MATRICES

Def: - A matrix in Matlab is similar to defining a vector commas or spaces are used to separate elements in a row and semi colons are used to separate individual rows.

Ex:-
$$A_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Command Window
>> A1=[1 2 3; 4 5 6; 7 8 9]
A1 =
1 2 3
4 5 6
7 8 9
>> A2=[1:4;-1:2:5]
A2 =
1 2 3 4
-1 1 3 5
>> A3=[1 3;-4 7]
A3 =
1 3
-4 7

Transpose of matrix interchange rows with the corresponding column

To find the dimension of matrix use command size(A) where A is matrix

Special Matrices

Co	mmand Wind	low		
	>> A=[]]		
	A =			
	[]]		
	>> I=e	ye (3)		
	I =			
	1	0	0	
	0	1	0	
	0	0	1	
>	> eye(2	,5)		
a	ns =			
	1	0	0	0
	0	1	0	0

Co	mmand \	Window				
	>> B	=ones	(3,2)			
	в =					
		1	1			
		1	1			
		1	1			
	>> c	=zero	s(3,5)			
	~~ 0	2010.	5(5,5)			
	c -					
	с =					
		0	0	0	0	0
		0	0	0	0	0
		0	0	0	0	0

To find determinant of matrix use command **det(A)** where A is matrix

The *determinant* of a square matrix is a number. For a 2×2 matrix, the determinant is given by:

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

To calculate the determinant of a matrix A in MATLAB, simply write det(A). Here is the determinant of a 2×2 matrix:

>> A = [1 3; 4 5]; >> det(A)

ans =

-7

```
Command Window

>> A=[1 2 3; 4 5 6; 7 8 9];

>> det(A)

ans =

-9.5162e-16
```

```
>> trace(A)
ans =
    15
>> sum(diag(A))
ans =
    15
```

Command Window >> A=[1 2 3; 4 5 6; 7 8 9]; >> diag(A) ans = 1 5 9

Diag(A,k)

If k = 0 that mean the diagonal of matrix

If k > 0 that mean the upper diagonal of matrix

If k < 0 that mean the lawer diagonal of matrix

```
Command Window
  >> diag(A,1)
  ans =
       2
       6
  >> diag(A,2)
  ans =
       3
  >> diag(A,-1)
  ans =
       4
       8
  >> diag(A,-2)
  ans =
       7
```

Example: -

To find rank use command rank(A) where A is matrix

The *rank* of a matrix is a measure of the number of *linearly independent* rows or columns in the matrix. If a vector is linearly independent of a set of other vectors that means it cannot be written as a linear combination of them. Simple example:

```
>> A=[1 2 3; 4 5 6; 7 8 9];
>> rank(A)
ans =
2
```

To find the value of location of matrix you can do the following

```
Command Window

>> A=[1 2 3; 4 5 6; 7 8 9];

>> A(2,3)

ans =

6

>> A(3,2)

ans =

8
```

>> A(1,3)=0

A =

1	2	0
4	5	6
7	8	9

Co	Command Window				
	>> A(:,3)				
	ans =				
	0				
	6				
	9				
	>> A(2,:)				
	ans =				
	4	5	6		

To find loawer and upper triangler of matrix

<pre>>> A=[1 2 3; 4 5 6; 7 8 9]; >> tril(A) ans =</pre>	Commar	nd Window	N					
1 0 0 4 5 0 7 8 9 >> tril(A,1) ans = 1 2 0				45	6;	7	8	9];
4 5 0 7 8 9 >> tril(A,1) ans = 1 2 0	ans	s =						
7 8 9 >> tril(A,1) ans = 1 2 0		1	0		0			
>> tril(A,1) ans = 1 2 0		4	5		0			
ans = 1 2 0		7	8		9			
1 2 0	>>	tril	(A,1)					
	ans	5 =						
4 5 6		1	2		0			
		4	5		6			
7 8 9		7	8		9			

>> tril(A,2)			
ans =			
1	2	3	
4	5	6	
7	8	9	

Co	mmand	Window		
	>> t	ril(A,	-1)	
	ans	=		
		0	0	0
		4	0	0
		7	8	0
	>> t	ril(A,	-2)	
	ans	=		
		0	0	0
		0	0	0
		7	0	0

Variable

- 1- they may not start with anumeral
- 2- matlab in case sensitive **A** and **a** are different variable
- 3- we can not user the words such as for , if , switch, else , if ,...

Mathematical Expression	Matlab Command
sinx , cosx	Sin(x), cos(x)
$\tan^{-1} x$	atan(x)
sinhx	sinh(x)
e ^x	exp(x)
Reminder	rem(a,b)
True for real number	isreal(x)
x ^b	x^b
\sqrt{x}	sqrt(x) or x^0.5
x	abs(x)
Inx, logx	log(x) , log10(x)
π	pi
a±b	a±b
ab	a*b
Round toword zero	fix(x)
Round toword $-\infty$	floor(x)
Round toword $+\infty$	ceil(x)
Round to nearest integer	round(x)

Mathematical matlab command

Description

r = rem(a, b) returns the remainder after division of a by b, where a is the dividend and b is the divisor.

```
Command Window
>> isreal(pi)
ans =
logical
1
>> isreal(1+i*8)
ans =
logical
0
```

To find maximum or minimum or summation use the following commands

Co	mmand Window			
	>> A			
	A =			
	1	2	3	
	4	5	6	
	7	8	9	
	>> max(A)			
	ans =			
	7	8	9	
	,	0	2	
	>> min(A)			
	ans =			
	1	2	3	
	>> sum(A)			
	ans =			
	12	15	18	

flip

flip(A) returns array B the same size as A, but with the order of the elements reversed ,If A is a matrix, then flip(A) reverses the elements in each column.

A =			
	1	2	3
	4	5	6
	7	8	9
>> f	lipud((A)	
ans	=		
	7	8	9
	4	5	6
	1	2	3
>> f	liplr((A)	
ans	=		
	2		4
	3	2	1
	6	5	4
	9	8	7

rot90(A) rotates array A counterclockwise by 90 degrees. For multidimensional arrays, rot90 rotates in the plane formed by the first and second dimensions.

>>	rot90	(A)	
ans	s =		
	3	6	9
	2	5	8
	1	4	7
>>	rot90	(A,2)	
ans	5 =		
	9	8	7
	6	5	4
	3	2	1
>>	rot90	(A,4)	
ans	5 =		
	1	2	3
	4	5	6
	7	8	9

Sort of matrix

sort(A, direction) sorts the elements of A in ascending order

Cor	mmar	nd Windo	N		
	>>	A=[4	6 2;7	2 9;8 1	6];
	>>	sort	(A, 'des	cend')	
	ans	5 =			
		8	6	9	
		-	-		
		7	2	6	
		4	1	2	
	>>	sort	(A,'asc	end ')	
	ans	5 =			
		4	1	2	
		7	2	6	
		8	6	9	

Command (Find(x))

find(X) returns a vector containing the <u>linear indices</u> of each nonzero element in array X.

Command Window >> v=[1 5 7 0 9]; >> find(v) ans = 2 3 5 >> A A = >> find(A) ans = >> B=[4 6 2;7 2 0;8 0 0]; >> find(B) ans =

Command (all(A))

all(A) tests along the first array dimension of A whose size does not equal 1, and determines if the elements are all nonzero or logical 1 (true). In practice, allis a natural extension of the logical AND operator.

```
Command Window
  >> v=[1 5 7 0 9];
  >> all(v)
  ans =
    logical
     0
  >> v=[0 0 0 0];
  >> all(v)
  ans =
    logical
     0
  >> v=[1 3 5 7];
  >> all(v)
  ans =
    logical
     1
  >> B=[4 6 2;7 2 0;8 0 0];
  >> all(B)
  ans =
    1×3 logical array
     1
         0
              0
```

Command (any(A))

any(A) tests along the first array dimension of A whose size does not equal 1, and determines if any element is a nonzero number or logical 1 (true). In practice, any is a natural extension of the logical OR operator

```
Command Window
>> B=[4 6 2;7 2 0;8 0 0];
>> any(B)
ans =
    1×3 logical array
    1 1 1
>> v=[0 0 0 0];
>> any(v)
ans =
    logical
    0
```

mean(A) returns the mean of the elements of A along the first array dimension whose size does not equal 1.

If A is a vector, then mean(A) returns the mean of the elements.

If A is a matrix, then mean(A) returns a row vector containing the mean of each column.

```
Command Window
  >> A
  A =
      4
          6
                2
      7
            2
                 9
      8
           1
                  6
  >> mean(A)
  ans =
     6.3333 3.0000 5.6667
  >> v=[1 3 5 7];
  >> mean(v)
  ans =
      4
```

Command (factorial)

factorial(n) returns the product of all positive integers less than or equal to n, where n is a nonnegative integer value. If n is an array, then f contains the factorial of each value of n. The data type and size of f is the same as that of n.

```
>> factorial(5)
ans =
    120
```

dot(A,B) returns the scalar dot product of A and B.

If A and B are vectors, then they must have the same length.

Command (Cross product)

cross(A,B) returns the cross product of A and B. must be 3 dim mean A=[a1]

Create two 3-D vectors. A = [4 -2 1]; B = [1 -1 3]; Find the cross product of A and B. The result, C, is a vector that is perpendicular to both A and B. C = cross(A,B)

C = -5 -11 -2

Command (primes)

primes(n) returns a row vector containing all the prime numbers less than or equal to n. The data type of p is the same as that of n.

```
Command Window

>> primes(30)

ans =

Columns 1 through 8

2 3 5 7 11 13 17 19

Columns 9 through 10

23 29
```

isprime(X)

isprime(X) returns a logical array the same size as X. The value at TF(i) is true when X(i) is a prime number. Otherwise, the value is false

```
>> isprime(30)
ans =
    logical
    0
>> isprime(31)
ans =
    logical
    1
```

Example 1:-

Co	Command Window							
	>>	T=[-1 t=1:3; T1=[T;	;		5	6];		
	т1	=						
		-1		3		4		
		4		5		6		
		1		2		3		

Command Window

	>> G=[1 5;4 5;0 2]; >> T2=[T,G']						
т2	=						
	-1	3	4	1	4	0	
	4	5	6	5	5	2	
>>	т2=[т1	G]					
т2	=						
	-1 4 1	3 5 2	4 6 3	1 4 0	5 5 2		

Co	mmand Windo	w						
	>> T							
	т =							
	-1	3	4					
	4		6					
	>> T2							
	т2 =							
	-1	3	4	1	5			
	4	5	6	4	5			
	1	2	3	0	2			
	>> G'							
	ans =							
	1	4	0					
	5	5	2					
	> т3=[т'	Ͳ2 G1						
		,						
r3	3 =							
	-1	4	-1	3	4	1	5	1
		5					5	
	4	6	1	2	3	0	2	0

Command Window							
>>	≻ T4=[G	,diag	([5;6])	;ones	(3,2),T1]		
Т	4 =						
	1	4	0	5	0		
	5	5	2	0	6		
	1	1	-1	3	4		
	1	1	4	5	6		
	1	1	1	2	3		

Example 2: -

Co	mmand Windo	w		
	>> A=[: >> A(2,:		5 6;7	8 9];
	A =			
	1	2	3	
	4	5	15	
	7	8	9	
	>> A(2,	3)=A(1,	3)*A(2,	,2)
	A =			
	1	2	3	
	4	5	15	
	7	8	9	

```
Change column 2 by v=[11 12 13 ]
```

```
>> A(:,2)=[11 12 13]
A =
    1 11 3
4 12 15
    7 13 9
>> A(3,[1,3])=[18 19]
A =
    1 11 3
        12
    4
             15
        13 19
    18
Command Window
 >> A(1:2,[1,3])
 ans =
     1 3
     4
         15
 >> A([1,3],2:3)
 ans =
   11 3
    13 19
 >> A(2,:)=[]
A =
    1 11 3
    18 13 19
 >> A(:,3)=[]
A =
    1
        11
    18
         13
```

Example: -

Command Window							
>> A=[1 2	3;4	5	6 ; 7	8	9]	
A =							
1		2		3			
4		5		6			
7		8		9			

Swap R1 and R2

```
Command Window
  >> A=[ 1 2 3;4 5 6;7 8 9]
  A =
         2
                3
      1
           5
      4
                 6
      7
           8
                 9
  >> D=A(1,:);
  >> A(1,:)=A(2,:);
  >> A(2,:)=D
  A =
      4
          5
                6
      1
            2
                 3
      7
            8
                 9
```

Change C2 with C3

Swap R1 and R3

Command Window						
	>> .	A(:,3)=A(:,3	3);		
		5 1 7	2 3 9	4 6 5		

Matrices Arithmetic

Cor	mmand Windo	w			
	>> A				
	A =				
	5	2	4		
	1	3	6		
	7	9	5		
	>> B=[7	12 4;15	5 19	7;6	4 9]
	в =				
	7	12	4		
	15	19	7		
	6	4	9		
	>> A*B				
	ans =				
	89	114	70		
	88	93	79		
	214	275	136		

>>	A-B					
ans	; =					
	-2	-10	0			
			-1			
	1		-4			
>>	A+B					
ans	s =					
	12	14	8			
			13			
			14			
>>	A/B					
ans	; =					
	-0.9	456	0.622	4	0.3807	
	1.3	897	-0.873	1	0.7281	
	0.3	202	0.220	5	0.2417	
>>	A.^5	5				
an	s =					
		3125		3	2	1024
		1		24		7776
		16807		5904	9	3125

Euclidean Norm

The Euclidean norm (or 2-norm) of a vector v that has N elements is defined by

$$||v|| = \sqrt{\sum_{k=1}^{N} |v_k|^2}$$
.

Magic Function

Matlab has build in function that create magic sequence of almost any size

>> magic(n) \rightarrow build a square matrix of size n * n and that elements between $0 \rightarrow n^2$

Co	Command Window							
	>> 1	magio	:(3)					
	ans	=						
		8	1	6				
		3	5	7				
		4	9	2				
	>> 1	magio	c (4)					
	ans	=						
		16	2	3	13			
		5	11	10	8			
		9	7	6	12			
		4	14	15	1			