Q.1

Design the slab of the Bridge, use live load positive moment for calculating of top and bottom reinforcement, thickness of slab is 200mm and wearing surface is 6cm ($\chi_{asphalt} = 23 \text{kN/m}^3$).

[Hint: no need for check of crack control, reinforcement limits and spacing].

Q.2

Design an interior girder for flexure (i.e. calculate required No. of strands) and calculate Safety factor for the section, use DM = 0.299.

[Hint: consider that the final stress at bottom to be tension and its value less than 3.0MPa under full-service load].

<u>Q.3</u>

Design an interior girder for shear, consider load combination STRENGHT I. Use DV = 0.468 and elastomeric pad dimensions are 25x25cm.

[Hint: consider only prestress strands for calculating dv].

Q.4

- 1. Calculates stresses at top and bottom at mid-span of the girder immediately after transfer.
- 2. Calculate stresses at top and bottom at mid-span under full-service loads.

Q.5

Calculate total deflections for an interior girder (dead load, live load and prestress), use load combination SERVICE I.

Given or design data:

- 1. Girder properties, longitudinal and cross sections with detail of supports given in attached drawings.
- 2. Concrete properties; fc`=40MPa and fc`i=32MPa for the girder, fc`=25MPa for the slab, use γ_c =25kN/m³, Ec = 4700 \sqrt{f} c.
- 3. Steel properties; fy = 420 MPa for all types of reinforcement, fs = 210 MPa when required.
- 4. Strand properties; low relaxation strand used with fpu = 1862MPa, fpy = 1676MPa, initial stress in strands immediately after transfer, fsi = 1253MPa, effective stress after all losses, fse = 1076MPa, diameter of strands = 15.24mm, area of one strand = $140mm^2$, eccentricity at midspan = $y_b 10cm$ and EP = 197GPa.
- 5. Standard Truck: Either use HL-93 or IL-120. Use Truck + lane load and IM = 30%.

Longitudinal section

