MATLAB

MATLAB is a tool for mathematical calculator, first it can be used as scientific calculator next it allows you to plot or visualize data in many different ways.

You can start MATLAB, double clicking on MATLAB icon that should be on the desktop of your computer

The string (>>) is the MATLAB prompt appears when the command windows is active commands in MATLAB are excited by pressing enter or return to out put will be by displayed or screen immediately

The exist matlab the commend exist or quite
NOTE: the spaces are not important in matlab
You can also define your own variable
Command Window
$\gg \mathrm{b}=3+12$
$\mathrm{~b}=$
15

When the comment is following by semi colom (;) then the output is suppressant
Command Window
$\gg x=2+5 ;$
$\gg y=11+1$
$y=$
12

It is possible to excute more than one variable at same time by use comm as (,)
or by use semcolom (;)
Command Window
>> $a=3$;9; 12
ans $=$
12

Operation	Symbol	Example
Addition	+	$5+3$
Subtraction	-	$5-3$
Multiplication	$*$	$5 * 3$
Right division	$/$	$5 / 3$
Left division	\backslash	$5 \backslash 3=3 / 5$
Exponentiation	\wedge	$5^{\wedge} 3$ (means $5^{3}=125$)

Matlab as Calculater

There are three kinds of numbers used in matlab integer, real and complex. In addition (inf) for postive infinity by dividing a non-zero number by zero and NoN which is not a number

For example:-

If we input v and w as follow then

```
Command Window
    >> v=[lllll}1023]
    >> w=[[2 0 6];
    >> v./w
    ans =

Matlab disply only 5 digite and use the command format long to increase this number to 15 digite while use the command is format short reduced to 5 digite.
```

Command Window
>> 10/3
ans =
3.3333
>> format long
>> 10/3
ans =
3.333333333333333
>> format short
>> 10/3
ans =
3.3333

```

All lext after a present sgin \% in thr end of the line is the trented as a Note.
```

>> z=71 % z varaible.

```

To enter the statement that too long to typed in one line use three point (...)
```

>> 1+2+...
+5
ans =
8

```
    Command Window
    \(\gg A=\sin (1)+\sin (2)+\ldots\)
    \(+\sin (10)\)
    \(\mathrm{A}=\)

\section*{Complex Number}

Matlab working with complex number is easy:
```

Command Window
>> 3+i*4
ans =
3.0000 + 4.0000i
>> c1=3+i*5;
>> c2=2+i*4;
>> c=c1+c2
c =
5.0000 + 9.0000i

```
Or
Command Window
    >> complex \((3,4) \div 3+i 4\)
    ans \(=\)
        \(3.0000+4.0000 i\)
also

Command Window
```

>> c=5+sin(5*pi/3)*i;
>> cr=real(c)
cr =
5
>> ci=imag(c)
ci =
-0.8660

```

Lin function in matlab write as log
Example :- write the following equation in matlab
\[
A=\sqrt{5}+|7|+\sin ^{-1} 6+\operatorname{lin} 2+\exp (9)
\]

Solution:-

\section*{Command Window}
>> A=sqrt (5) +abs (7) +asin (6) *log (2) +exp (9)
\[
\mathrm{A}=
\]

\section*{Exercise 1:-}

Define the variables \(a, b, c\), and \(d\) as:
\(a=12, b=5.6, c=\frac{3 a}{b^{2}}\), and \(d=\frac{(a-b)^{c}}{c}\), then evaluate:
(a) \(\frac{a}{b}+\frac{d-c}{d+c}-(d-b)^{2}\)
(b) \(e^{\frac{d-c}{a-2 b}}+\ln \left(\left\lvert\, c-d+\frac{b}{a}\right.\right)\)

Exercise 2:-
Define the variable \(t\) as \(t=3.2\), then evaluate:
(a) \(56 t-9.81 \frac{t^{2}}{2}\)
(b) \(14 e^{-0.1 t} \sin (2 \pi t)\)

Variable in matlab are named objects that are assigned using the equal sign (=)

Command Window
\(\gg z=3+4 * i ;\)
>> w=5+7*i;
\(\gg z^{*} W\)
ans \(=\)
\(-13.0000+41.0000 i\)
\(\gg z / W\)
ans \(=\)
\(0.5811-0.0135 i\)
\(\gg z-w\)
ans \(=\)
\(-2.0000-3.0000 i\)
\(\gg z+w\)
ans \(=\)
\(8.0000+11.0000 i\)

\section*{Mathematics with Vectors and Matrix}

The basis elements of matlab is matrix or (an array) special case
1) a x matrix , a scaler or a single number

Ex :- \(a=5\)
2) a matrix existing only of one row one column

Ex:- \(v=\left[\begin{array}{lll}1 & 5 & 2\end{array}\right]\)
Note \(v^{\prime}\) is transpose of vector \(v\)
For example
```

>> z'
ans =
3.0000 - 4.0000i
>> v=[lllll
>> v'
ans =
1
2
3

```

Vector :- Row vector are lists of numbers separated either by comma (,) or by space

They are examples of single array first elements has index 1 the number of entires known as the long of vectors. The entires must be enclosed in [].

Example 1:-


\section*{Example 2:-}

Command Window
\[
\gg v=\left[\begin{array}{lll}
6 & 7 & 9
\end{array}\right]
\]
\(\mathrm{v}=\)
\(\begin{array}{ll}6 & 7\end{array}\)
>> vv=v+2
vv \(=\)
\(8 \quad 9 \quad 11\)

\section*{Example 3:-}
```

Command Window
>> v=[lllll
>> w=[2 3 4];
>> z=w+v
z =
1 5 11
>> t=[2*v,-w]
t =
-2
>> v(3)
ans =
7
>> v(3)+w(2)
ans =
1 0

```

\section*{Colon Nation and Extraction \\ ( Part of a Vector)}

\section*{Example 1:-}


\section*{Example 2:-}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Command Window} \\
\hline \multicolumn{8}{|l|}{\(\gg \mathrm{V}=[1: 2: 7,12: 3: 18,25]\)} \\
\hline \multicolumn{8}{|l|}{\(\mathrm{v}=\)} \\
\hline 1 & 3 & 5 & 7 & 12 & 15 & 18 & 25 \\
\hline \multicolumn{8}{|l|}{>> v (3)} \\
\hline \multicolumn{8}{|l|}{ans =} \\
\hline \multicolumn{8}{|l|}{7} \\
\hline \multicolumn{8}{|l|}{>> V \((3: 6)\)} \\
\hline \multicolumn{8}{|l|}{ans =} \\
\hline 5 & 7 & 12 & 15 & & & & \\
\hline
\end{tabular}

\section*{Colomn Vectors and Transposing}

To create column vectors, you should sperate entries by new lines or by semicolon.

\section*{Example 1 :-}
```

Command Window
>> z=[2
5
6];
>> z
z =
2
5
6
>> u=[-1;3;5]
u =
-1
3
5

```
Command Window
    \(\gg v=\left[\begin{array}{llll}4 & 6 & 8\end{array}\right] ;\)
    >> u
    u =
            -1
            3
            5
    >> \(u+v^{\prime}\)
    ans \(=\)
            3
            9
            13
    >> \(z=[2+3 * i\) 6-7*i]
    \(z=\)
        \(2.0000+3.0000 i \quad 6.0000-7.0000 i\)
```

>> z'
ans =
2.0000 - 3.0000i
6.0000 + 7.0000i

```

\section*{Example 2:-}

Command Window
```

>> v=[ll 5 12];
>> u=[9 21 16];
>> v*u
Error using *
Inner matrix dimensions must agree.
>> v'*u
ans =
9 21 16
45 105 80
108 252 192
>> v*u'
ans =
306

```

The command "who"
Give a list of all variables that used
Command Window
>> who

Your variables are:
ans \(u\) v \(z\)

\section*{The command "whos"}

Gives a list of all variables that are used with more information
```

>> whos
Name
Size
ans
u
1x3
1x3
1x2
Bytes Class Attributes
8 double
24 double
24 double
32 double complex

```

\section*{The command "clc"}

Used for rase the command window with out deleting the variable and other commands that used

The command "clear"
Used to delete the variables that are used
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Command Window} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
>> clear \\
>> calendar
\end{tabular}}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|c|}{Aug 2020} \\
\hline S & M & Tu & W & Th & F & s \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
\hline 23 & 24 & 25 & 26 & 27 & 28 & 29 \\
\hline 30 & 31 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{7}{|l|}{>> calendar (2012,2)} \\
\hline \multicolumn{7}{|c|}{Feb 2012} \\
\hline S & M & Tu & W & Th & F & S \\
\hline 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
\hline 26 & 27 & 28 & 29 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{7}{|l|}{>> date} \\
\hline \multicolumn{7}{|l|}{ans \(=\)} \\
\hline \multicolumn{7}{|c|}{'28-Aug-2020'} \\
\hline
\end{tabular}

\section*{Converting of Numbers}

\section*{Example 1:-}
```

Command Window
>> dec2bin(10)
ans =
'1010'
>> bin2dec('1010')
ans =
1 0

```

\section*{Example 2:-}
```

>> dec2bin(25)
ans =
'11001'
>> bin2dec('11001')
ans =
25

```

\section*{The Colon Operation}

To generate a vector of equally spaced elements, provides the colon operation
```

Command Window
>> v=1:5
v =
1 2 3 3 4
>> 0:pi/2:2*pi
ans =

Linspace: to gererate a vector of equally space point between two end points.
$X=$ linspace (a, b, n) gererate a vector x of n equally space point between a \& b

Example 1:-

```
>> x=linspace (1, 10,7)
x =
\begin{tabular}{lllllll}
1.0000 & 2.5000 & 4.0000 & 5.5000 & 7.0000 & 8.5000 & 10.0000
\end{tabular}
>> \(\mathrm{x}=\) linspace \((2,10,5)\)
\[
\mathrm{x}=
\]
\[
\begin{array}{lllll}
2 & 4 & 6 & 8 & 10
\end{array}
\]
\(\gg x=1\) inspace \((0,1,10)\)
\(\mathrm{x}=\)
\begin{tabular}{llllllllll}
0 & 0.1111 & 0.2222 & 0.3333 & 0.4444 & 0.5556 & 0.6667 & 0.7778 & 0.8889 & 1.0000
\end{tabular}
```

You can now tabulate easily values of a function for gives list of arguments

Example 2:-

```
Command Window
    >> x=1:0.5:4
    x =
    1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000
    >>
    >> y=sqrt(x).* cos(x)
    y =
    0.5403 0.0866 -0.5885 <r-1.2667 -1.7147 
    >> x=2:2:10;
    >> y=6:10;
    >> w=x./y
    w =
    0.3333 0.5714 0.7500 0.8889 1.0000
    >> z=-1:3
    z =
        llllll
```

```
>> x./z
ans =
    -2.0000 Inf 6.0000 4.0000 3.3333
>> z./z
ans =
    1 NaN 
>> 2./x
ans =
1.0000
                    0.5000
                                0.3333
                                0.2500
    0.2000
```


Example 3:-

```
Command Window
>> \(\mathrm{x}=2: 2: 20\)
\(\mathrm{x}=\)
    \(\begin{array}{llllllllll}2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20\end{array}\)
>> \(x\left(\left[\begin{array}{ll}2 & 3\end{array}\right]\right) \%\) position of \(2 \& 3 \& 4\) is disply in command window
ans \(=\)
    4
    \(6 \quad 8\)
```

