Structural design calculations Of bearing wall houses

Professor Omar Qarani
PhD in Structural Engineering
20 and 25 Jan. 2024

Required structural design data:

1. Architectural design drawings; Plan and sections.
2. Applied loads; see IBC chapter 16 or ASCE chapter 4 or
3. Material properties; concrete compressive strength, steel yield strength
4. Wall type and materials; thickness and unit weight.
5. Roof finishing materials and its function; without water proofing or using water proofing materials,
6. Ground and first floor finishing materials; ceramic tile or marble or other finishing material above layer of screed.
7. Type of false ceiling.
8. Type of interior and exterior wall finishing materials
9. Soil properties; bearing capacity, soil category,....

Codes of practice

Required to design of one story bearing wall house shown below according to ACI code and use 20 cm normal concrete block walls.

1. Load calculations:

- Thickness of the slab (t) ;
- Maximum panel size $6200 \times 4350 \mathrm{~mm}$ ($6.0 \times 4.15 \mathrm{~m}$ clear distance).
- The slab system is two-way slab.
- $\mathrm{t}_{\text {min. }}=\frac{L n}{30}=\frac{6000}{30}=200 \mathrm{~mm}=20 \mathrm{~cm}$, (if considered slab without drop beams).
- If considered slab with drop beams :
$t_{\text {slab(min.) }}=\frac{\ell_{n}\left(0.8+\frac{f_{y}}{1400}\right)}{36+9 \beta}$;
$\ell_{n}\left(\ell_{b}\right)=$ clear span in long direction
$\ell_{b}=$ clear slab span in long direction $=6 m ; \ell_{a}=$ clear slab span in short direction=4.15m ;
$\beta=\ell_{b} / \ell_{a}=6 / 4.15=1.446$;
$t_{\operatorname{slab}(\min .)}=\frac{\ell_{n}\left(0.8+\frac{f_{y}}{1400}\right)}{36+9 \beta} \rightarrow$ Use $\underline{\mathrm{t}=15 \mathrm{~cm}}$ for all rooms.
a. Dead load:
- Weight of the slab=0.15*24=3.6 kN/m²
- Weight of the plastering $=0.3 \mathrm{kN} / \mathrm{m}^{2}$
- Weight of roofing system=3 kN/m² (Water proof + Isolated material +7 cm concrete +BRC)
- $W_{\text {D.L }}=3.6+0.3+3=6.9 \mathrm{kN} / \mathrm{m}^{2}$

Table 8.3.1.1—Minimum thickness of nonprestressed two-way slabs without interior beams (mm) ${ }^{[1]}$

$\boldsymbol{f}_{y}, \mathrm{MPa}^{[2]}$	Without drop panels ${ }^{[3]}$			With drop panels ${ }^{[3]}$		
	Exterior panels		Interior panels	Exterior panels		Interior panels
	Without edge beams	With edge beams ${ }^{[4]}$		Without edge beams	With edge beams ${ }^{\text {[4] }}$	
280	$\ell_{n} / 33$	$\ell_{n} / 36$	$\ell_{n} / 36$	$\ell_{n} / 36$	$\ell_{n} / 40$	$\ell_{n} / 40$
420	$\ell_{n} / 30$	$\ell_{n} / 33$	$\ell_{n} / 33$	$\ell_{n} / 33$	$\ell_{n} / 36$	$\ell_{n} / 36$
550	$\ell_{n} / 27$	$\ell_{n} / 30$	$\ell_{n} / 30$	$\ell_{n} / 30$	$\ell_{n} / 33$	$\ell_{n} / 33$

${ }^{[1]} \ell_{n}$ is the clear span in the long direction, measured face-to-face of supports (mm).
${ }^{[2]}$ For f_{y} between the values given in the table, minimum thickness shall be calculated by linear interpolation.
${ }^{[3]}$ Drop panels as given in 8.2.4.
${ }^{[4]}$ Slabs with beams between columns along exterior edges. Exterior panels shall be considered to be without edge beams if α_{f} is less than 0.8 .
Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs with beams spanning between supports on all sides

$\boldsymbol{\alpha}_{f m}{ }^{[1]}$	Minimum \boldsymbol{h}, mm		
$\alpha_{f m} \leq 0.2$	8.3.1.1 applies		(a)
$0.2<\alpha_{f m} \leq 2.0$	Greater of:	$\frac{\ell_{n}\left(0.8+\frac{f_{y}}{1400}\right)}{36+5 \beta\left(\alpha_{f m}-0.2\right)}$	(b) ${ }^{[1],[2]}$
		125	(c)
$\alpha_{f m}>2.0$	Greater of:	$\frac{\ell_{n}\left(0.8+\frac{f_{y}}{1400}\right)}{36+9 \beta}$	(d)
		90	(e)

[^0]b. Live load:

- Assume live load of about $2 \mathrm{kN} / \mathrm{m}^{2}$

$$
\mathrm{Wu}=1.2 \mathrm{~W}_{\mathrm{D} . \mathrm{L}}+1.6 \mathrm{~W}_{\mathrm{L} . \mathrm{L}}=1.2 * 6.9+1.6 * 2=11.5 \mathrm{KN} / \mathrm{m}^{2} \quad \rightarrow \text { Say } \mathrm{Wu}=12 \mathrm{KN} / \mathrm{m}^{2}
$$

2. Design of the slab by YLT: Using yield line theory to find negative and positive moments.
$\Sigma \mathrm{w} \delta=12 *\left[0.5 * 4.35 * 2.175 * \frac{\delta}{3} * 2+0.5 * 2.175^{2} * \frac{\delta}{3} * 4+1.85 * 2.175 * \frac{\delta}{2} * 2\right] \approx 124 \delta$
$\sum \mathrm{Mo}=(\mathrm{mp}+\mathrm{mn}) *\left[4.35 * \frac{\delta}{2.175}+6.2 * \frac{\delta}{2.175}\right]^{* 2}$
Assume (mn=2mp)
$\sum \mathrm{Mo}=29.1 \mathrm{mp} \delta$
$\Sigma \mathrm{w} \delta=\sum \mathrm{Mo} \rightarrow 124 \delta=29.1 \mathrm{mp} \delta \rightarrow \mathrm{mp}=4.3 \mathrm{kN} . \mathrm{m} / \mathrm{m}$ $\mathrm{mn}=2 \mathrm{mp}=2 * 4.3=8.6 \mathrm{kN} . \mathrm{m} / \mathrm{m}$

Design for $\mathrm{m}_{\text {neg. }}=8.6 \mathrm{kN} . \mathrm{m} / \mathrm{m}$

$\mathrm{fc}^{\prime}=21 \mathrm{MPa}, \mathrm{fy}=420 \mathrm{MPa}($ grade 60$), \mathrm{b}=1 \mathrm{~m}, \mathrm{t}=150 \mathrm{~mm}, \Phi 10 \mathrm{~mm}$, $\mathrm{d}=150-20-=125 \mathrm{~mm}$
$R=\frac{m_{\text {neg }} .}{0.9 b d^{2}}=\frac{8.6 * 10^{6}}{0.9 * 1000 * 125^{2}}=0.612 \mathrm{MPa}$

$m=\frac{f_{y}}{0.85 f_{c}^{\prime}}=\frac{420}{0.85 * 21}=23.53$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f_{y}}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 * 23.53 * 0.612}{420}}\right)=0.00148<\rho \min .=0.0018$
use $\rho=\rho$ min. $=0.0018$
$\mathrm{As}_{\min .}=\rho \mathrm{bt}_{71}=0.0018 * 1000 * 125=225 \mathrm{~mm}^{2} / \mathrm{m} \rightarrow \Phi 10 \mathrm{~mm} @ 250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
As ${ }_{\text {provided }}=\frac{71}{250} * 1000=284 \mathrm{~mm}^{2} / \mathrm{m}>A s_{\text {min. }}=225 \mathrm{~mm}^{2} / \mathrm{m}$ ok
Spacing $=250 \mathrm{~mm}<$ Smax. $=2 \mathrm{t}=2 * 150=300 \mathrm{~mm}$ for two-way slabs. ok

Notes:

- This amount of steel reinforcement (Ф10mm@250mm c/c.) to be used in both directions (top \& bottom) for all rooms.
- Since the ($\left.\mathbf{m}_{\text {neg. }}\right)_{\text {Max. }}$ give ($\left.\rho \mathrm{min}.\right)$, no need to calculate for positive moment and for other directions.

3. Design of drop beam:

The main purpose behind using drop beams to reduce slab thickness, reduce deflection and distribute the load to the walls.
Normally minimum steel reinforcement to be provide.
$\rho \min =\frac{1.4}{f y}=\frac{1.4}{420}=0.00334 \quad$ or $\quad \frac{\sqrt{f c^{\prime}}}{4 f y}=\frac{\sqrt{21}}{4 * 420}=0.00273 \quad \rightarrow$ choose max. $(\rho \mathrm{min}=0.00334)$
As ${ }_{\text {min. }}=\rho \min \mathrm{bh}=0.00334 * 200 * 350 \approx 234 \mathrm{~mm}^{2}$
Use : 2Ф16mm@top (cont.)
2Ф16mm@bottom (cont.)
$A s_{\text {provide }}=2 * 201=402 \mathrm{~mm}^{2}>A s_{\min .}=234 \mathrm{~mm}^{2}$ ok

Notes:

- When the unit(house) repeated, $2 \Phi 12 \mathrm{~mm}$ can be provided instead of $2 \Phi 16 \mathrm{~mm}$

$$
A s=2 * 113=226 \mathrm{~mm}^{2} \approx A s_{\min .}=234 \mathrm{~mm}^{2}
$$

- Stirrups, $\Phi 10 \mathrm{~mm} / 200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ or $\Phi 8 \mathrm{~mm} / 200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ can be used.

4. Design of tie beams above doors and windows:

For clear spans up to 2.5 m
a. Weight above the tie beams $\approx\left(0.2^{*} 0.2^{*} 24^{*} 1.2\right)+\left(0.2^{*} 1.0^{*} 15 * 1.2\right)=4.752 \mathrm{kN} / \mathrm{m}$, say $5 \mathrm{kN} / \mathrm{m}$
b. 1. Load from $\mathrm{S} 1=\left[\left(0.5^{*} 2.175 * 4.35\right) * 12\right] / 4.35=13.05 \mathrm{kN} / \mathrm{m}$
2. Load from $\mathrm{S} 2=\left[\left(\left(\frac{0.7+4.5}{2}\right) * 1.9\right)^{*} 12\right] / 4.5=13.2 \mathrm{kN} / \mathrm{m}$ Choose max. load from S2

c. Load from parapet: \rightarrow Take:(height $=1.4 m$, width $=0.15 m$ \& $\left.y=15 \mathrm{kN} / \mathrm{m}^{3}\right)$

$$
=\left[(1.4 * 0.15)^{*} 15\right]^{*} 1.2=3.78 \mathrm{kN} / \mathrm{m}
$$

Total loads $=13.2+3.78+4.752=21.732 \mathrm{kN} / \mathrm{m}$

If considered (Ln $\approx 2.5 m$) \& simply supported.

$$
\mathrm{m}_{\text {pos. }}=\frac{1}{8} W u * L n^{2}=\frac{1}{8} * 21.732 * 2.5^{2}=17 \mathrm{kN} . \mathrm{m}
$$

$\mathrm{b}=200 \mathrm{~mm}, \mathrm{~h}=200 \mathrm{~mm}, \Phi 12 \mathrm{~mm}, \mathrm{~d}=200-40-10-\frac{12}{2}=144 \mathrm{~mm}$ $R=\frac{m_{\text {pos. }}}{0.9 b d^{2}}=\frac{17 * 10^{6}}{0.9 * 200 * 144^{2}}=4.55 \mathrm{MPa}$
$m=\frac{f_{y}}{0.85 f^{\prime}{ }_{c}}=\frac{420}{0.85 * 21}=23.53$
$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f_{y}}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 * 23.53 * 4.55}{420}}\right)$
$\rho=0.01274>\rho \min .=0.00334$
$A s_{\text {req. }}=0.01274 * 200 * 144=366.912 \mathrm{~mm}^{2}$
Use $2 \Phi 16 \mathrm{~mm}$, As,provide $=2 * 201=402 \mathrm{~mm}^{2}>$ As $_{\text {req.. }}=366.912 \mathrm{~mm}^{2}$ ok
Stirrups: $\boldsymbol{\Phi 1 0 m m @ 2 0 0 m m ~ c / c ~ o r ~} \Phi 8 \mathrm{~mm} @ 200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Tie beam

5. Design of foundation:

Design an interior wall footing between S1 \& (S2,S3) (most heavier wall).

Load from $(\mathbf{S} 1)=\frac{12 *\left(\left(\frac{1.85+6.2}{2}\right) * 2.175\right)}{6.2}=16.94 \frac{\mathrm{kN}}{\mathrm{m}}$ Load from (S2) $=\frac{12 *\left(\left(\frac{0.7+4.5}{2}\right) * 1.9\right)}{4.5}=13.17 \frac{\mathrm{kN}}{\mathrm{m}}$ Load from $(S 3)=\frac{12(0.5 * 1.7 * 0.85)}{1.7}=5.1 \frac{\mathrm{kN}}{\mathrm{m}}$ Load from Slabs $=16.94+13.17+5.1=35.21 \mathrm{kN} / \mathrm{m}$ Load from Slabs \rightarrow Say 36 kN/m Height of wall above DPC=3.5m \& $y=15 \mathrm{kN} / \mathrm{m}^{3}$ Load from wall above DPC $=0.2 * 3.5 * 15 * 1.2 \approx 13 \frac{\mathrm{kN}}{\mathrm{m}}$

Height of wall under DPC $=1.0 \mathrm{~m}$, width of wall $=0.4 \mathrm{~m} \quad \& y=23 \mathrm{kN} / \mathrm{m}^{3}$
Load from wall under DPC $=0.4 * 1.0^{*} 23 * 1.2=11 \mathrm{kN} / \mathrm{m}$
For footing take $($ Width $(B)=0.65 \mathrm{~m}$ \& thickness $(\mathrm{t})=0.2 \mathrm{~m})$
Footing Weight $\approx 0.65^{*} 0.2 * 24 * 1.2=4 \mathrm{kN} / \mathrm{m}$
Total loads $=36+13+11+4=64 \mathrm{kN} / \mathrm{m}$
Unfactored load $=64 / 1.35=47.4 \mathrm{kN} / \mathrm{m}$

Assume bearing capacity, $\mathbf{q}_{\text {allowable }}=80 \mathrm{kN} / \mathrm{m}^{2}$ (or based on the soil investigation, to be provided by client)
Required width, $B=47.4 / 80=0.5925 \mathrm{~m} \rightarrow$ Use: $B=0.65 \mathrm{~m}$
$\mathbf{q}_{\text {applied }}=47.4 / 0.65=72.92 \mathrm{kN} / \mathrm{m}^{2}<\mathbf{q}_{\text {allowable }}=80 \mathrm{kN} / \mathrm{m}^{2}$ ok
a. Design for bending, $d=200-40-(12 / 2)=154 \mathrm{~mm}$

The critical section for maximum moment is located half away between the centerline and edge of the wall (i.e. @distance ((650/2)- (400/4)) = 225mm)

Considering (1 m) long footing strip with ($\mathrm{d}=154 \mathrm{~mm}$).
$\mathrm{Mu}=\mathbf{q}_{\text {applied }} *\left(\frac{225}{2}\right)^{2} \quad 10^{-6}=0.923 \mathrm{kN} . \mathrm{m}$
$R=\frac{M u}{0.9 b d^{2}}=\frac{0.923 * 10^{6}}{0.9 * 1000 * 154^{2}}=0.0432 \mathrm{MPa}$
$m=\frac{f_{y}}{0.85 f^{\prime}{ }_{c}}=\frac{420}{0.85 * 21}=23.53$

$\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m R}{f_{y}}}\right)=\frac{1}{23.53}\left(1-\sqrt{1-\frac{2 * 23.53 * 0.0432}{420}}\right)=0.0001031<\rho \mathrm{min} .=0.0018$
Use ($\rho=\rho \mathrm{min} .=0.0018$)
$\mathrm{As}_{\text {min. }}=0.0018^{*} 1000^{*} 200=360 \mathrm{~mm}^{2} \rightarrow$ Use: $\boldsymbol{\Phi 1 2 / 2 5 0 m m}$ (Main reinforcement)
Asprovide $=\frac{113}{250} * 1000=452 \mathrm{~mm}^{2}>$ As $_{\text {min. }}=360 \mathrm{~mm}^{2}$ ok
Longitudinal reinforcement:

$$
\mathrm{As}_{\text {min. }}=0.00334 * 650 * 200=434.2 \mathrm{~mm}^{2}
$$

Use: $\mathbf{4 \Phi 1 2 \mathrm { mm }}$ (secondary reinforcement)

$$
\mathrm{As}_{\text {provided }}=4^{*} 113=452 \mathrm{~mm}^{2}>\mathrm{As}_{\text {min. }}=434.2 \mathrm{~mm}^{2} \text { ok }
$$

b. Design for shear

Critical section for shear is located @distance d away from the face of the wall.
$\left.V u=q_{\text {applied }} *\left[\left(\frac{B-0.4}{2}\right)-d\right]=72.92 *\left[\frac{0.65-0.4}{2}\right)-0.154\right] \approx-2.12 \mathrm{kN}$ $\Phi \mathrm{V} \mathrm{c}=\frac{\Phi}{6} * \sqrt{f c^{i}} * b d=\frac{\mathbf{0 . 7 5}}{6} * \sqrt{21} * 650 * 0.154 \approx 57.34 \mathrm{kN} \gg \mathrm{Vu}$ ok.

Slab reinf. details

Sec. A-A

[^0]: ${ }^{[1]} \alpha_{f_{m}}$ is the average value of α_{f} for all beams on edges of a panel.
 ${ }^{[2]} \ell_{n}$ is the clear span in the long direction, measured face-to-face of beams (mm).
 ${ }^{[3]} \beta$ is the ratio of clear spans in long to short directions of slab.

