as:

$$
\begin{equation*}
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \text { for } k=0,1, \ldots, N-1 . \tag{7}
\end{equation*}
$$

- where the factor W_{N} (called the twiddle factor) is defined as:

$$
\begin{equation*}
W_{N}=e^{-j 2 \pi / N}=\cos \left(\frac{2 \pi}{N}\right)-j \sin \left(\frac{2 \pi}{N}\right) . \tag{8}
\end{equation*}
$$

- The inverse DFT is given by:

$$
\begin{equation*}
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N}=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}, \text { for } n=0,1, \ldots, N-1 \tag{9}
\end{equation*}
$$

MATLAB functions fft() and ifft() are used to compute the DFT coefficients

Ex7: Given a sequence $x(n)$ for $0 \leq n \leq 3$, where $x(0)=1, x(1)=2$, $x(2)=3$, and $x(3)=4$. Evaluate its DFT X (k).

Solution: Since $N=4$ and $W_{4}=e^{-j \pi / 2}$, using Eq. (7):

$$
X(k)=\sum_{n=0}^{3} x(n) W_{4}^{k n}=\sum_{n=0}^{3} x(n) e^{-j \frac{\pi k n}{2}}
$$

Thus, for $k=0$

$$
\begin{aligned}
X(0) & =\sum_{n=0}^{3} x(n) e^{-j 0}=x(0) e^{-j 0}+x(1) e^{-j 0}+x(2) e^{-j 0}+x(3) e^{-j 0} \\
& =x(0)+x(1)+x(2)+x(3) \\
& =1+2+3+4=10
\end{aligned}
$$

$$
\begin{aligned}
X(1) & =\sum_{n=0}^{3} x(n) e^{-j \frac{m n}{2}}=x(0) e^{-j 0}+x(1) e^{-j \frac{\pi}{2}}+x(2) e^{-j \pi}+x(3) e^{-j \frac{3 \pi}{2}} \\
& =x(0)-j x(1)-x(2)+j x(3) \\
& =1-j 2-3+j 4=-2+j 2
\end{aligned}
$$

for $k=2$

$$
\begin{aligned}
X(2) & =\sum_{n=0}^{3} x(n) e^{-j \pi n}=x(0) e^{-j 0}+x(1) e^{-j \pi}+x(2) e^{-j 2 \pi}+x(3) e^{-j 3 \pi} \\
& =x(0)-x(1)+x(2)-x(3) \\
& =1-2+3-4=-2
\end{aligned}
$$

and for $k=3$

$$
\begin{aligned}
X(3) & =\sum_{n=0}^{3} x(n) e^{-j \frac{3 \pi n}{2}}=x(0) e^{-j 0}+x(1) e^{-j \frac{3 \pi}{2}}+x(2) e^{-j 3 \pi}+x(3) e^{-j \frac{9 \pi}{2}} \\
& =x(0)+j x(1)-x(2)-j x(3) \\
& =1+j 2-3-j 4=-2-j 2
\end{aligned}
$$

- Ex8:Using the DFT coefficients $\mathrm{X}(\mathrm{k})$ for $0 \leq \mathrm{k} \leq 3$ computed in Example 7. Evaluate its inverse DFT to determine the time domain sequence $x(n)$.
- Solution: Since $N=4$ and $W_{4}=e^{j \pi / 2}$, using Eq. (9):

$$
x(n)=\frac{1}{4} \sum_{k=0}^{3} X(k) W_{4}^{-n k}=\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j \frac{k n}{2}} .
$$

Then for $n=0$

$$
\begin{aligned}
x(0) & =\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j 0}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j 0}+X(2) e^{j 0}+X(3) e^{j 0}\right) \\
& =\frac{1}{4}(10+(-2+j 2)-2+(-2-j 2))=1
\end{aligned}
$$

for $n=1$

$$
\begin{aligned}
x(1) & =\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j \frac{j \pi}{2}}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j \frac{\pi}{2}}+X(2) e^{j \pi}+X(3) e^{j \frac{3 \pi}{2}}\right) \\
& =\frac{1}{4}(X(0)+j X(1)-X(2)-j X(3)) \\
& =\frac{1}{4}(10+j(-2+j 2)-(-2)-j(-2-j 2))=2
\end{aligned}
$$

for $n=2$

$$
\begin{aligned}
x(2) & =\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j k \pi}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j \pi}+X(2) e^{j 2 \pi}+X(3) e^{j 3 \pi}\right) \\
& =\frac{1}{4}(X(0)-X(1)+X(2)-X(3)) \\
& =\frac{1}{4}(10-(-2+j 2)+(-2)-(-2-j 2))=3
\end{aligned}
$$

and for $n=3$

$$
\begin{aligned}
x(3) & =\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j \frac{k \pi}{2}}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j \frac{3 \pi}{2}}+X(2) e^{j 3 \pi}+X(3) e^{j \frac{0 \pi}{2}}\right) \\
& =\frac{1}{4}(X(0)-j X(1)-X(2)+j X(3)) \\
& =\frac{1}{4}(10-j(-2+j 2)-(-2)+j(-2-j 2))=4
\end{aligned}
$$

- using the MATLAB function fft() for Ex.7:
- $X=\operatorname{fft}\left(\left[\begin{array}{lll}1 & 2 & 3\end{array} 4\right]\right)$
- $\mathrm{X}=10.0000-2.0000+2.0000 \mathrm{i}-2.0000-2.0000-2.0000 \mathrm{i}$
- Applying the MATLAB function ifft() for Ex. 8 achieves:
- $x=i f f t([10-2+2 j-2-2 j])$
- $\mathrm{x}=1234$

Fast Fourier Transform (FFT)

Complex multiplications of DFT $=N^{2}$, and
Complex multiplications of $\mathrm{FFT}=\frac{N}{2} \log _{2}(N)$.

FFT-Reduced decimation in-frequency (Reduced DIF FFT)

- The definition of FFT is $X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}$ for $k=0,1, \ldots, N-1$,
- where $\mathrm{W}_{\mathrm{N}}=\mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{~N}}$ is the twiddle factor, and $\mathrm{N}=2,4,8,16, \ldots$
- The inverse FFT (IFFT) is defined as below, where $\tilde{W}_{N}=W_{N}^{-1} \quad$:

$$
\begin{equation*}
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}=\frac{1}{N} \sum_{k=0}^{N-1} X(k) \tilde{W}_{N}^{k n} \text {, for } k=0,1, \ldots, N-1 . \tag{12}
\end{equation*}
$$

- The Butterfly structure for DIF FFT and DIT FFT is shown below:

- Note the bit reversed order in Fig. 2 and Fig. 3 in the output

Fig. 2 Block diagram for reduced DIF FFT, $\mathbf{N}=\mathbf{8}$

Fig. 3 Block diagram for the reduced DIF IFFT, $\mathbf{N}=\mathbf{8}$

- Ex.9. Given a sequence $x(n)$ for $0 \leq n \leq 3$, where $x(0)=1$, $x(1)=2$, $x(2)$ $=3$, and $x(3)=4$,Evaluate its DFT X(k) using the decimation-infrequency FFT mathnd
- Solution:

> Bit index

Bit reversal

- Ex.10. Given the DFT sequence $\mathrm{X}(\mathrm{k})$ for $0 \leq \mathrm{k} \leq 3$ computed in Ex1. Evaluate its inverse DFT x(n) using the decimation-in-frequency FFT method.
- Solution:

