Direct Sequence-Spread Spectrum Sequence

Direct Sequence

- Mixer or balanced modulator as biphase modulator.
- Phase modulation since
 - ✓ Constant envelope
 - \checkmark more power to transmit information
 - ✓ suppressed carrier signal make the detection not easy

Correlation with local reference collapse the SS signal to its original narrowband

Alternative way to inject PN code

Spreading and Despreading

Dr. Samah A. Mustafa

RF bandwidth of DSSS

- Power distribution {(sinx)/x}²
- Null-to-null bandwidth is 2R_c
- 90% of the power in the main-lobe
- Other modulations like QPSK , MFSK

Spectrum of DSSS

- PN code is made up of a serious of variableperiod pulses
- Durations vary from one code clock chip to chip for a max. length 2ⁿ-1
- Each has (sinx)/x spectrum, the output spectrum is the composite
- For n-chip sequence generator, there is n+1 frequency sets, and the space of individual freq. components R_c/(2ⁿ-1)

RF Bandwidth Restriction

- DS signals might have high energy in sidelobes
- That energy can be controlled using a proper waveform

Waveform	Null-to-null Main Lobe BW	3-dB BW	First Sidelobe	Rolloff Rate
BPSK	$2 \times \text{code clock}$	0.88 imes code clock	-13 dB	6 dB/octave
PAM	$2 \times \text{code clock}$	0.88 imes code clock	-13 dB	6 dB/octave
QPSK	$2 \times \text{code clock}^a$	0.88 imes code clock	-13 dB	6 dB / octave
QQPSK	$2 \times \text{code clock}^a$	0.88 imes code clock	-13 dB	6 dB/octave
MSK (classic)	$1.5 \times \text{code clock}$	$0.66 \times \text{code clock}$	-23 dB	12 dB/octave

Table 2.1 Comparison of Direct Sequence Waveforms

^aRequires two codes at same rate as single BPSK code.

For higher Process gain

- For higher Gp, we need higher code rate. However there are some limitations as
 - Noise sensitive and more susceptible to error
 - Power consumption
 - Equipment Implementation