Chapter_4 The Z-Transform

Maha George Zia

Assistant Professor

Electrical Engineering Department

The Z-Transform

The z transform of a discrete time signal $x(n)$ is defined as the power series:

$$
\begin{equation*}
X(z)=Z[x(n)]=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \tag{1}
\end{equation*}
$$

DZ-transform inherently concerned with sampled data systems whereas Fourier transform, and Laplace transform were developed and used with analog systems.
-The one-sided Z -transform of a causal sequence $\square_{x}(\mathrm{n})$ is simply defined by:

$$
\text { [} \quad \begin{aligned}
X(z) & =Z(x(n))=\sum_{n=0}^{\infty} x(n) z^{-n} \\
& =x(0) z^{-0}+x(1) z^{-1}+x(2) z^{-2}+\ldots
\end{aligned}
$$

Stable system if poles lie inside the unit circle

Note: $Z=e^{j \mathrm{~W}}$

Fig. 1 Unit circle Z-Transform

Note: A causal system is one in which the output $\mathrm{y}(\mathrm{n})$ at time n depends only on the current input $x(\mathrm{n})$ at time n , and its past input sample values such as $x(\mathrm{n}-1), x(\mathrm{n}-2)$,
\square Z-transform is an infinite power series, it exists only for those values of z for which this series converges. The Region Of Convergence ROC of $X(z)$ is the set of all values of z for which $X(z)$ attains a finite value.
$\square E x 1$: Find $Z\{u(n)\}:$

$$
\begin{aligned}
Z[u[n]] & =\sum_{n=-\infty}^{\infty} u[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n} \\
& =\sum_{n=0}^{\infty} 1 \cdot z^{-n}=1+z^{-1}+Z^{-2}+Z^{-3}+\cdots=\frac{1}{1-\frac{1}{z}}=\frac{Z}{z-1}
\end{aligned}
$$

\square This series will converge if $\frac{1}{Z}<1$, or $|Z|>1$

$$
Z[u(n)] \Longleftrightarrow \frac{z}{z-1} \quad \operatorname{ROC}|z|>1
$$

Ex2: Find $Z\left\{a^{n} u(n)\right\}$

$$
\begin{aligned}
Z\left\{a^{n} u[n]\right\} & =\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =1+\frac{a}{z}+\frac{a^{2}}{z^{2}}+\frac{a^{3}}{z^{3}}+\cdots=\frac{1}{1-\frac{a}{z}}=\frac{z}{z-a}
\end{aligned}
$$

- This series will converge if $\frac{a}{Z}<1$, or $|Z|>a$

Ex.3: Find the ROC for the signal $x[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty}\left\{\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n]\right\} z^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left(\frac{1}{2}\right)^{n} u[n] z^{-n}+\sum_{n=-\infty}^{\infty}\left(-\frac{1}{3}\right)^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n}+\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n} .
\end{aligned}
$$

From the example for the right-handed exponential sequence, the first term in this sum converges for $|z|>1 / 2$, and the second for $|z|>1 / 3$. The combined transform $X(z)$ therefore converges in the intersection of these regions,
namely when $|z|>1 / 2$. In this case

$$
X(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1+\frac{1}{3} z^{-1}}=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)} .
$$

The pole-zero plot and region of convergence of the signal is

Z-Transform of some functions

$x(n)$	$X(Z)$	$R O C$
$\delta(n)$	1	All values of Z
$u(n)$	$\frac{Z}{Z-1}$	$\|Z\|>1$
$a^{n} u(n)$	$\frac{Z}{Z-a}$	$\|Z\|>a$
$n u(n)$	$\frac{Z}{(Z-1)^{2}}$	$\|Z\|>1$
$e^{-A n} u(n)$	$\frac{Z}{Z-e^{-A}}$	$\|Z\|>e^{-A}$
$r^{n} \cos (\theta n)$	$\frac{Z^{2}-Z r \cos (\theta)}{Z^{2}-2 Z r \cos (\theta)+r^{2}}$	$\|Z\|>r$
$r^{n} \sin (\theta n)$	$\frac{Z r \sin (\theta)}{Z^{2}-2 Z r \cos (\theta)+r^{2}}$	$\|Z\|>r$

Properties of Z-Transform

Linearity Property

If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
and $y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} Y(Z)$
Then linearity property states that
$a x(n)+b y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} a X(Z)+b Y(Z)$

Time Shifting Property

If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
Then Time shifting property states that
$x(n-m) \stackrel{\text { Z.T }}{\longleftrightarrow} z^{-m} X(Z)$

Multiplication by Exponential Sequence Property

If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
Then multiplication by an exponential sequence property states that

$$
a^{n} \cdot x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z / a)
$$

Differentiation in Z-Domain OR Multiplication by n Property
If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
Then multiplication by n or differentiation in z -domain property states that
$n^{k} x(n) \stackrel{\text { Z.T }}{\longleftrightarrow}[-1]^{k} z^{k} \frac{d^{k} X(Z)}{d Z^{K}}$

Convolution Property

If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
and $y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} Y(Z)$
Then convolution property states that
$x(n) * y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z) . Y(Z)$

Initial Value Theorem

For a causal signal $\mathrm{x} n$, the initial value theorem states that
$x(0)=\lim _{z \rightarrow \infty} X(z)$
This is used to find the initial value of the signal without taking inverse z-transform
Final Value Theorem
For a causal signal $x n$, the final value theorem states that
$x(\infty)=\lim _{z \rightarrow 1}[z-1] X(z)$

Ex.4: Find

* $\mathrm{Y}(\mathrm{Z})=\mathrm{Z}\{\mathrm{y}(\mathrm{n})\}=\mathrm{Z}\{4 \mathrm{u}(\mathrm{n})+3 \delta(\mathrm{n})\}$
* B$) \mathrm{G}(\mathrm{Z})=\mathrm{Z}\{\mathrm{g}(\mathrm{n})\}=\mathrm{Z}\{5 \mathrm{u}(\mathrm{n}-3)\}$
* C$) \mathrm{R}(\mathrm{Z})=\mathrm{Z}\{\delta(\mathrm{n}) \otimes \quad \delta(\mathrm{n})\}$

Solution:
*A) $Y(Z)=4\left(\frac{Z}{Z-1}\right)+3(1)$

* B$) \mathrm{G}(\mathrm{Z})=\mathrm{Z}^{-3}\left\{\left(\frac{Z}{Z-1}\right)\right\}$
* C$) \mathrm{R}(\mathrm{Z})=(1) .(1)$

Ex5.: Find $Y(Z)=Z\left\{2^{n} u(n)\right\}$

Solution: $\mathrm{Y}(\mathrm{Z})=\left[\frac{Z}{z-1}\right]_{\frac{Z}{2}}=\frac{Z / 2}{\left(\frac{Z}{2}\right)-1}$
Ex.6: Find $Z\left\{(n-2) a^{(n-2)} \cos [w(n-2)] u(n-2)\right.$.

$$
\begin{aligned}
& =Z^{-2} Z\left\{n a^{n} \cos w n u(n)\right\} \\
& =Z^{-2}(-Z) \frac{d}{d Z} Z\left\{a^{n} \cos w n u(n)\right\} \\
& =-\left.Z^{-1} \frac{d}{d Z} \frac{Z^{2}-Z \cos w}{Z^{2}-2 Z \cos w+1}\right|_{z \rightarrow \frac{Z}{a}}
\end{aligned}
$$

Inverse of Z-Transform

$$
\begin{equation*}
x(n)=Z^{-1}\{X(Z)\} \tag{3}
\end{equation*}
$$

The inverse z-transform may be obtained using:

1. Inspection method
2. Partial fraction expansion method.
3. The Residue theorem method.

1. Inspection method

Ex.7: Find $\mathrm{x}(\mathrm{n})$, if $\quad X(z)=\left(\frac{1}{1-\frac{1}{2} z^{-1}}\right), \quad|z|>\frac{1}{2}$,

$$
a^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-a z^{-1}}, \quad \text { for }|z|>|a| . \quad \text { then } \quad x[n]=\left(\frac{1}{2}\right)^{n} u[n] .
$$

2. Partial fraction expansion method.

$$
X(Z)=\frac{P(Z)}{Q(Z)}=\frac{P(Z)}{(Z-a)(Z-b)(Z-c) \ldots}
$$

Put $\frac{X(z)}{Z}=\frac{A}{(Z-a)}+\frac{B}{(Z-b)}+\frac{C}{(Z-c)}+\cdots$.
The values of $\mathrm{A}, \mathrm{B}, \mathrm{C}, .$. Can be found by using the limit of each term. Then:

$$
X(Z)=\frac{Z A}{(Z-a)}+\frac{Z B}{(Z-b)}+\frac{Z C}{(Z-c)}+\cdots
$$

EX.8: Find $x(\mathrm{n})$ using partial fraction method if:

$$
X(z)=\frac{1}{\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)} .
$$

Eliminating the negative power of z by multiplying the numerator and denominator by z^{2} yields

$$
\begin{aligned}
X(z) & =\frac{z^{2}}{z^{2}\left(1-z^{-1}\right)\left(1-0.5 z^{-1}\right)} . \\
& =\frac{z^{2}}{(z-1)(z-0.5)}
\end{aligned}
$$

- Dividing both sides by z leads to

$$
\begin{gathered}
\frac{X(z)}{z}=\frac{z}{(z-1)(z-0.5)}=\frac{A}{(z-1)}+\frac{B}{(z-0.5)} . \\
A=\left.(z-1) \frac{X(z)}{z}\right|_{z=1}=\left.\frac{z}{(z-0.5)}\right|_{z=1}=2, \\
B=\left.(z-0.5) \frac{X(z)}{z}\right|_{z=0.5}=\left.\frac{z}{(z-1)}\right|_{z=0.5}=-1 .
\end{gathered}
$$

- Substituting for A, B

$$
\begin{aligned}
& \frac{X(z)}{z}=\frac{2}{(z-1)}+\frac{-1}{(z-0.5)} \\
& X(z)=\frac{2 z}{(z-1)}+\frac{-z}{(z-0.5)} \\
& x(n)=2 u(n)-(0.5)^{n} u(n)
\end{aligned}
$$

3- The Residue theorem method.

$x(n)=\sum$ residues of $X(Z) Z^{n-1}$ at the poles of $X(Z) Z^{n-1}=a_{-1}+b_{-1}+c_{-1}+\ldots$.
$a_{-1}=\frac{1}{(m-1)!} \lim _{z \rightarrow a} \frac{d^{m-1}}{d Z^{m-1}}\left\{(Z-a)^{m} Z^{n-1} X(Z)\right\}$, m is the orderof thepole
Ex. 9 :Find $\mathrm{x}(\mathrm{n})$ using the residue theorem method if $\quad X(Z)=\frac{2 Z}{(Z-1)^{2}(Z-2)(Z-3)}$

$$
\begin{array}{ll}
a_{-1}=\frac{1}{1!} \lim _{Z \rightarrow 1} \frac{d}{d Z} \frac{2 Z Z^{n-1}}{(z-2)(Z-3)}=n+\frac{3}{2} & c_{-1}=\frac{1}{0!} \lim _{Z \rightarrow 3} \frac{2 Z^{n}}{(Z-1)^{2}(Z-2)}=\frac{1}{2}(3)^{n} \\
b_{-1}=\frac{1}{0!} \lim _{Z \rightarrow 2} \frac{2 Z^{n}}{(Z-1)^{2}(Z-3)}=-2(2)^{n} & x(n)=a_{-1}+b_{-1}+c_{-1}=n+\frac{3}{2}-2(2)^{n}+\frac{1}{2}(3)^{n}
\end{array}
$$

Solution of Difference Equations (DE) Using the Z-Transform

To solve a difference equation with initial conditions, we must deal with time shifted sequences such as $\mathrm{y}(\mathrm{n}-1), \mathrm{y}(\mathrm{n}-2), \ldots, \mathrm{y}(\mathrm{n}-\mathrm{m})$, and the time shifting property becomes:

$$
\begin{equation*}
Z\{x(n-m)\}=Z^{-m}\left\{X(Z)+\sum_{k=-m}^{-1} x(k) Z^{-k}\right\} \tag{4}
\end{equation*}
$$

Ex.10: Solve $y(n)-(3 / 2) y(n-1)+(1 / 2) y(n-2)=(1 / 4)^{n}$, if $y(-1)=4, y(-2)=10$ for $n \geq 0$

$$
\begin{aligned}
& Y(Z)-\frac{3}{2}\left\{Y(Z) \cdot Z^{-1}+y(-1)\right\}+\frac{1}{2}\left\{Z^{-2} Y(Z)+Z^{-1} y(-1)+y(-2)\right\}=\frac{Z}{Z-\frac{1}{4}} \\
& Y(Z)\left\{1-\frac{3}{2} Z^{-1}+\frac{1}{2} Z^{-2}\right\}=\frac{Z}{Z-\frac{1}{4}}+1-2 Z^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& Y(Z)=\frac{Z\left(2 Z^{2}-\frac{9}{4} Z+\frac{1}{2}\right)}{\left(Z-\frac{1}{4}\right)\left(Z-\frac{1}{2}\right)(Z-1)} \\
& Y(Z)=\frac{(1 / 3) Z}{\left(Z-\frac{1}{4}\right)}+\frac{Z}{Z-\frac{1}{2}}+\frac{(2 / 3) Z}{Z-1} \\
& y(n)=\left\{\frac{1}{3}\left(\frac{1}{4}\right)^{n}+\left(\frac{1}{2}\right)^{n}+\frac{2}{3}\right\} u(n)
\end{aligned}
$$

Take Z.T and solve for $Y(Z) / X(Z)$

Ifstable $Z=e^{j \pi} \longrightarrow H\left(e^{j \pi}\right)$

