Chapter 3

Using Script Files

The matlab Workspace and the Workspace Window

INPUT TO A SCRIPT FILE

1. The variable is defined and assigned a value in the script file.
\% This script file calculates the average points scored in three games.
\% The assigment of the values of the points is part of the script file. game1=75;
game2=93;
game $3=68$;

The variables are assigned values within the script file.

```
ave points=(game1+game2 +game3)/3
```

The display in the Command Window when the script file is executed is:
>> Chapter4Example2

ave points $=$| 78.6667 |
| :--- |
| The script file is executed by typing the name of the file. |

The variable ave points with its value
is displayed in the Command Window.

2. The variable is defined and assigned a value in the Command Window.
\% This script file calculates the average points scored in three games.
\% The assigrment of the values of the points to the variables
\% game1, game2, and game3 is done in the Command Window.
ave_points=(game1+game2+game3)/3
The Command Window for running this file is:
```
>> game1 = 67;
>> game2 = 90;
>> game3 = 81;
```


3. The variable is defined in the script file, but a specific value is entered in the Command Window when the script file is executed.

```
variable_name= input('string with a message that
    is displayed in the Command Window')
```

\% This acript file calculates the average of points scored in three games.
\% The points from each game are assigned to the variables by
\% using the irmut carvand.
gamel=irput ('Enter the points scored in the first game ');
game2=irput ('Enter the points scored in the second game ');

```
game3=input ('Enter the points scared in the third game ');
```

ave_points $=($ game $1+$ game $2+$ game 3$) / 3$
>> Chapter4 Example4
Enter the points scored in the first game 67
Enter the points scored in the second game 91
Enter the points scored in the third game 70

```
ave_points =
    76
>>
```


OUTPUT COMMANDS

4.3.1 The disp Command

The disp command is used to display the elements of a variable without displaying the name of the variable, and to display text. The format of the disp command is:

```
disp(name of a variable) or disp('text as string')
```

- Every time the disp command is executed, the display it generates appears in a new line. One example is:

\% This script file calculates the average points scored in three games. \% The points from each game are assigned to the variables by \% using the input command.
\% The disp command is used to display the output.
gamel=input('Enter the points scored in the first game ');
game2=input ('Enter the points scored in the second game ');
game3=imput ('Enter the points scored in the third game ');
ave points $=($ game $1+$ game2 + game3 $) / 3$;
disp (' ') Display empty line.
disp ('The average of points scored in a game is:') Display text.
disp (' ${ }^{\prime}$)
Display empty line.
disp (ave_points)
Display the value of the variable ave_points.
>> Chapter4Example5
Enter the points scored in the first game 89
Enter the points scored in the second game 60
Enter the points scored in the third game 82
An empty line is displayed.
The average of points scored in a game 1s: The text line is displayed.
An empty line is displayed.
77
The value of the variable ave_points is displayed.

$\begin{aligned} & \mathrm{yr}=\left[\begin{array}{lllllll} 1984 & 1986 & 1988 & 1990 & 1992 & 1994 & 1996 \end{array}\right] ; \\ & \mathrm{pop}=\left[\begin{array}{llllll} 127 & 130 & 136 & 145 & 158 & 178 \\ 2111 \end{array}\right] ; \end{aligned}$		The population data is entered in two row vectors.
tableYP (: , 1)=yr' , yr is entered as the first column in the array tableYP.		
tableYP ($:, 2$) $=$ POP' ; pop is entered as the second column in the array tableYP.		
disp(' Year	POPULATION')	Display heading (first line).
disp('	(MILLIONS)')	Display heading (second line).
disp(' ')		Display an empty line.
disp(tableyp)		Display the array tableYP.

When this script file (saved as PopTable) is executed, the display in the Command Window is:

YEAR	POPULATION (MILLIONS)	Headings are displayed.
		An empty line is displayed.
1984	127	
1986	130	
1988	136	The tableYP array is displayed.
1990	145	
1992	158	
1994	178	
1996	211	

Relational operators:

Relational operators in MATLAB are:
Relational operator Description
$<\quad$ Less than
$>\quad$ Greater than
$<=\quad$ Less than or equal to
$>=\quad$ Greater than or equal to
$==\quad$ Equal to
$\sim \quad$ Not Equal to

Some examples are:

$B=$

1	0	0
1	0	1
0	0	1

Logical operators:

Logical operators in MATLAB are:

Logical operator	Name	Description
$\&$ Example: A\&B	AND	Operates on two operands (A and B). If both are true, the result is true (1); otherwise the result is false (0).
I	OR	Operates on two operands (A and B). If either one, or both, are true, the result is true (1); otherwise (both are false) the result is false (0).
\sim	NOT	Operates on one operand (A). Gives the opposite of the operand; true (1) if the oper- and is false, and false (0) if the operand is true.
Example: \sim A	.\quad.	

Precedence
1 (highest)

2
3
4
5
6
7
8 (lowest)

Operation
Parentheses (if nested parentheses exist, inner ones have precedence)
Exponentiation
Logical NOT (~)
Multiplication, division
Addition, subtraction
Relational operators (>, <>=, <=, ==, ~=)
Logical AND (\&)
Logical OR (|)

CONDITIONAL STATEMENTS

> if conditional expression consisting of relational and/or logical operators.

Examples:

$$
\begin{aligned}
& \text { if } a<b \\
& \text { if } c>=5 \\
& \text { if } a==b \\
& \text { if } a \sim=0 \\
& \text { if }(d<h) \&(x>7) \\
& \text { if }(x \sim=13) \mid(y<0)
\end{aligned}
$$

All the variables must have assigned values.

The if- end Structure

Figure 6-1: The structure of the if-end conditional statement.

Example 1:-

Write a program to test if the numbers are entered positive.
a=input('a=');
if $a>0$
b=a;
disp('a is positive')
end

Example 2 :-

W. P. to find the value of $y=\frac{x^{3}-5 x+2}{x-3}, x \neq 3$
$x=$ input ('x=');
if ($x \sim=3$)
$y=\left(x^{\wedge} 3-5^{\star} x+2\right) /(x-3) ;$
disp(y);
end
Example 3:- W.P. to input the following number 8510111821
Then print the even number
$x=$ input ($\mathrm{x}=$ ') ;
if $(r e m(x, 2)==0)$
disp(x);
end

The if - else - end Structure

Figure 6-2: The structure of the if-else-end conditional statement.

Example 1 :-

Write a program to input the temperature to either print "'normal condition'" if temperature greater than 37 or print 'catch a fever'

```
temp=input('enter the measured
temperature:');
    if temp >37
disp('normal condition')
else
disp('catch a fever')
end
```


Example 2 :-

Write a program to test input x is positive or negative number
x=input('x=');
if $x>=0$
disp('x is positive');
else
disp('x is negative');
end

Example 3 :-

Write a program to input number then test if it is even or odd number

```
x=input('x=');
if(rem(x,2)==0)
disp('x is even');
disp(x);
else
disp('x is odd');
disp(x);
```


62.3 The if-elseif-else-end Stwature

The if-elself-else-end structure is shown in Figure 6-3. The figure shows how the commands are typed in the program, and gives a flowchart that illustrates the flow, or the sequence, in which the command are execulte. This structure includes two condional statements (if and el se if) that make it posinhe to select one out of three groups of commands for exection. The firs line in an $1 f$ satement with a conditionsl exprosion. If the conditional expression is true, the program execute grow 1 of commands hawoen the if and the

Figure 6-3: The structure of the if =elneif-cine-end conditional statement.

Example 1:- Write a program to input number x to find the value of y such that

$$
y=\left\{\begin{array}{lr}
x^{2}-5 x+1 & \text { if } x \geq 3 \\
x+5 & \text { if } x<2 \\
x^{2}-7 x+3 & \text { otherwise }
\end{array}\right.
$$

$$
x=i n p u t(' x=') ;
$$

if $x>=3$
$y=x^{\wedge} 3-5^{\star} x+1 ;$
disp(y);
elseif $x<2$

$$
\begin{aligned}
& y=x+5 ; \\
& \quad \operatorname{disp}(y) ;
\end{aligned}
$$

else

$$
\begin{aligned}
& y=x^{\wedge} 2-7 \star x+3 ; \\
& \operatorname{disp}(y)
\end{aligned}
$$

end

Example 2:- Write a program to input the degree of student to print the grade as the following

Degree	$0-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-100$
Grade	Fail	Pass	Medium	Good	Very good	Excellent

```
x=input('x=');
if x > 100
    % fprintf('input %-5.2f out of the range',x);
    disp('the input number out of the range');
elseif x>= 90 && x<=100
    disp('Grade is Excellent');
elseif x>=80 && x<=89
    disp('Grade is V. Good');
elseif x>=70 && x<=79
    disp('Grade is Good');
elseif x>=60 && x<=69
    disp('Grade is Medium');
elseif x>=50 && x<=59
    disp('Grade is Pass');
else
    disp('Grade is Fail');
end
```

1- write a program to find the average of the student exams and write the grade Of it as the following:-

No.	Exams
1	40
2	60
3	30
4	50
5	70

Avr .	grade
$100 \leq$ Avr \leq 90	A
$90<$ Avr \leq 80	B
$80<$ Avr \leq 70	C
$70<$ Avr \leq	D
60	

2- Write a program to input number x to find the value of y such that

$$
y= \begin{cases}e^{x} & \text { if } x=(20 \text { to } 25) \\ |x| & \text { if } x=(30 \text { to } 35) \\ \sin x & \text { if } x=(40 \text { to } 45)\end{cases}
$$

3- Write a program to input the values x and y to find the value of Z

$$
z=\frac{(x+y)}{3!}+\frac{(x+y)^{3}}{5!}+\frac{(x+y)^{5}}{7!}+\cdots+\frac{(x+y)^{21}}{23!}+\frac{(x+y)^{23}}{25!}
$$

4- A vector is given by
$V=[5,17,15,8,0,-7,12,-3,20,-6,6,4,-7,16]$. Write a program that doubles the elements that are positive and are divisible by 3 and divisible by 5, raises to the power of 3 the elements that are negative but greater than -5 .

5- A vector is given by
$V=[13,-4,-3,1,15,-8,12,-18,5,21]$. Write a program to multiply the elements of V by 2 if such elements are positive and even number, and multiply the elements of V by -5 if such element are negative and odd number.

6- A list of 30 exam scores is:
$31,70,92,5,47,88,81,73,51,76,80,90,55,23,43,98,36,87,22,61$,
19,69,26,82,89,99, 71,59,49,64
Write a computer program that determines how many grades are from 0
to 19 , from 20 to 39 , from 40 to 59 , from 60 to 79 , and from 80 to 100 .

7- let's say we were asked to write a program that calculates the tip based on amount of bills, using the following rules and the variable 'bill':

- bill is less than $\$ 10$
- Tip is $\$ 1.80$
- bill is between $\$ 10$ and $\$ 60$
- Tip is \%18
- bill is above $\$ 60$
- Tip is \%20

8- Write a script file using Conditional If-Elseif-Else statements

 to shows the grade of the score as following:-| Grade | Score |
| :--- | :--- |
| A+ | 100 |
| A | Score ≥ 90 |
| B | Score ≥ 80 |
| C | Score ≥ 70 |
| D | Score ≥ 60 |
| F | otherwise |

Example. Suppose a bank offers annual interest of $\mathbf{3 \%}$ on balances of less than $\mathbf{\mathcal { L } 5 , 0 0 0 , 3 . 2 5 \%}$ on balances of $\mathcal{L 5 , 0 0 0}$ or more but less than $\mathcal{\mathcal { L }} \mathbf{1 0 , 0 0 0}$, and 3.5% for balances of $\mathcal{L} 10,000$ or more. The following program calculates an investor's new balance after one year.

