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Abstract 

This research explores the application of two established methods, Branch 

and Bound and Gomory's All-Integer Cutting Plane, for solving Integer Linear 

Programming (ILP) problems. ILP extends Linear Programming by introducing the 

constraint that all decision variables must be integers. Finding the optimal solution 

for ILP problems often proves more challenging than standard LP problems. 

This study examines the theoretical foundations of both Branch and Bound 

and Gomory's Cutting Plane methods. We analyze their strengths and weaknesses 

in addressing ILP problems. Furthermore, the research aims to implement these 

methods and compare their performance on a set of benchmark ILP problems. The 

findings will provide valuable insights into the effectiveness of these methods in 

practical applications 

 

 

 

 

 

 

 

 

 

 

 



VI 
 

Contents 

Contents                                                                                        page No. 

Introduction…………………………………………………………….…….….1 

Chapter one …………………………………………………………………..…2 

1.1 Background…..…………...……………………………………………..….2 

Chapter two……………………………………………………………………...7 

2.1 Branch and Bound Method…………………..……………………...……7 

2.2 Gomory’s All Integer Cutting Plane Method…………………….…....18 

References …………………………………………………………………….. 29 

Abstract in Kurdish…………………………………………………………….a  

 

 

 



1 
 

Introduction  

Linear Programming (LP) is a powerful mathematical optimization 

technique for solving problems with a linear objective function and a set of linear 

constraints. It finds extensive applications in various domains, including resource 

allocation, production planning, scheduling, and financial planning. However, in 

many real-world scenarios, the decision variables represent discrete choices, like 

the number of items produced or workers assigned. In such cases, the optimal 

solution obtained using standard LP methods might not be feasible with integer 

values for the variables. 

This research project delves into exploring two prominent methods for 

tackling this challenge: the Branch and Bound method and Gomory's All-Integer 

Cutting Plane method. We aim to investigate the effectiveness of these methods in 

finding the optimal solution for Integer Linear Programming (ILP) problems, a 

specific subset of LP where all variables must take integer values. 
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Chapter One 

Background 

This chapter will present some basic definitions and theorems related to our 

research project 

Definition 1.1. Optimization Problem (OP) (Yang, 2008) 

Optimization is everywhere, from business to engineering design, from planning 

your holiday to your daily routine. Business organizations have to maximize their 

profit and minimize the cost. Engineering design has to maximize the performance 

of the designed product while of course minimizing the cost at the same time. Even 

when we plan holidays we want to maximize the enjoyment and minimize the cost. 

Therefore, the studies of optimization are of both scientific interest and practical 

implications and subsequently the methodology will have many applications . 

The optimization problem is expressed as follows: 

Minimize (or maximize)                                                                      (1.1)   

Subject to     .                                                                                     (1.2)      

The function          that wish to minimize (or maximize) is a           real-

valued function, and is called the objective function, or cost function. The vector   

is an  -vector of independent variables, that is                     . The 

variables            are often referred to as decision variables. The set   is a 

subset of      called the constraint set or feasible set.  

The optimization problem above can be viewed as a decision problem that 

involves finding the “best” vector   of the decision variables over all possible 

vectors in  . The “best” vector means the one that result in the smallest value of 

the objective function. This vector is called the minimizer of    over  . It is 



3 
 

possible that there may be many minimizers. In this case, finding any of the 

minimizers will suffice. 

There are also optimization problems that require maximization of the 

objective function. These problems, however, can be represented in above form 

because maximizing    is equivalent to minimizing  –   (Chong and Zak, 2004). 

 

The following diagram indicates the branch of optimization problems (Vankova, 

2004) 

 
 

Definition 1.2 (Vankova, 2004)  

 A mathematical model in operation research is viewed generally as: 

Optimize                                                                                         (1.3)   

Subject to:  
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                                                                                                         (1.4) 

                                                                                                           (1.5) 

The function   is objective function while      represent the constraint, where 

  is known constants. The constricts     are called the non-negative restrictions, 

which restrict the variables to zero or positive value only. 

Definition 1.3 (Chong and Zak, 2004) 

An objective function subject to constraint equations with 

nonnegative variables is called initial system. 

Definition 1.4 (STACHO, 2021) 

Slack variable is a variable that is added to the left-hand side of a 

less than or equal sign to type and convert the constraint into an equality. 

Definition 1.5 (STACHO, 2021) 

Surplus variable is a variable subtracted from the left-hand side of a greater 

than or equal to type constraint to convert the constraint into equality. It is 

also known as negative slack variable. 

Definition 1.6 (Taha, 2011) 

An artificial variable is a nonnegative variable added to the left-hand 

side of each of the equations corresponding to constraints of this types (≥) and (=). 

The artificial variables only provide a mathematical trick for 

obtaining a starting solution; the effect of these variables on the final 

solution is cancelled by high penalty in the objective function. 

Definition 1.7 (STACHO, 2021) 
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The goal of linear programming is to determine the values of decision 

variables that maximize or minimize a linear objective function, where the decision 

variables are subject to linear constraints. The goal is to find a point that minimizes 

the objective function and at the same time satisfies the constraints. The point that 

satisfies the constraints is known as a feasible point. In a linear programming 

problem, the objective function is linear, and the set of feasible points is 

determined by a set of linear equations and / or inequalities.  

A linear program is an optimization problem of the form  

                   Maximize                                                                 (1.6) 

           Subject to 

                                      = b                                                         (1.7) 

                                       0                                                           (1.8) 

where                        .     

Definition 1.8 (Taha, 2011) 

Any set                 of variables is called solution to LPP, if it satisfies the 

constraints only. 

Definition 1.9 (Winston, 2022) 

Any set                 of variables is called feasible solution to LPP, if it 

satisfies the constraints and non-negative restrictions. 

Definition 1.10 (Taha, 2011) 

Basic solution is a solution obtained by setting any n variable (among     

variables) equal to zero and solving remaining m variables provided the 
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determinant of the coefficients of these m variables is non-zero. Such m (any of 

them may be zero) are called basic variables and remaining n zero variables are 

called Non-basic variables. 

Definition 1.11(Winston, 2022) 

A basic feasible solution is a basic solution which also non-negative 

restrictions that is all basic variables are non-negative. Basic feasible 

solutions are two types 

a) Non-degenerate. A Non-degenerate basic feasible solution is a basic 

feasible solution which has exactly m positive xi where i=1,2,..,m. In 

other words all m basic variables are positive, and remaining n variables 

will be zero 

b) Degenerate. A basic feasible solution is degenerate, if one or more basic 

variable zero. If an LPP in standard from has m constraints are n variables, 

then maximal number of basic solution is. 

(
 
 

)  
  

        
  

Definition 1.12 (Taha, 2011) 

A basic feasible solution is said to be optimum if it optimizes (Max or Min ) 

he objective function. 

 

Definition 1.13(Winston, 2022) 

If the value of the objective function can be increased or decreased 

indefinitely such solutions are called unbounded solution. 
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Chapter Two 

2.1 Branch and Bound Method 

The Branch and Bound method developed first by A H Land and A G Doig 

is used to solve all-integer, mixed-integer and zero-one linear programming 

problems. The concept behind this method is to divide the feasible solution space 

of an LP problem into smaller parts called subproblems and then evaluate corner 

(extreme) points of each subproblem for an optimal solution. The branch and 

bound method starts by imposing bounds on the value of objective function that 

help to determine the subproblem to be eliminated from consideration when the 

optimal solution has been found. If the solution to a subproblem does not yield an 

optimal integer solution, a new subproblem is selected for branching. At a point 

where no more subproblem can be created, an optimal solution is arrived at. The 

branch and bound method for the profit-maximization integer LP problem can be 

 summarized in the following steps: 

2.1.1 The Procedure 

Step 1: Initialization Consider the following all integer programming problem 

Maximize Z=      +        +…+        

subject to the constraints 

         +          + …+         +          =     

         +          + …+         =    ...                                                                                             

(LP-A) .. 

          +          + …+         +          =     

         +           + …+         =    

And                  ≥ 0 and non-negative integers. 

Obtain the optimal solution of the given LP problem ignoring integer restriction on 

the variables. 

 (i) If the solution to this LP problem (say LP-A) is infeasible or unbounded, the 

solution to the given all-integer programming problem is also infeasible or 

unbounded, as the case may be.  
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(ii) If the solution satisfies the integer restrictions, the optimal integer solution has 

been obtained. If one or more basic variables do not satisfy integer requirement, 

then go to Step 2. Let the optimal value of objective function of LP-A be   . This 

value provides an initial upper bound on objective function value and is denoted by 

  .  

(iii) Find a feasible solution by rounding off each variable value. The value of 

objective function so obtained is used as a lower bound and is denoted by     

 

Step 2: Branching step  

(i) Let xk be one basic variable which does not have an integer value and also has 

the largest fractional value. 

 (ii) Branch (or partition) the LP-A into two new LP subproblems (also called 

nodes) based on integer values of    that are immediately above and below its 

non-integer value. That is, it is partitioned by adding two mutually exclusive 

constraints. 

   ≤ [   ] and    ≥ [   ] + 1 

to the original LP problem. Here [xk] is the integer portion of the current non-

integer value of the variable xk. This is obviously is done to exclude the non-

integer value of the variable xk . The two new LP subproblems are as follows: 

LP Subproblem B                                                       LP Subproblem C 

Max Z ∑    
 
                                                             Max Z ∑    

 
      

subject to Z ∑     
 
                                              subject to Z ∑     

 
         

   ≤ [   ]                                                                      ≤ [   ]+1 

        ≤ 0           ≤ 0  

Step 3: Bound step Obtain the optimal solution of subproblems B and C. Let the 

optimal value of the objective function of LP-B be    and that of LP-C be   . The 

best integer solution value becomes the lower bound on the integer LP problem 

objective function value (Initially this is the rounded off value). Let the lower 

bound be denoted by   .  

Step 4: Fathoming step Examine the solution of both LP-B and LP-C 
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 (i) If a subproblem yields an infeasible solution, then terminate the branch. 

 (ii) If a subproblem yields a feasible solution but not an integer solution, then 

return to Step 2.0 

 (iii) If a subproblem yields a feasible integer solution, examine the value of the 

objective function. If this value is equal to the upper bound, an optimal solution 

has been reached. But if it is not equal to the upper bound but exceeds the lower 

bound, this value is considered as new upper bound and return to Step 2. Finally, if 

it is less than the lower bound, terminate this branch. 

Step 5: Termination The procedure of branching and bounding continues until no 

further sub-problem remains to be examined. At this stage, the integer solution 

corresponding to the current lower bound is the optimal all-integer programming 

problem solution. 

 Remark The above algorithm can be represented by an enumeration tree. Each 

node in the tree represents a subproblem to be evaluated. Each branch of the tree 

creates a new constraint that is added to the original problem. 

 

Example 1.1.1:  Solve the following all integer programming problem using the 

branch and bound method. 

Maximize Z =         

subject to the constraints 

(i)         ≤ 25,            (ii)        ≤ 10 

And            ≥ 0 and integers                                                                                      

[Jammu Univ., BE (Mach.) 2008] 

Solution: Relaxing the integer conditions, the optimal non-integer solution to the 

given integer LP problem obtained by graphical method as shown in Fig. 7.4 is:    

= 1.92, x2 = 2.69 and max    = 11.91. The value of    represents initial upper 

bound as:    = 11.91. Since value of variable    is non-integer, therefore selecting 

it to decompose (branching) the given problem into two sub-problems by adding 

two new constraints    ≤ 2 and    ≥ 3 to the constraints of original LP problem as 

follows: 
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LP Sub-problem B                                                            LP Sub-problem C 

Max  Z =                                                                 Max  Z =         

subject to (i)         ≤ 25,                                       subject to (ii)          10 

(iii)     ≤ 2,                                                                       (iii)      ≥3, 
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And           ≥ 0 and integers                                        And           ≥ 0 and 

integers                                                                                

LP Sub-problem B                                                              LP Sub-problem C 

Max  Z =                                                                    Max  Z =         

subject to (i)         ≤ 25,(ii)          10          subject to (i)         ≤ 

25,(ii)           10 

(iii)     ≤ 2,   (iv)    ≥ 2                                                      (iii)     ≤ 2,   (iv)    ≥ 3 

And           ≥ 0 and integers                                           And           ≥ 0 and 

integers              

Sub-problems D and E are solved graphically as shown in Fig.(1.1.1)The feasible 

solutions are: 

Sub-problem D :    =2,     = 2 and max )    = 10  

Sub-problem E :    =3,    = 1.4 and max    = 10.2 

The solution of LP sub-problem D is satisfying integer value requirement of 

variables but is inferior to the solution of LP sub-problem E in terms of value of 

objective function,     = 10.2. Hence the value of lower bound    = 11 remains 

unchanged and sub-problem D is not considered for further decomposition. Since 

the solution of sub-problem E is non-integer, it can be further decomposed into two 

sub-problems by considering variable,   . But the value of objective function (   = 

10.2) is inferior to the lower bound and hence this does not give a solution better 

than the one already obtained. The sub-problem E is also not considered for further 

branching. Hence, the best available solution corresponding to sub-problem C is 

the integer optimal solution: x1 = 1,    = 3 and Max Z = 11 of the given integer LP 

problem. The entire branch and bound procedure for the given Integer LP problem 

is shown in Fig(1.1.1). 
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Ex9ample (1.1.2).:  Solve the following all-integer programming problem using 

the branch and bound method. 

Maximize Z =         

subject to the constraints 

(i)     +     ≤ 25, (ii)   ≤ 8, (iii)    ≤ 10 

and    ,     ≥ 0 and integers 

Solution:  Relaxing the integer requirements, the optimal non-integer solution of 

the given Integer LP problem obtained by the graphical method, as shown in Fig. 

7.8, is:    = 8,     = 2.25 and    = 35.25. The value of    represents the initial 

upper bound,    = 35.25 on the value of the objective function. This means that 

the value of the objective function in the subsequent steps should not exceed 35.25. 

The lower bound    = 34 is obtained by the rounded off solution values to    = 8 

and    = 2. The variable    (= 2.25) is the non-integer solution value, therefore, it 

is selected for dividing the given LP-A problem into two subproblems LP-B and 

LP-C by adding two new constraints:    ≤ 2 and    ≥ 3 to the constraints of given 

LP problem as follows. 
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Subproblems B and C are solved graphically as shown in Fig. (1.1.2).The feasible 

solutions are: 

Subproblem B :     =8,,5     = 2 and max )    = 34 

Subproblem C : :     = 6.5,    = 3, and Max    = 34.5 

Since solution of the subproblem B is satisfying the integer value requirement of 

variables but value 

of objective function    <   , therefore this problem is not considered for further 

branching. However, if 

  ,  ≤    , then no further branching would have been possible for subproblem C. 

The subproblem C is now branched into two new subproblems: D and E, by taking 

variable, x1 = 6.5. 
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Adding two new constraints     ≤ 6 and     ≥ 7 to subproblem C. The two 

subproblems D and E are stated 

as follows. 

LP Sub-problem B                                                              LP Sub-problem C 

Max  Z =                                                                   Max  Z =                                                                    

subject to (i)     +    ≤ 25, (ii)    8 (redundant)    subject to (i)     +    ≤ 25, 

(ii)    8 

(iii)     ≤ 10,   (iv)    ≥ 2  (v)    ≤ 6                                  (iii)     ≤ 10,   (iv)    ≥ 2  

(v)    ≤ 6            

 And           ≥ 0 and integers                                           )      6                                   

                                                                                                And           ≥ 0 and 

integers 

 Subproblems D and E are solved graphically as shown in fig (1.1.2).  the feasible 

solution are  

 

      as shown in fig (1.1.2). 
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LP Subproblem F                                                                   LP Subproblem G 

Max Z =     +                                                                      Max Z =     +       

subject to (i)     +      ≤ 25 (ii)    ≤ 8                               subject to (i)     +   

   ≤ 25 (ii)    ≤ 8 (iii)     

(iii)     ≤ 10 (redundant) (iv)    ≥ 3                                 ≤   10, (iv)    ≥ 3 

(redundant) 

(v)    ≤ 6 (vi)    ≤ 3                                                              (v)     ≤ 6, (vi)    ≥ 4 

and   ,    ≥ 0 and integers                                               and   ,     ≥ 0 and 

integers 

The graphical solution to subproblems F and G as shown in Fig. () is as follows: 

Subproblem F :    = 6,    = 3 and Max ,    = 33. 

Subproblem G :    = 4.25,      = 4 and Max,    = 33.5 

 

The branch and  
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Example(1.1.3). :  Solve the following all-integer programming problem using the 

branch and bound method 

Minimize Z =,      + 2.5x2 

subject to the constraints 

(i)     +      ≥ 20, (ii)      +      ≥ 50 

and    ,     ≥ 0 and integers. 

Solution: Relaxing the integer requirements, the optimal non-integer solution of 

the given integer LP 

problem, obtained by the graphical method, is:    = 15,    = 2.5 and     = 51.25. 

This value of     represents 

the initial lower bound,    = 51.25 on the value of the objective function, i.e. the 

value of the objective 

function in the subsequent steps cannot be less than 51.25. 

The variable     (= 2.5) is the only non-integer solution value and is therefore is 

selected for dividing 

the given problem into two subproblems: B and C. In order to eliminate the 

fractional part of    = 2.5, two 

new constraints    ≤ 2 and    ≥ 3 are created by adding in the given set of 

constraints as shown below: 
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LP Subproblem B                                                                  LP Subproblem C 

Max Z =     + 2.5                                                                Max Z =      + 2.5    

subject to (i)     +      ≥ 20, (ii)      +      ≥ 50               subject to (i)     +      ≥ 

20, (ii)      +      ≥ 50 

(iii)    ≤ 2                                                                              (iii)     ≥ 3 

and    ,     ≥ 0 and integers.                                               and       ,    ≥ 0 and 

integers 

Subproblems B and C are solved graphically. The feasible solutions are: 

Subproblem B :     = 16,     = 2 and Min   = 53. 

Subproblem C :     = 14.66,    = 3 and Min    = 51.5. 

Since the solution of subproblem B is all-integer, therefore no further 

decomposition (branching) of this subproblem is required. The value of    =    

becomes the new lower bound. A non-integer solution of subproblem C and also 

   <    indicates that further decomposition of this problem need to be done in 

order to search for a desired integer solution. However, if    ≥   , then no further 

branching was needed from sub-problem C. The second lower bound takes on the 

value    = 51.5 instead of    = 51.25 at node A. Dividing subproblem C into two 

new subproblems: D and E by adding constraints     ≤ 14 and     ≥ 15, as follows: 

 

LP Subproblem D                                                                  LP Subproblem E 

Max Z =     + 2.5                                                                 Max Z =     + 2.5      

subject to         +      ≥ 20, (ii)      +      ≥ 50           subject to (i)     +      ≥ 

20, (ii)      +      ≥ 50 

(iii)     ≥ 3, (iv)     ≤ 14                                                         (iv)      ≥ 3, (v)      ≥ 

15 

and    ,     ≥ 0 and integers                                                and    ,      ≥ 0 and 

integers. 

Subproblems D and E are solved graphically. The feasible solutions are: 

Subproblem D :      = 14,      = 4 and Min     = 52. 
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Subproblem E :     = 15,     = 3 and Min      = 52.5. 

The feasible solutions of both subproblems D and E are all-integer and therefore 

branch and bound procedure is terminated. The feasible solution of subproblem D 

is considered as optimal basic feasible solution because this solution is all-integer 

and the value of the objective function is the lowest amongt all such values. The 

branch and bound procedure for the given problem is shown in Fig. 

 

 

2.2 GOMORY’S ALL INTEGER CUTTING PLANE METHOD 

In this section, a procedure called Gomory‟s all-integer algorithm will be 

discussed for generating „cuts‟ (additional linear constraints) so as to ensure an 

integer solution to the given LP problem in a finite number of steps. Gomory‟s 

algorithm has the following properties. 

(i) Additional linear constraints never cutoff that portion of the original feasible 

solution space that contains a feasible integer solution to the original problem.  

(ii) Each new additional constraint (or hyperplane) cuts off the current non-integer 

optimal solution to the linear programming problem. 

 

2.2.1 Method for Constructing Additional Constraint (Cut) 

Gomory‟s method begins by solving an LP problem ignoring the integer 

value requirement of the decision variables. If the solution so obtained is an 
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integer, i.e. all variables in the „xB ‟-column (also called basis) of the simplex table 

assume non-negative integer values, the current solution is the optimal solution to 

the given ILP problem. However, if some of the basic variables do not have non-

negative integer value, an additional linear constraint called the Gomory constraint 

(or cut) is generated. After having generated a linear constraint (or cutting plane), it 

is added to the bottom of the optimal simplex table. The new problem is then 

solved by using the dual simplex method. If the optimal solution, so obtained, is 

again a non-integer, then another cutting plane is generated. The procedure is 

repeated until all basic variables assume non-negative integer values. 

 

2.2.2 Procedure 

In the optimal solution simplex table, select a row called source row for which 

basic variable is non-integer. Then to develop a „cut‟, consider only fractional part 

of the coefficients in source row. Such a cut is also referred to as fractional cut. 

Suppose the basic variable xr has the largest fractional value among all basic 

variables required to assume integer value. Then the rth constraint equation (row) 

from the simplex table can be rewritten as: 

     (=    ) = 1·      + (         +          + . . . ) =     + ∑              …1 

where     ( j = 1, 2, 3, . . .) represents all the non-basic variables in the rth 

constraint (row), except the variables xr and br (=    ) is the non-integer value of 

variable     . 

 Decomposing the coefficients of variables     and xr as well as      into integer 

and non-negative fractional parts in Eq. (1) as shown below: 

|[    ] +   = (1 + 0)     + ∑          ]+     }       …2 

where [    ] and [    ] denote the largest integer value obtained by truncating the 

fractional part from      and arj respectively 

Rearranging Eq. (2) so that all the integer coefficients appear on the left-hand side, 

we get 
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  r+ {[    ] –     – ∑                =∑                ..3  

where    is strictly a positive fraction (0 <    < 1) while f rj is a non-negative 

fraction (0 ≤      ≤ 1). Since all the variables (including slacks) are required to 

assume integer values, the terms in the bracket on the left-hand side as well as on 

the right-hand side must be non-negative numbers. Since the left-hand side in Eq. 

(3) is   r plus a non-negative number, we may write it in the form of the following 

inequalities: 

  r+≤ ∑             

Or ∑             r+    or  -  r=   ∑                            …4 

where sg is a non-negative slack variable and is also called Gomory slack variable. 

Equation (4) represents Gomory‟s cutting plane constraint. When this new 

constraint is added to the bottom of optimal solution simplex table, it would create 

an additional row in the table, along with a column for the new variable Sg. 

Steps of Gomory’s All Integer Programming Algorithm 

An iterative procedure for the solution of an all integer programming problem by 

Gomory‟s cutting plane method can be summarized in the following steps. 

Step 1: Initialization Formulate the standard integer LP problem. If there are any 

non-integer coefficients in the constraint equations, convert them into integer 

coefficients. Solve the problem by the simplex method, ignoring the integer value 

requirement of the variables. 

Step 2: Test the optimality (a) Examine the optimal solution. If all basic variables 

(i.e.     =    ≥ 0) have integer values, then the integer optimal solution has been 

obtained and the procedure is terminated. (b) If one or more basic variables with 

integer value requirement have non-integer solution values, then go to Step 3.  

Step 3: Generate cutting plane Choose a row r corresponding to a variable xr that 

has the largest fractional value f r and follow the procedure to develop a „cut‟ (a 

Gomory constraint) as explained in Eqn. (5): 

–    = Sg –∑            where 0 ≤      < 1 and 0 <    < 1   …5 

If there are more than one variables with the same largest fraction, then choose the 

one that has the smallest profit/unit coefficient in the objective function of 
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maximization LP problem or the largest cost/unit coefficient in the objective 

function of minimization LP problem. 

Step 4: Obtain the new solution Add this additional constraint (cut) generated in 

Step 3 to the bottom of the optimal simplex table. Find a new optimal solution by 

using the dual simplex method, i.e. choose a variable that is to be entered into the 

new solution having the smallest ratio: {(   –    )/     ; <    0} and return to Step 

2. The process is repeated until all basic variables with integer value requirement 

assume non-negative integer values. 

The procedure for solving an ILP problem is summarized in a flow chart shown in 

Fig 

 

Flow Chat for Solving Integer LP Problem   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Example 2.2.1 Solve the following Integer LP problem using Gomory‟s cutting 

plane method. 

Maximize Z =    +    

subject to the constraints 

(i)     +     ≤ 5, (ii)    ≤ 2 

and    ,     ≥ 0 and are integers 

Solution Step 1: Obtain the optimal solution to the LP problem ignoring the 

integer value restriction by the simplex method 

 

In Table 2.2.1, since all     –    ≤ 0, the optimal solution of LP problem is:     = 

1/3,    = 2 and Max Z = 7/2. 

 

Step 2: In the current optimal solution, shown in Table 2.2.1 all basic variables in 

the basis (xB-column) did not assume integer value. Thus solution is not desirable. 

To obtain an optimal solution satisfying integer value requirement, go to step 3. 

 Step 3: Since     is the only basic variable whose value is a non-negative 

fractional value, therefore consider first row (   -row) as source row in Table  

2.2.1to generate Gomory cut as follows: 

 

 
=     +       + 

 

 
     – 

 

 
     (   -source row) 

The factoring of numbers (integer plus fractional) in the x1-source row gives 

Each of the non-integer coefficients is factored into integer and fractional parts in 

such a manner that the fractional part is strictly positive. 

(  
 

 
)=(1+0)    +(  

 

 
)    + (   

 

 
)     



23 
 

 Rearranging all of the integer coefficients on the left-hand side, we get. 

 

 
     -    = 

 

 
    – 

 

 
      

Since value of variables x1 and s2 is assumed to be non-negative integer, left-hand 

side must satisfy 

 

 
 

 

 
   + 

 

 
    (Ref. Eq. 4)    

 
 

 
  +     =   

 

 
   +   

 

 
   or     – =   

 

 
   –  

 

 
  = –

 

 
  (Cut I)        

where sg1 is the new non-negative (integer) slack variable. Adding this equation 

(also called Gomory cut) at the bottom of Table2.2.1 , the new values so obtained 

is shown in Table 

 

 

Step 4: Since the solution shown in Table2.2.1  is infeasible, apply the dual 

simplex method to find a feasible as well as an optimal solution. The key row and 

key column are marked in Table2.2.1 . The new solution is obtained by applying 

the following row operations. 

R3(new) → R3(old) × –3; R1(new) → R1(old) – (1/3) R3(new) The new solution 

is shown in Table 
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Since all cj 

 – zj ≤ 0 and value of basic variables shown in xB-column of Table 2.2.1 is integer, 

the solution: 

x1 = 0, x2 = 2, sg1 = 1 and Max Z = 2, is an optimal basic feasible solution of the 

given ILP problem. 

Example 2.2.2 Solve the following Integer LP problem using the cutting plane 

method. 

Maximize Z = 2x1 + 20x2 – 10x3 

subject to the constraints 

(i) 2x1 + 20x2 + 4x3 ≤ 15, (ii) 6x1 + 20x2 + 4x3 = 20 

and x1, x2, x3 ≥ 0 and are integers. 

Also show that it is not possible to obtain a feasible integer solution by simple 

rounding off method. 

Solution Adding slack variable s1 in the first constraint and artificial variable in 

the second constraint, 

the LP problem is stated in the standard form as: 

Maximize Z = 2x1 + 20x2 – 10x3 + 0s1 – MA1 

subject to the constraints 

(i) 2x1 + 20x2 + 4x3 + s1 = 15, (ii) 6x1 + 20x2 + 4x3 + A1 = 20 

and x1, x2, x3, s1, A1 ≥ 0 and are integers. 
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The optimal solution of the LP problem, ignoring the integer value requirement 

using the simplex 

method is shown in Table 2.2.2 

 

The non-integer optimal solution shown in Table 2.2.2 is: x1 = 5/4, x2 = 5/8, x3 = 

0 and Max Z = 15. To obtain an optimal solution satisfying integer value 

requirement, we proceed to construct Gomory‟s constraint. In this solution, the 

value of both basic variables x1 and x2 are non-integer. Since the fractional part of 

the value of basic variable x2 = (0 + 5/8) is more than that of basic variable     (= 

1 + 1/4), the x2-row is selected for constructing Gomary cut as follows: 

 

 
 = 0 .    +    + 

 

 
   + 

 

  
    (  -source row) 

 The factoring of the   -source row yields 

(  
 

 
)   =        +(  
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   or 

 

 
 

 

 
   

 

  
   

On adding a slack variable sg1 , the Gomory‟s fractional cut becomes: 

 

 
+    

 

 
   

 

  
   or     

 

 
   

 

  
   

 

 
 (Cut I) 

 Adding this additional constraint at the bottom of optimal simplex Table 2.2.2, the 

new values so obtained are shown in Table2.2.2 . Iteration 1: Remove the variable 

sg1 from the basis and enter variable s1 into the basis by applying the dual simplex 

method. The new solution is shown in Table 2.2.2 
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The optimal solution shown in Table 7.6 is still non-integer. Therefore, one more 

fractional cut needs to be generated. Since x1 is the only basic variable whose 

value is a non-negative fractional value, consider the x1-row (because of largest 

fractional part) for constructing the cut: 

 
  

 
    

 

 
   

  

 
     (x1-source row)  

The factoring of the x1-source row yields 

(  
 

 
)=(1+0)   +(  

 

 
)    (   

 

 
)     

On adding another Gomory slack variable     , the second Gomory‟s fractional cut 

becomes: 

 

 
           )= 

 

 
   

 

 
       

 

 
 

 

 
   

 

 
     (Cut II) 

Adding this cut to the optimal simplex Table 2.2.2, the new table so obtained is 

shown in Table 2.2.2 
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The optimal0 solution shown in Table 2.2.2 is still non-integer because variable x3 

does not assume integer value. Thus, a third fractional cut needs to be constructed 

with the help of the x3-row: 

 

 
        

 

 
    (x3–source row) 

(  
 

 
)=(1+0)   +1+0)     (   
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The required Gomory‟s fractional cut obtained by adding slack variable sg3 is: 

 

 
     

 

 
           

 

 
    

 

 
  Cut III)  

Adding this cut to the bottom of the optimal simplex Table 2.2.2 the new table so 

obtained is shown in Table 2.2.2. 
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Iteration 3: Remove the variable sg3 from the basis and enter variable sg2 into the 

basis by applying the dual simplex method. The new solution is shown in Table 

7.10. 

 

In Table2.2.2 , since value of all basic variables is an integer value and all cj – zj ≤ 

0, the current solution is an integer optimal solution: x1 = 2, x2 = 0, x3 = 2 and 

Max Z = – 16. 
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  بوخىه

 Branch and کات،ەد زراوهدام یوازێدوو ش یىاوێکارههب ۆب دواداچوونهب ەیهوهىیژێتو مهئ

Bound و Gomory‟s All-Integer Cutting Planeیکاوهشێک یرکردوهسەچار ۆ، ب Integer 

Linear Programming (ILP). ILP وهئ یواساودو هب ەوهکاتەد ژێدر ێڵیه یسازهروامهب 

 یرهسەچار ەیوهىیزۆبه. د واوهت ەیژمار تێبەد کانییهارڕیب ەاوۆڕگ مووهه هک هیسىووردارکردو

 .LP یکاوەستاودارد هشێک هل ەچالاکتر هک تێىێلمهسەید رجارۆز ILP یکاوهشێک ۆگووجاو ب

 یرۆمۆبراوچ و باوود و گ یىڕیب هیختهت یوازێش ردووهه یکاویهریۆت ماهبى ەیهوهىیژێتو مهئ

. ەوهىهیکەد یش ILP یکاوهشێک یرکردوهسەچار هل انیکاوەو لاواز سێههب ڵهخا همێ. ئەوهىۆڵیکێل رهب هخاتەد

 رهسهل انیکارکردو یداهئ یراوردکردوهو ب هوازاوێش مهئ یکردوێجهبێج هکەوهىیژێتو یئاماوج ش،ەوهل هجگ

 هل هوازاوێش مهئ ییرهگیکار ەیبارهل ورخهب یکێىیواوێڕت کانەوهىیزۆ. دILP یکاوەرەوێپ هیشێک کهڵێمۆک

 نەدەد دایکیپراکت یىاوێکارههب

 

 

 

 

 


