1

CHAPTER TWO : FOURIER TRANSFORMS

Maha George Zia Assistant Professor Electrical Engineering Department

-3u(t-2)

Reflection and shifting of unit step function

3

Continuous Fourier transform (C F T)

- □Fourier transform (F.T) provides the link between the timedomain and frequency domain descriptions of a signal.
- □Fourier transform can be used for both periodic and nonperiodic signals.

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

Fourier Transform (1)

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Inverse Fourier Transform (2)

Fourier transform (FT) and inverse Fourier transform (IFT) of $\delta(t)$					
$\Im\{\delta(t)\} = \int_{-\infty}^{\infty} \delta(t) e^{-jwt} dt = \int_{-\infty}^{\infty} \delta(t) e^{-jw(0)} dt = 1$					
$\delta(t)$ $\Im{\delta(t)}$ 1					
$\mathfrak{J}^{-1}\{\delta(w)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(w) \ e^{jwt} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(w) \ e^{j(0)t} dt = \frac{1}{2\pi}$					
	<i>f</i> (t)	$\Im{f(t)}$			
	$\delta(t)$	1			
$\delta(w) \uparrow \Im^{-1}{\delta(w)} \uparrow \frac{1/2 \pi}{2}$	1	$2\pi\delta(w)=\delta(f)$			
	$\delta(t-t_0)$	e^{-jwt_0}			
W t	e ^{±jwt} ₀	$2\pi\delta(w\pm w_0) = \\ \delta(f\pm f_0)$			

Properties of delta-Dirac function

Dirac ò-function Properties

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$\int_{-\infty}^{\infty} \delta(t - a) f(t) dt = \int_{-\infty}^{\infty} \delta(t - a) f(a) dt = f(a)$$

$$\int_{-\infty}^{\infty} \exp(\pm i\omega t) dt = 2\pi \ \delta(\omega)$$

$$\int_{-\infty}^{\infty} \exp[\pm i(\omega - \omega')t] dt = 2\pi \ \delta(\omega - \omega')$$

Fig.1 Properties of delta- Dirac function

Ex2: Find and plot the Fourier transform (F.T) for the rectangular function shown

$$f(t) = Arect\left(\frac{t}{\tau}\right) = \begin{cases} A & -\tau/2 \le t \le \tau/2\\ 0 & otherwise \end{cases}$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = \int_{-\tau/2}^{\tau/2} Ae^{-j\omega t}dt$$

Ex3: Find FT of
$$f(t) = e^{-at} u(t)$$
, $a > 0$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} e^{-at}u(t)e^{-j\omega t}dt$$

$$F(\omega) = \int_0^\infty e^{-(a+j\omega)t} dt$$

$$F(\omega) = \frac{1}{-(a+j\omega)} \left[e^{-(a+j\omega)t} \right]_{0}^{\infty} = \frac{1}{-(a+j\omega)} \left[0-1 \right]$$

$$F(\omega) = \frac{1}{a + j\omega}$$

H.W : Find and plot FT of the function shown

Fourier Transform Pair (FTP) of even and odd non-periodic functions

□Fourier Transform Pair (FTP) of even non-periodic functions is:

$$f(t) = \frac{1}{\pi} \int_0^\infty F(w) \cos wt \, dw \qquad \dots \dots (3)$$

$$F(w) = 2 \int_0^\infty f(t) \cos wt \, dt = \Im \{ f(t) \} \qquad \dots \dots (4)$$

Fourier Transform Pair (FTP) of odd non-periodic functions is:

$$f(t) = \frac{1}{\pi} \int_0^\infty F(w) \sin wt \, dw \qquad \dots \dots \dots (5)$$

$$F(w) = 2 \int_0^\infty f(t) \sin wt \, dt = \Im \{ f(t) \}$$
(6)

Ex4: Find and Plot the spectrum of the function:

• Its even function

- $F(w) = 2 \int_0^1 2(1-t) \cos wt \, dt = \frac{4}{w^2} (1-\cos w) \frac{2}{2}$.
- We have $sin^2\theta = \frac{1}{2}(1 \cos 2\theta)$, and assuming $2\theta = w$, then

•
$$\theta = \frac{w}{2}$$
. Therefore:

•
$$F(w) = \frac{4}{w^2} \sin^2\left(\frac{w}{2}\right) = 2\left(\frac{\sin\frac{w}{2}}{\frac{w}{2}}\right)^2$$

• H.W : Plot its spectrum.

Table 1: Fourier transform properties

	Property	Time domain x (t)	Fourier transform X (jω)
1)	Linearity	$x(t) = A x_1(t) + B x_2(t)$	$X(j\omega) = A X_1(j\omega) + B X_2(j\omega)$
2)	Time shifting	$x(t-t_0)$	$e^{-j\omega t_0} X(j\omega)$
3)	Conjugation	<i>x</i> *(<i>t</i>)	X [*] (− j ω)
4)	Differentiation in time	$\frac{d^n x(t)}{dt^n}$	(jω) ⁿ .X(jω)
5)	Differentiation in frequency	-jt x(t)	$\frac{d X(j\omega)}{d\omega}$
6)	Time Integration	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{j\omega} X(j\omega) + \pi . X(0) . \delta(\omega)$
7)	Time scaling	x(at)	$\frac{1}{ a } X \left(j \frac{\omega}{a} \right)$
8)	Time reversal	x(-t)	$X(-j\omega)$
9)	Frequency shifting	$x(t).e^{j\omega_0 t}$	$X(j(\omega-\omega_0))$
10)	Duality	X(t)	$2\pi x(-j\omega)$
11)	Time convolution	x(t) * h(t)	Χ(jω). Η (jω)
12)	Parseval's Theorem	$E=\int_{-\infty}^{\infty} x(t) ^2dt$	$E=\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^2dt$
13)	Modulation	$\mathbf{z}(t) = \mathbf{x}(t).\mathbf{y}(t)$	$Z(\omega) = \frac{1}{2\pi} \cdot X(j\omega) * Y(j\omega)$

Some examples of Fourier Transform properties:

1- Scaling property:

Time and frequency scaling:

x(at)
$$\stackrel{\overleftarrow{\mathfrak{T}}}{\longleftrightarrow} \frac{1}{|\mathbf{a}|} \times \left(\frac{\omega}{\mathbf{a}}\right)$$

Example:

$$e^{-at} u(t) \quad \stackrel{\widetilde{\mathcal{T}}}{\longleftrightarrow} \quad \frac{1}{a+j\omega} = \frac{1}{a} \frac{1}{1+j\left(\frac{\omega}{a}\right)}$$

2- Time shifting(delay):

Time shifting:
x(t−t_o)
$$\xrightarrow{𝔅}$$
 e^{-jωt}₀ X(ω)

$$\Im\{\delta(t-3)\} = e^{-jw(3)}.1$$

3-Modulation (frequency shifting):

EX5:
$$\Im\{f(t)\cos w_0 t\} = \Im\{f(t)[\frac{e^{jnw_0} + e^{-jnw_0}}{2}]\} = \frac{1}{2}\{F(w - w_0) + F(w + w_0)\}$$

Ex6:
$$\Im\left\{\frac{e^{jnw_0} + e^{-jnw_0}}{2}\right\} = \frac{1}{2}\left\{\delta\left((f - f_0) + \delta(f + f_0)\right)\right\} = \pi\left\{\delta((w - w_0) + \delta(w + w_0)\right\}$$

4- Duality property:

Convolution

- 1. Change the axis to τ for both functions.
- 2. Let $f_1(\tau)$ to be fixed function.
- 3. Reflect (invert) the function $f_2(\tau)$ to be $f_2(-\tau)$.
- 4. Multiply and integrate both functions, the fixed function $f_1(\tau)$ with the reflected function $f_2(-\tau)$.
- 5. Now Shift $f_2(-\tau)$ by a value of t, multiply and integrate with the fixed function $f_1(\tau)$.
- 6. The sifting of $f_2(-\tau)$ is stopped when there is no area (no relations) to be calculated.

Note: convolution in time = multiplication in frequency domain

•
$$\Im\{f_1(t) \otimes f_2(t)\} = \Im\{\int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau\} = F_1(w).F_2(w)$$

Discrete Fourier Transform(DFT)

- Given a sequence x(n), 0 < n < N 1, its DFT is defined as: $X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} = \sum_{n=0}^{N-1} x(n) W_N^{kn}, \text{ for } k = 0, 1, ..., N-1.$ (7)
- where the factor W_N (called the twiddle factor) is defined as:

$$W_N = e^{-j2\pi/N} = \cos\left(\frac{2\pi}{N}\right) - j\sin\left(\frac{2\pi}{N}\right). \tag{8}$$

• The inverse DFT is given by:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, \text{ for } n = 0, 1, \dots, N-1.$$
(9)

MATLAB functions fft() and ifft() are used to compute the DFT coefficients

Ex7: Given a sequence x(n) for $0 \le n \le 3$, where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4. Evaluate its DFT X(k). Solution: Since N = 4 and W₄ = $e^{-j\pi/2}$, using Eq. (7):

$$X(k) = \sum_{n=0}^{3} x(n) W_4^{kn} = \sum_{n=0}^{3} x(n) e^{-j\frac{\pi kn}{2}}.$$

Thus, for k = 0

$$X(0) = \sum_{n=0}^{3} x(n)e^{-j0} = x(0)e^{-j0} + x(1)e^{-j0} + x(2)e^{-j0} + x(3)e^{-j0}$$

= $x(0) + x(1) + x(2) + x(3)$
= $1 + 2 + 3 + 4 = 10$

$$\begin{aligned} X(1) &= \sum_{n=0}^{3} x(n) e^{-j\frac{\pi n}{2}} = x(0) e^{-j0} + x(1) e^{-j\frac{\pi}{2}} + x(2) e^{-j\pi} + x(3) e^{-j\frac{3\pi}{2}} \\ &= x(0) - jx(1) - x(2) + jx(3) \\ &= 1 - j2 - 3 + j4 = -2 + j2 \end{aligned}$$

for k = 2

$$X(2) = \sum_{n=0}^{3} x(n)e^{-j\pi n} = x(0)e^{-j0} + x(1)e^{-j\pi} + x(2)e^{-j2\pi} + x(3)e^{-j3\pi}$$
$$= x(0) - x(1) + x(2) - x(3)$$
$$= 1 - 2 + 3 - 4 = -2$$

and for k = 3

$$\begin{aligned} X(3) &= \sum_{n=0}^{3} x(n) e^{-j\frac{3\pi n}{2}} = x(0) e^{-j0} + x(1) e^{-j\frac{3\pi}{2}} + x(2) e^{-j3\pi} + x(3) e^{-j\frac{9\pi}{2}} \\ &= x(0) + jx(1) - x(2) - jx(3) \\ &= 1 + j2 - 3 - j4 = -2 - j2 \end{aligned}$$

- Ex8:Using the DFT coefficients X(k) for 0 ≤ k ≤ 3 computed in Example 7. Evaluate its inverse DFT to determine the time domain sequence x(n).
- Solution: Since N = 4 and $W_4 = e^{j\pi/2}$, using Eq. (9):

$$x(n) = \frac{1}{4} \sum_{k=0}^{3} X(k) W_4^{-nk} = \frac{1}{4} \sum_{k=0}^{3} X(k) e^{j\frac{\pi kn}{2}}.$$

Then for n = 0

$$\begin{aligned} x(0) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{j0} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j0} + X(2) e^{j0} + X(3) e^{j0} \right) \\ &= \frac{1}{4} \left(10 + (-2 + j2) - 2 + (-2 - j2) \right) = 1 \end{aligned}$$

for n = 1

$$\begin{aligned} x(1) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{j\frac{k\pi}{2}} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j\frac{\pi}{2}} + X(2) e^{j\pi} + X(3) e^{j\frac{3\pi}{2}} \right) \\ &= \frac{1}{4} \left(X(0) + jX(1) - X(2) - jX(3) \right) \\ &= \frac{1}{4} \left(10 + j(-2 + j2) - (-2) - j(-2 - j2) \right) = 2 \end{aligned}$$

for n = 2

$$\begin{aligned} x(2) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{jk\pi} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j\pi} + X(2) e^{j2\pi} + X(3) e^{j3\pi} \right) \\ &= \frac{1}{4} \left(X(0) - X(1) + X(2) - X(3) \right) \\ &= \frac{1}{4} \left(10 - \left(-2 + j2 \right) + \left(-2 \right) - \left(-2 - j2 \right) \right) = 3 \end{aligned}$$

and for n = 3

$$\begin{aligned} x(3) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{j\frac{k\pi^3}{2}} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j\frac{3\pi}{2}} + X(2) e^{j3\pi} + X(3) e^{j\frac{9\pi}{2}} \right) \\ &= \frac{1}{4} (X(0) - jX(1) - X(2) + jX(3)) \\ &= \frac{1}{4} (10 - j(-2 + j2) - (-2) + j(-2 - j2)) = 4 \end{aligned}$$

- using the MATLAB function fft() for Ex.7:
- $X = fft([1 \ 2 \ 3 \ 4])$
- X = 10.0000 -2.0000+ 2.0000i -2.0000 -2.0000- 2.0000i
- Applying the MATLAB function ifft() for Ex.8 achieves:
- x = ifft([10 -2+2j -2 -2-2j])
- x =1 2 3 4

Fast Fourier Transform (FFT)

Complex multiplications of DFT = N^2 , and(10) Complex multiplications of FFT = $\frac{N}{2} \log_2(N)$.

FFT-Reduced decimation in-frequency (Reduced DIF FFT)

- The definition of FFT is $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$ for k = 0, 1, ..., N-1. (11)
- where $W_N = e^{-j2\pi N}$ is the twiddle factor, and N = 2, 4, 8, 16, . .
- The inverse FFT (IFFT) is defined as below, where $\tilde{W}_N = W_N^{-1}$:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \tilde{W}_N^{kn}, \text{ for } k = 0, 1, \dots, N-1.$$
(12)

• The Butterfly structure for DIF FFT and DIT FFT is shown below:

By: Assistant Professor Maha George Zia

• Note the bit reversed order in Fig. 2 and Fig.3 in the *output*

Fig.2 Block diagram for **reduced DIF FFT**, **N =8**

By: Assistant Professor Maha George Zia

Fig.3 Block diagram for the **reduced DIF IFFT**, **N =8**

• Ex.9. Given a sequence x(n) for $0 \le n \le 3$, where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4, Evaluate its DFT X(k) using the decimation-infrequency FFT method

- Ex.10. Given the DFT sequence X(k) for 0 ≤ k ≤ 3 computed in Ex1. Evaluate its inverse DFT x(n) using the decimation-in-frequency FFT method.
- Solution:

