
Wireless Channel

These slides only gives an overview of the ideas.

Full details can be found in: http://www.eecs.berkeley.edu/~dtse/book.html

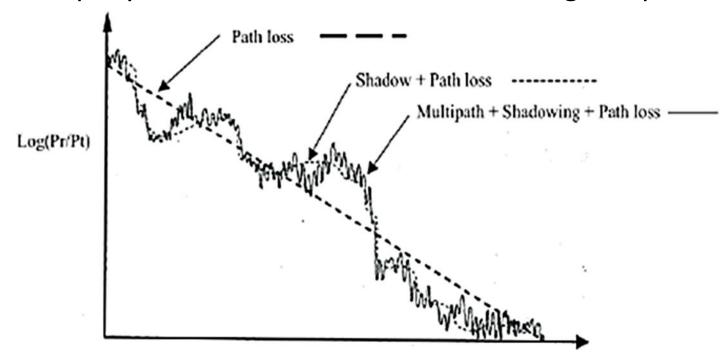
Wireless Multipath Channel

Channel Fading

Fading is:

- a variation of a signal with time or frequency or position.
- a random process
- due to either multipath, or weather or shadowing

Shadowing


- due to obstruction between Tx & Rx
- a result of reflection and scattering

Channel varies at two spatial scales:

- large scale fading
- small scale fading

Large-scale fading

- Variation of signal strength over distance of the order of cell size
- In free space, received power attenuates like 1/r² while with reflection from ground like 1/r⁴
- With obstructions and more reflections, can attenuate even more rapidly with distance. Detailed modelling complicated.

Simple path loss model

d_o .. reference distance in antenna's far-field usually 1-10m Indoor (10-100m) outdoor

$$\overline{PL}(d) \propto \left(\frac{d}{d_0}\right)^n$$

$$\overline{PL}(dB) = \overline{PL}(d_0) + 10n\log\left(\frac{d}{d_0}\right)$$

Environment	Path Loss Exponent, n
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Then,

- The surrounding environment causes different loss at same distance
- Time constants associated with variations are very long as the mobile moves, many seconds or minutes.
- More important for cell site planning, less for communication system design.

Small-scale multipath fading

- Wireless communication typically happens at very high f_c . (eg. $f_c = 900$ MHz or 1.9 GHz for cellular)
- Multipath fading due to constructive and destructive interference of the transmitted waves.
- Channel varies when mobile moves a distance of the order of the λ_c . This is about 0.3 m for 900 MHz cellular.
- For vehicular speeds, this translates to channel variation of the order of 100 Hz.
- Primary driver behind wireless communication system design.

Game plan

- We wish to understand how physical parameters such as
 - carrier frequency
 - mobile speed
 - bandwidth
 - delay spread
 - angular spread

impact how a wireless channel behaves from the communication system point of view.

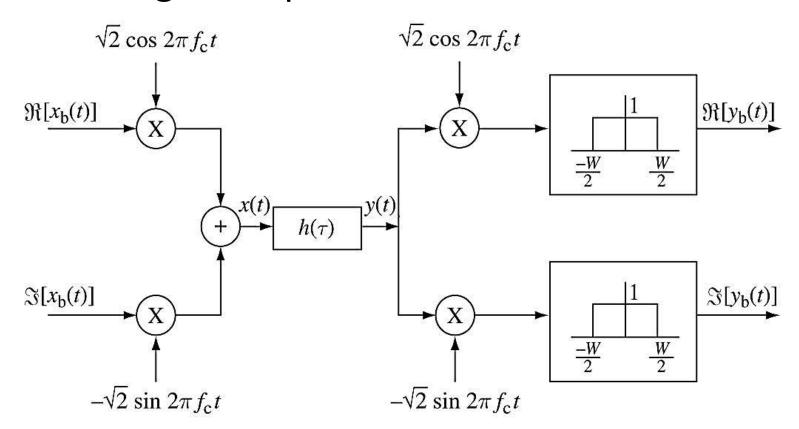
Find deterministic physical model

Physical Models

Wireless channels can be modeled as linear time-varying systems:

$$y(t) = \sum_{i} a_i(t)x(t - \tau_i(t))$$

where $a_i(t)$ and $\tau_i(t)$ are the gain and delay of path i.

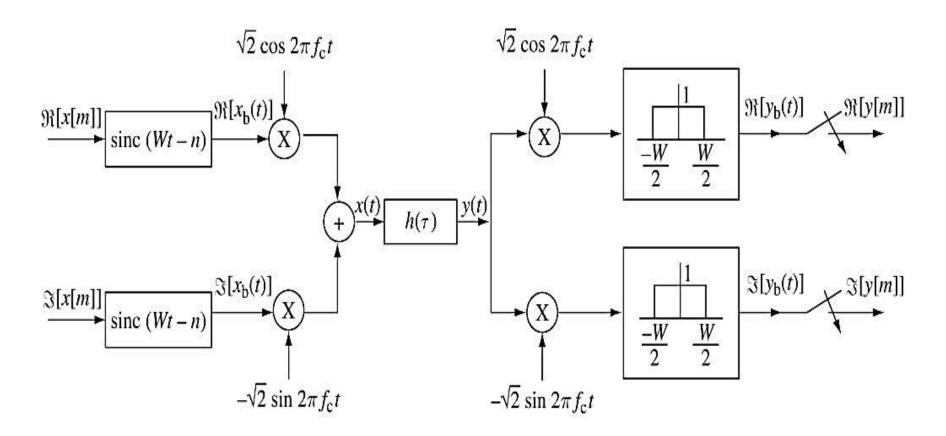

The time-varying impulse response is:

$$h(t,\tau) = \sum_{i} a_i(t)\delta(\tau - \tau_i(t))$$

• Consider first the special case when the channel is time-invariant: $h(au) = \sum_i a_i \delta(au - au_i)$

Passband to Baseband Conversion

- Communication takes place at $[f_c W/2, f_c + W/2]$
- Processing takes place at baseband [-W/2, W/2]


Complex Baseband Equivalent Channel

 The frequency response of the system is shifted from the passband to the baseband.

$$H_b(f)=H(f+f_c)$$

$$h_b(au)=h(t)e^{-j2\pi f_c t}=\sum_i a_i^b \delta(au- au_i)$$
 where $a_i^b=a_i e^{-j2\pi f_c au_i}$

 Each path is associated with a delay and a complex gain.

Modulation and Sampling

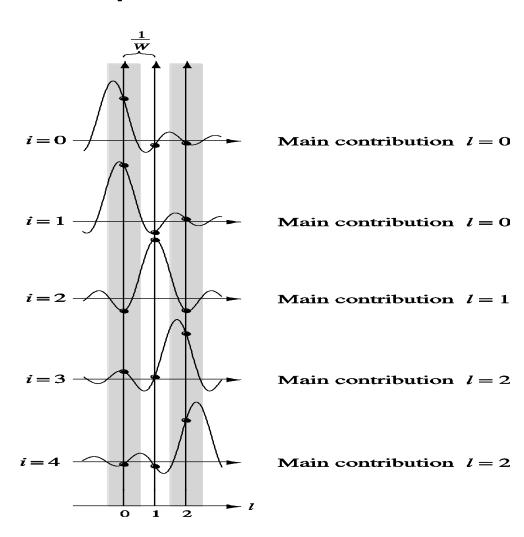
Multipath Resolution

Sampled baseband-equivalent channel model:

$$y[m] = \sum_{\ell} h_{\ell} x[m - \ell]$$

where h_l is the l th complex channel tap.

$$h_\ell pprox \sum_i a_i e^{-j2\pi f_c au_i}$$


and the sum is over all paths that fall in the delay bin

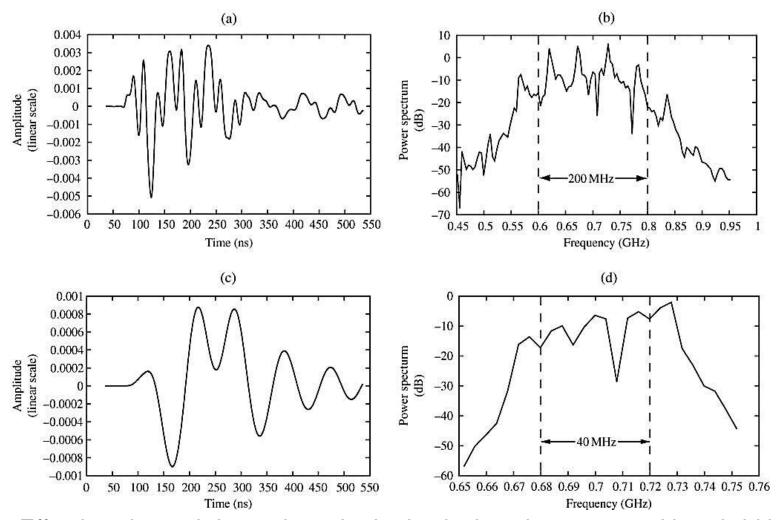
$$\left[\frac{\ell}{W} - \frac{1}{2W}, \frac{\ell}{W} + \frac{1}{2W}\right]$$

System resolves the multipaths up to delays of 1/W.

Sampling Interpretation

- h_I is the I th sample of the low-pass version of the channel response h_b(¢).
- Contribution of the i th path is the projection of $a_i^b \delta(\tau \tau_i)$ onto sinc(W τ -I).

Flat and Frequency-Selective Fading


 Fading occurs when there is destructive interference of the multipaths that contribute to a tap.

$$h_{\ell} pprox \sum_{i} a_{i} e^{-j2\pi f_{c} au_{i}}$$

Delay spread $T_d := \max_{i,j} |\tau_i(t) - \tau_j(t)|$ Coherence bandwidth $W_c := \frac{1}{T_d}$

$$T_d \ll \frac{1}{W}, W_c \gg W \Rightarrow$$
 single tap, flat fading

$$T_d > \frac{1}{W}, W_c < W \Rightarrow$$
 multiple taps, frequency selective

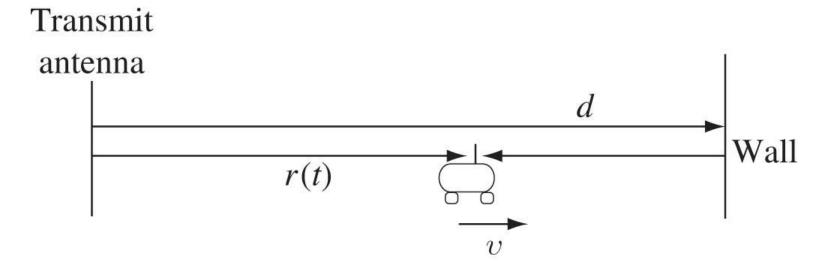
Effective channel depends on both physical environment and bandwidth!

Time Variations

$$y[m] = \sum_{\ell} h_{\ell}[m]x[m - \ell]$$

$$h_{\ell}[m] \approx \sum_{i} a_{i}(t)e^{-j2\pi f_{c}\tau_{i}(t)}, \qquad t = \frac{m}{W}$$

 $f_c \tau_i'(t) =$ Doppler shift of the i th path


Doppler spread
$$D_s := \max_{i,j} |f_c \tau_i'(t) - f_c \tau_j'(t)|$$

Coherence time
$$T_c := \frac{1}{D_s}$$

Two-path Example

 $v = 60 \text{ km/hr}, f_c = 900 \text{ MHz}$:

direct path has Doppler shift of -50 Hz reflected path has shift of +50 Hz Doppler spread = 100 Hz

Doppler Spread

$$D_s := \max_{i,j} |f_c \tau_i'(t) - f_c \tau_j'(t)|$$

Doppler spread is proportional to:

- the carrier frequency f_c;
- the angular spread of arriving paths.

$$\tau_i'(t) = \frac{v}{c} \cos \theta_i$$

where θ_i is the angle the direction of motion makes with the i th path.

Key channel parameters and time-scales	Symbol	Representative values
Carrier frequency	$f_{\rm c}$	1 GHz
Communication bandwidth	W	1 MHz
Distance between transmitter and receiver	d	1 km
Velocity of mobile	v	64 km/h
Doppler shift for a path	$D = f_{\rm c} v/c$	50 Hz
Doppler spread of paths corresponding to		
a tap	$D_{\rm s}$	100 Hz
Time-scale for change of path amplitude	d/v	1 minute
Time-scale for change of path phase	1/(4D)	5 ms
Time-scale for a path to move over a tap	c/(vW)	20 s
Coherence time	$T_{\rm c} = 1/(4D_{\rm s})$	2.5 ms
Delay spread	$T_{\rm d}$	$1 \mu s$
Coherence bandwidth	$W_{\rm c} = 1/(2T_{\rm d})$	500 kHz

Types of Channels

Types of channel	Defining characteristic
Fast fading Slow fading Flat fading Frequency-selective fading Underspread	$T_{ m c}\ll$ delay requirement $T_{ m c}\gg$ delay requirement $W\ll W_{ m c}$ $W\gg W_{ m c}$ $T_{ m d}\ll T_{ m c}$

Typical Channels are Underspread

- Coherence time T_c depends on carrier frequency and vehicular speed, of the order of milliseconds or more.
- Delay spread T_d depends on distance to scatterers, of the order of nanoseconds (indoor) to microseconds (outdoor).
- Channel can be considered as time-invariant over a long time scale.