MATRICES

Def: - A matrix in Matlab is similar to defining a vector commas or spaces are used to separate elements in a row and semi colons are used to separate individual rows.

Ex:- $A_{1}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

```
Command Window
    > A1=[lllllllllll
    A1 =
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{tabular}
    >> A2=[1:4;-1:2:5]
    A2 =
        1
    >> A3=[lllll
    A3 =
        1 3
        -4 7
```

Transpose of matrix interchange rows with the corresponding column

```
Command Window
    >> A2
    A2 =
        1 
    >> A2'
    ans =
        1 -1
        2 1
        3
        4 5
```

To find the dimension of matrix use command $\operatorname{size}(\mathbf{A})$ where A is matrix

Command Window
>> size (A2)
ans $=$
2
>> size (A2')
ans $=$
4

Special Matrices

$\mathrm{E}=[\mathrm{]}$ \% empty 0-by-0 matrix
Command Window
$\gg A=[]$
$\mathrm{A}=$
[]
>> I=eye (3)
$I=$

1	0	0
0	1	0
0	0	1

```
>> eye \((2,5)\)
```

ans $=$

1	0	0	0	0
0	1	0	0	0

```
>> y=[11 3 -2];
>> R=diag([y])
R =
\begin{tabular}{rrr}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -2
\end{tabular}
```

Command Window				
>> $\mathrm{B}=$ ones $(3,2)$				
$\mathrm{B}=$				
11				
11				
11				
>> c=zeros (3,5)				
$c=$				
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

To find determinant of matrix use command $\operatorname{det}(\mathbf{A})$ where A is matrix
The determinant of a square matrix is a number. For a 2×2 matrix, the determinant is given by:

$$
D=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

To calculate the determinant of a matrix A in MATLAB, simply write $\operatorname{det}(\mathbf{A})$. Here is the determinant of a 2×2 matrix:
>> A = [1 3; 4 5];
$\gg \operatorname{det}(\mathrm{A})$
ans $=$

```
>> A=[1 2 3; 4 5 6; 7 8 9];
>> det(A)
ans =
    -9.5162e-16
```

```
>> trace(A)
ans =
    1 5
>> sum(diag(A))
ans =
```

 15
 Command Window

```
    >> A=[1 2 3; 4 5 6; 7 8 9];
```

 >> diag(A)
 ans =
 1
 5
 9
 $\operatorname{Diag}(\mathrm{A}, \mathrm{k})$
If $k=0$ that mean the diagonal of matrix
If $k>0$ that mean the upper diagonal of matrix
If $k<0$ that mean the lawer diagonal of matrix

```
>> diag(A)
ans =
    1
    5
    9
>> diag(A,0)
ans =
    1
    5
    9
```

Command Window
>> diag (A, 1)
ans =
2
6
>> diag (A, 2)
ans $=$
3
>> diag $(\mathrm{A},-1)$
ans $=$
4
8
>> diag (A, -2)
ans $=$
7

Example: -

```
>> v=[ll0 20 30}]|
>> diag(v)
ans =
    10 0 0
    0 20 0
    0 0 30
```

To find rank use command $\operatorname{rank}(\mathrm{A})$ where A is matrix
The rank of a matrix is a measure of the number of linearly independent rows or columns in the matrix. If a vector is linearly independent of a set of other vectors that means it cannot be written as a linear combination of them. Simple example:

```
>> A=[1 2 3; 4 5 6; 7 8 9];
>> rank(A)
ans =
```

 2
 To find the value of location of matrix you can do the following

```
Command Window
    > A=[llllll
    >> A(2,3)
    ans =
        6
    >> A(3,2)
    ans =
        8
```

```
>> A (1,3)=0
```

$\mathrm{A}=$

1	2	0
4	5	6
7	8	9

Command Window
$\gg A(:, 3)$
ans $=$

0
6
9
>> $\mathrm{A}(2,:)$
ans $=$

45
6

To find loawer and upper triangler of matrix


```
>> tril(A,2)
ans =
133
\(4 \quad 5 \quad 6\)
7 8 9
```

Command Window

```
>> tril(A, -1)
```

 ans \(=\)
 | 0 | 0 | 0 |
| :--- | :--- | :--- |
| 4 | 0 | 0 |
| 7 | 8 | 0 |

>> tril (A, -2)
ans $=$

0	0	0
0	0	0
7	0	0

Variable

1- they may not start with anumeral
2- matlab in case sensitive \boldsymbol{A} and \boldsymbol{a} are different variable
3 - we can not user the words such as for , if , switch, else , if ,...

Mathematical matlab command

Mathematical Expression	Matlab $\operatorname{Command}$
$\sin x, \cos x$	$\operatorname{Sin}(\mathrm{x}), \cos (\mathrm{x})$
$\tan ^{-1} x$	$\operatorname{atan}(\mathrm{x})$
$\sinh x$	$\sinh (\mathrm{x})$
e^{x}	$\exp (\mathrm{x})$
Reminder	rem (a, b)
isreal (x)	
True for real number	$\mathrm{x}^{\wedge} \mathrm{b}$
x^{b}	$\operatorname{sqrt}(\mathrm{x})$ or $\mathrm{x}^{\wedge} 0.5$
\sqrt{x}	$\mathrm{abs}(\mathrm{x})$
$\|x\|$	$\log (\mathrm{x}), \log 10(\mathrm{x})$
$\operatorname{lnx}, \log \mathrm{x}$	pi
π	$\mathrm{a} \pm \mathrm{b}$
$\mathrm{a} \pm \mathrm{b}$	a b
ab	$\operatorname{fix}(\mathrm{x})$
Round toword zero	floor (x)
Round toword $-\infty$	$\operatorname{ceil}(\mathrm{x})$
Round toword $+\infty$	$\operatorname{round}(\mathrm{x})$
Round to nearest integer	

Description

$r=\operatorname{rem}(a, b)$ returns the remainder after division of $a b y$, where a is the dividend and b is the divisor.

```
>> rem(7,3)
    3+3+1 here 1 is reminder
ans =
    1
```

$\gg \operatorname{rem}(3,7)$
$0+3$ here 3 is reminder
ans $=$
>> isreal(pi)
ans $=$

loqical

1
>> isreal (1+i*8)
ans $=$
loqical

0

Command Window
>> fix(4.5)
ans $=$

4
>> fix(4.6)
ans $=$

4

```
>> fix(4.4)
```

ans $=$

```
>> round(5.4)
ans =
    5
>> round(5.5)
ans =
    6
```

To find maximum or minimum or summation use the following commands

```
Command Window
    >> A
    \(A=\)
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{tabular}
    \(\gg \max (\mathrm{A})\)
    ans \(=\)
        7
    \(\gg \min (A)\)
    ans \(=\)
    133
    \(\gg \operatorname{sum}(A)\)
    ans \(=\)
        121518
```

```
>> sum(sum(A))
ans =
```

45

flip

flip(A) returns array B the same size as A, but with the order of the elements reversed, If A is a matrix, then flip(A) reverses the elements in each column.

```
A =
    1 2 3
            4 5 6
            7 8 9
>> flipud(A)
ans =
            7 8 9
            4 5 6
            1 2 3
>> fliplr(A)
ans =
    3 2 1
    6 5 4
    9 8 7
```

rot90(A) rotates array A counterclockwise by 90 degrees. For multidimensional arrays, rot90 rotates in the plane formed by the first and second dimensions.

```
>> rot90(A)
ans =
    3 6
    2 5 8
    1 4
>> rot90(A,2)
ans =
\begin{tabular}{lll}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{tabular}
>> rot90(A,4)
ans =
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{tabular}
```

Sort of matrix
sort(A, direction) sorts the elements of A in ascending order

Command Window
>> $A=\left[\begin{array}{llllll}4 & 6 & 2 ; 7 & 2 & 9 ; 8 & 1\end{array}\right]$;
>> sort(A,'descend')
ans $=$
$8 \quad 6 \quad 9$
$7 \quad 2 \quad 6$
$4 \quad 1 \quad 2$
>> sort(A,'ascend')
ans $=$

4	1	2
7	2	6
8	6	9

find (X) returns a vector containing the linear indices of each nonzero element in array X.

all(A) tests along the first array dimension of A whose size does not equal 1, and determines if the elements are all nonzero or logical 1 (true). In practice, allis a natural extension of the logical AND operator.

```
Command Window
    >> v=[lllllll}
    >> all(v)
    ans =
        loqical
        0
    >> v=[llllll}
    >> all(v)
    ans =
        loqical
        0
    >> v=[llllll}105 7]
    >> all(v)
    ans =
        loqical
        1
    >> B=[[\begin{array}{lllllll}{4}&{6}&{2;7}&{2}&{0;8}&{0}&{0}\end{array}];
    >> all(B)
    ans =
        1\times3 loqical array
        1 0
```


Command ($\operatorname{any}(\mathrm{A})$)

any (A) tests along the first array dimension of A whose size does not equal 1 , and determines if any element is a nonzero number or logical 1 (true). In practice, any is a natural extension of the logical OR operator

Command Window

```
>> B=[llllllll}
>> any (B)
ans =
    1\times3 loqical array
    1 1 1
>> v}=[\begin{array}{llll}{0}&{0}&{0}&{0}\end{array}]
>> any (v)
ans =
```

 loqical
 0
 mean (A) returns the mean of the elements of A along the first array dimension whose size does not equal 1.
If A is a vector, then mean (A) returns the mean of the elements.
If A is a matrix, then mean (A) returns a row vector containing the mean of each column.

```
Command Window
    >> A
    A =
        4 6 2
        7 2 9
        8 1 6
    >> mean(A)
    ans =
    6.3333 3.0000 5.6667
    >> v=[llllll
    >> mean (v)
    ans =
```

 4
 Command (factorial)
factorial(n) returns the product of all positive integers less than or equal to n, where n is a nonnegative integer value. If n is an array, then f contains the factorial of each value of n. The data type and size of f is the same as that of n.

```
>> factorial(5)
ans =
```

Command (Dot product)
$\operatorname{dot}(A, B)$ returns the scalar dot product of A and B.
If A and B are vectors, then they must have the same length.

```
Command Window
>> w=[llllllll
>> v=[llllllll}
>> dot(w,v)
ans =
7 5
```

Command (Cross product)
$\operatorname{cross}(A, B)$ returns the cross product of A and B. must be $3 \operatorname{dim}$ mean $A=[a 1]$

Create two 3-D vectors.

```
A = [\begin{array}{lll}{4}&{-2}&{1}\end{array}];
B = [\begin{array}{lll}{1}&{-1}&{3}\end{array}];
```

Find the cross product of A and B. The result, C, is a vector that is perpendicular to both A and B.

```
C= cross(A,B)
```

$C=$

-5	-11	-2

primes(n) returns a row vector containing all the prime numbers less than or equal to n. The data type of p is the same as that of n.

Command Window

>> primes(30)
ans $=$

Columns 1 through 8
$\begin{array}{llllllll}2 & 3 & 5 & 7 & 11 & 13 & 17 & 19\end{array}$

Columns 9 through 10
$23 \quad 29$
isprime (X)
isprime (X) returns a logical array the same size as X. The value at $\mathrm{TF}(\mathrm{i})$ is true when $\mathrm{X}(\mathrm{i})$ is a prime number. Otherwise, the value is false

```
>> isprime(30)
ans =
    loqical
        0
>> isprime(31)
ans =
```

 loqical
 1

Example 1:-

$$
\begin{aligned}
& \gg x=[4 ;-1] ; \mathrm{y}=[-1,4] ; \\
& \gg \mathrm{x}=\left[\mathrm{x} \mathrm{y}^{\prime}\right] \\
& \mathrm{x}=
\end{aligned}
$$

$$
\begin{array}{rr}
4 & -1 \\
-1 & 4
\end{array}
$$

Command Window

```
>> T=[[-1 3 4;4 5 6];
>> t=1:3;
>> T1=[T;t]
T1 =
```

-1	3	4
4	5	6
1	2	3

Command Window

```
>> G=[1 5;4 5;0 2];
>> T2=[T,G']
T2 =
\begin{tabular}{rrrrrr}
-1 & 3 & 4 & 1 & 4 & 0 \\
4 & 5 & 6 & 5 & 5 & 2
\end{tabular}
>> T2=[T1G]
T2 =
\begin{tabular}{rrrrr}
-1 & 3 & 4 & 1 & 5 \\
4 & 5 & 6 & 4 & 5 \\
1 & 2 & 3 & 0 & 2
\end{tabular}
```

Command Window

$$
\begin{aligned}
& \text { > T } \\
& T= \\
& \gg T 2 \\
& T 2=
\end{aligned}
$$

>> T3=[T' T2 G]

T3 =

-1	4	-1	3	4	1	5	1	5
3	5	4	5	6	4	5	4	5
4	6	1	2	3	0	2	0	2

1

Command Window

$$
\begin{aligned}
& \gg T 4=\left[G^{\prime}, \operatorname{diag}([5 ; 6]) ; \text { ones }(3,2), T 1\right] \\
& T 4=
\end{aligned}
$$

1	4	0	5	0
5	5	2	0	6
1	1	-1	3	4
1	1	4	5	6
1	1	1	2	3

Example 2: -

Command Window

$$
\begin{aligned}
& >A=\left[\begin{array}{lllllll}
1 & 2 & 3 ; 4 & 5 ; 7 & 8 & 9
\end{array}\right] ; \\
& >A(2,3)=15
\end{aligned}
$$

$\mathrm{A}=$

1	2	3
4	5	15
7	8	9

$\gg A(2,3)=A(1,3) * A(2,2)$

$$
\mathrm{A}=
$$

1	2	3
4	5	15
7	8	9

Change column 2 by $v=\left[\begin{array}{lll}11 & 12 & 13\end{array}\right]$

```
>> A(:,2)=[lllll
    A =
        11 3
        4 12 15
        7 13 9
>> A(3,[1,3])=[ll8 19]
A =
        1 11 3
        4 12 15
        18 13 19
```

 Command Window
 \(\gg A(1: 2,[1,3])\)
 ans \(=\)
 13
 415
 $\gg A([1,3], 2: 3)$
ans $=$
113
1319
$\gg A(2,:)=[]$
$\mathrm{A}=$
1113
181319
$\gg A(:, 3)=[]$
$\mathrm{A}=$
111
1813

Example: -
Command Window

Swap R1 and R2

```
Command Window
\(\gg A=\left[\begin{array}{lllllll}1 & 2 & 3 ; 4 & 5 & 6 ; 7 & 8 & 9\end{array}\right]\)
\(A=\)
            133
            \(4 \quad 5 \quad 6\)
            \(7 \quad 8 \quad 9\)
>> D=A(1,:);
\(\gg \mathrm{A}(1,:)=\mathrm{A}(2,:)\);
\(\gg A(2,:)=D\)
\(\mathrm{A}=\)
\begin{tabular}{lll}
4 & 5 & 6 \\
1 & 2 & 3 \\
7 & 8 & 9
\end{tabular}
```

Change C2 with C3

```
>> D=A(:,2);
>> A(:,2)=A(:,3);
>> A(:,3)=D
```

A =

4	6	5
1	3	2
7	9	8

Swap R1 and R3

Command Window

$\gg D=A(1,:) ;$
>> A(1,:)=A $(:, 3)$;
>> $A(:, 3)=D$
$\mathrm{A}=$

5	2	4
1	3	6
7	9	5

Matrices Arithmetic


```
>> A-B
ans =
    -2
>> A+B
ans =
    12 14 8
    16 22 13
    13 13 14
>> A/B
ans =
    -0.9456 0.6224 0.3807
    1.3897 -0.8731 0.7281
    0.3202 0.2205 0.2417
>> A.^5
ans =
\begin{tabular}{rrr}
3125 & 32 & 1024 \\
1 & 243 & 7776 \\
16807 & 59049 & 3125
\end{tabular}
```


Euclidean Norm

The Euclidean norm (or 2-norm) of a vector v that has N elements is defined by

$$
\|v\|=\sqrt{\sum_{k=1}^{N}\left|v_{k}\right|^{2}}
$$

```
>> v=[[\begin{array}{lll}{1}&{2}&{3}\end{array}]
v =
    1 2 3
>> norm(v)
ans =
```

3.7417

Magic Function

Matlab has build in function that create magic sequence of almost any size
>> magic(n) \rightarrow build a square matrix of size $n * n$ and that elements between $0->$ $n^{\wedge} 2$

Command Window
>> magic (3)
ans $=$

8	1	6
3	5	7
4	9	2

>> magic (4)
ans $=$

16	2	3	13
5	11	10	8
9	7	6	12
4	14	15	1

