Structural design calculations Of bearing wall houses

Professor Omar Qarani PhD in Structural Engineering 20 and 25 Jan. 2024

Required structural design data:

- 1. Architectural design drawings; Plan and sections.
- 2. Applied loads; see IBC chapter 16 or ASCE chapter 4 or
- 3. Material properties; concrete compressive strength, steel yield strength
- 4. Wall type and materials; thickness and unit weight.
- 5. Roof finishing materials and its function; without water proofing or using water proofing materials,
- 6. Ground and first floor finishing materials; ceramic tile or marble or other finishing material above layer of screed.
- 7. Type of false ceiling.
- 8. Type of interior and exterior wall finishing materials
- 9. Soil properties; bearing capacity, soil category,....

Codes of practice

Required to design of one story bearing wall house shown below according to ACI code and use 20cm normal concrete block walls.

Plan of the house

Structural design calculation (House)

1. Load calculations:

- Thickness of the slab (t) ;
- Maximum panel size 6200x4350mm (6.0x4.15m clear distance).
- The slab system is two-way slab.
- $t_{min.} = \frac{Ln}{30} = \frac{6000}{30} = 200 \text{ mm} = 20 \text{ cm}$, (if considered slab without drop beams).
- If considered slab with drop beams :

$$t_{slab(\min.)} = \frac{\ell_n (0.8 + \frac{f_y}{1400})}{36 + 9\beta};$$

 $\mathfrak{e}_{n}(\mathfrak{e}_{b})$ = clear span in long direction

 $\ell_{\rm b}$ =clear slab span in long direction=6m; $\ell_{\rm a}$ =clear slab span in short direction=4.15m ; $\beta = \ell_{\rm b}/\ell_{\rm a} = 6/4.15 = 1.446$; $t_{slab({\rm min.})} = \frac{\ell_n (0.8 + \frac{f_y}{1400})}{36 + 9\beta} \Rightarrow$ Use <u>t = 15cm</u> for all rooms.

a. Dead load :

- Weight of the slab=0.15*24=3.6 kN/m²
- Weight of the plastering =0.3 kN/m²
- Weight of roofing system=3 kN/m²
 (Water proof + Isolated material + 7cm concrete + BRC)
- W $_{D.L}$ =3.6+0.3+3=6.9 kN/m²

	Without drop panels ^[3]			With drop panels ^[3]		
	Exterior panels			Exterior panels		
f_y , MPa ^[2]	Without edge beams	With edge beams ^[4]	Interior panels	Without edge beams	With edge beams ^[4]	Interior panels
280	$\ell_n/33$	$\ell_n/36$	$\ell_n/36$	$\ell_n/36$	$\ell_n/40$	$\ell_n/40$
420	$\ell_n/30$	$\ell_n/33$	$\ell_n/33$	$\ell_n/33$	$\ell_n/36$	$\ell_n/36$
550	$\ell_n/27$	$\ell_n/30$	$\ell_n/30$	$\ell_n/30$	<i>ℓ_n</i> /33	$\ell_n/33$

Table 8.3.1.1—Minimum thickness of nonprestressed two-way slabs without interior beams (mm)^[1]

 ${}^{[1]}\ell_n$ is the clear span in the long direction, measured face-to-face of supports (mm).

^[2]For f_{ν} between the values given in the table, minimum thickness shall be calculated by linear interpolation.

^[3]Drop panels as given in 8.2.4.

^[4]Slabs with beams between columns along exterior edges. Exterior panels shall be considered to be without edge beams if α_f is less than 0.8.

Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs with beams spanning between supports on all sides

$\alpha_{fm}^{[1]}$	Minimum <i>h</i> , mm		
$\alpha_{fm} \leq 0.2$		8.3.1.1 applies	(a)
$0.2 < \alpha_{fm} \le 2.0$	Greater of:	$\frac{\ell_n \left(0.8 + \frac{f_y}{1400} \right)}{36 + 5\beta(\alpha_{fm} - 0.2)}$	(b) ^{[1],[2]}
		125	(c)
$\alpha_{fm} > 2.0$	$\alpha_{fm} > 2.0$ Greater of: $\frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 9\beta}$		(d)
		90	(e)

^[1] α_{fm} is the average value of α_f for all beams on edges of a panel.

 ${}^{[2]}\ell_n$ is the clear span in the long direction, measured face-to-face of beams (mm).

 $^{[3]}\beta$ is the ratio of clear spans in long to short directions of slab.

b. Live load :

- Assume live load of about 2 kN/m² $Wu=1.2W_{D,L}+1.6W_{L,L}=1.2*6.9+1.6*2=11.5 \text{ KN/m}^2 \rightarrow \text{Say Wu}=12 \text{ KN/m}^2$ 2. Design of the slab by YLT: Using yield line theory to find negative and positive moments. $\Sigma w \delta = 12^* [0.5*4.35*2.175^* \frac{\delta}{3}*2 + 0.5*2.175^2 * \frac{\delta}{3}*4 + 1.85*2.175^* \frac{\delta}{2}*2] \approx 124 \delta$ $\Sigma Mo = (mp+mn)^* [4.35^* \frac{\delta}{2.175} + 6.2^* \frac{\delta}{2.175}]^*2$ Assume (mn=2mp) $\Sigma Mo = 29.1 \text{ mp } \delta$ $\Sigma w \delta = \Sigma Mo \rightarrow 124 \delta = 29.1 \text{ mp } \delta \rightarrow \text{mp}=4.3 \text{ kN.m/m}$ $mn=2 \text{ mp} = 2^*4.3=8.6 \text{ kN.m/m}$

2.175m Fix

1.85m

2.175

45°

4.35m

45°

Design for m_{neg.}=8.6 kN.m/m fc'=21MPa, fy=420MPa (grade 60), b=1m, t=150mm, Φ10mm, d=150-20- =125mm $R = \frac{m_{neg.}}{0.9bd^2} = \frac{8.6 \times 10^6}{0.9 \times 1000 \times 125^2} = 0.612 \text{MPa}$ $m = \frac{f_y}{0.85 f'_c} = \frac{420}{0.85 * 21} = 23.53$ $\rho = \frac{1}{m} (1 - \sqrt{1 - \frac{2mR}{f}}) = \frac{1}{22.52} (1 - \sqrt{1 - \frac{2 \times 23.53 \times 0.612}{420}}) = 0.00148 < \rho \min . = 0.0018$ USE $\rho = \rho \min . = 0.0018$ As $_{min.} = \rho b_{71} = 0.0018*1000*125=225 mm^2/m \rightarrow \Phi 10 mm@250 mm c/c.$ As $_{provided} = \frac{1000}{250} * \frac{1000}{250} = 284 \text{mm}^2/\text{m} > \text{As} _{min} = 225 \text{ mm}^2/\text{m} \text{ ok}$ Spacing =250mm < Smax. =2 t = 2*150=300mm for two-way slabs. ok

Notes:

- This amount of steel reinforcement (Φ10mm@250mm c/c.) to be used in both directions (top & bottom) for all rooms.
- Since the $(m_{neg.})_{Max.}$ give $(\rho \min)$, no need to calculate for positive moment and for other directions.

3. Design of drop beam:

The main purpose behind using drop beams to reduce slab thickness, reduce deflection and distribute the load to the walls.

Normally minimum steel reinforcement to be provide. $\rho \min_{a} = \frac{1.4}{fy} = \frac{1.4}{420} = 0.00334 \quad \text{or} \quad \frac{\sqrt{fc'}}{4 fy} = \frac{\sqrt{21}}{4 * 420} = 0.00273 \quad \Rightarrow \text{ choose max.}(\ \rho \min = 0.00334)$ As $_{\min_{a}} = \rho \min_{b} b h = 0.00334^{*}200^{*}350 \approx 234 \text{mm}^{2}$ Use : $2\Phi 16 \text{mm} \oplus \text{top (cont.})$ $2\Phi 16 \text{mm} \oplus \text{bottom (cont.})$ As $_{\text{provide}} = 2^{*}201 = 402 \text{mm}^{2} > \text{As}_{\min_{a}} = 234 \text{mm}^{2} \text{ ok}$

Notes:

- When the unit(house) repeated, $2\Phi 12mm$ can be provided instead of $2\Phi 16mm$ As= $2*113=226mm^2 \approx As_{min.} = 234mm^2$
- Stirrups, Φ10mm/200mm c/c or Φ8mm/200mm c/c can be used.

4. Design of tie beams above doors and windows:

For clear spans up to 2.5m

- a. Weight above the tie beams≈(0.2*0.2*24*1.2)+(0.2*1.0*15*1.2)=4.752kN/m , say 5kN/m
- b. 1. Load from S1 = [(0.5*2.175*4.35)*12]/4.35 =13.05 kN/m
 - 2. Load from S2 =[(($\frac{0.7 + 4.5}{2}$)*1.9)*12]/4.5 =**13.2kN/m** Choose max. load from **S2**

c. Load from parapet: → Take:(height=1.4m , width=0.15m & y=15kN/m³) =[(1.4*0.15)*15]*1.2 = 3.78 kN/m

Total loads = 13.2 + 3.78 + 4.752 = 21.732 kN/m

If considered (Ln≈2.5m) & simply supported. $m_{pos.} = \frac{1}{8}Wu * Ln^{2} = \frac{1}{8} * 21.732 * 2.5^{2} = 17 \text{ kN.m}$ b=200mm, h=200mm, Φ12mm, d=200 - 40 - 10 - $\frac{12}{2}$ = 144mm $R = \frac{m_{pos.}}{0.9bd^{2}} = \frac{17*10^{6}}{0.9*200*144^{2}} = 4.55 \text{MPa}$ $m = \frac{f_{y}}{0.85f'_{c}} = \frac{420}{0.85*21} = 23.53$ $\rho = \frac{1}{m}(1 - \sqrt{1 - \frac{2mR}{f_{y}}}) = \frac{1}{23.53}(1 - \sqrt{1 - \frac{2*23.53*4.55}{420}})$ $\rho = 0.01274 > \rho \text{ min.} = 0.00334$

As_{reg.}=0.01274*200*144=366.912mm²

Use 2 Φ 16mm , As,provide =2*201=402 mm² > As_{req.}=366.912mm² ok

Stirrups: Φ10mm@200mm c/c or Φ8mm@200mm c/c.

Slab

5. Design of foundation:

Design an interior wall footing between S1 & (S2,S3) (most heavier wall).

Unfactored load = 64/1.35 = 47.4 kN/m

Assume bearing capacity, $\mathbf{q}_{allowable}$ =80kN/m² (or based on the soil investigation, to be provided by client) Required width, B= 47.4/80 = 0.5925m \rightarrow Use: B=0.65m

 $\mathbf{q}_{applied}$ = 47.4/0.65 = 72.92 kN/m² < $\mathbf{q}_{allowable}$ =80 kN/m² ok

a. Design for bending, d=200-40-(12/2)=154mm

The critical section for maximum moment is located half away between the centerline and edge of the wall

(i.e. @distance ((650/2) - (400/4)) = 225 mm)Considering (1m) long footing strip with (d=154mm). Mu= $\mathbf{q}_{applied} * (\frac{225}{2})^2 \ 10^{-6} = 0.923 \text{ kN.m}$ $R = \frac{Mu}{0.9bd^2} = \frac{0.923 \times 10^6}{0.9 \times 1000 \times 154^2} = 0.0432 \text{MPa}$ 200 $m = \frac{f_y}{0.85 f'} = \frac{420}{0.85 * 21} = 23.53$ 650 $\rho = \frac{1}{m} (1 - \sqrt{1 - \frac{2mR}{f}}) = \frac{1}{23.53} (1 - \sqrt{1 - \frac{2*23.53*0.0432}{420}}) = 0.0001031 < \rho \min = 0.0018$ Use ($\rho = \rho \min . = 0.0018$) As_{min.}=0.0018*1000*200=360mm² \rightarrow Use: Φ 12/250mm (Main reinforcement) Asprovide = $\frac{113}{250}$ * 1000 = 452 mm² > As_{min} = 360 mm² ok Longitudinal reinforcement: As_{min} = 0.00334*650*200= 434.2mm² Use: 4012mm (secondary reinforcement)

 $As_{provided} = 4*113 = 452 mm^2 > As_{min.} = 434.2 mm^2$ ok

b. Design for shear

Critical section for shear is located @distance **d** away from the face of the wall.

Vu=
$$\mathbf{q}_{applied} * \left[\left(\frac{B-0.4}{2} \right) - d \right] = 72.92 * \left[\frac{0.65 - 0.4}{2} \right) - 0.154 \right] \approx -2.12 \text{ kN}$$

 Φ Vc= $\frac{\Phi}{6} * \sqrt{fc'} * bd = \frac{0.75}{6} * \sqrt{21} * 650 * 0.154 \approx 57.34 \text{ kN} >> \text{Vu}$ ok.

Slab reinf. details

