Chapter Four

Lenses

4.1 Introduction
A Lens is an image-forming device. It forms an image by refraction of light at its
two bounding surfaces. In general, a lens is made of glass and is bounded by two regular

curved surfaces; or by one spherical surface and a plane surface.

Lenses

Lenses are mainly of two types- convex lens and concave lens.

convex lens concave lens

1| thicker at the center than at the edges | thinner at the center than at the edges

2 | convex lens is called a converging lens | concave lens is called a diverging lens

\ )
Different types of lenses.

Converging or Diverging or
positive lenses negative lenses

N

|
|
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Nd|

Biconvex /'

Plano-convex
Positive meniscus

Biconcave Negative
meniscus

Plano-concave
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4.2 Terminology

We first acquaint with the terminology and the sign convention associated with lenses.

* A lens has two curved surfaces, each surface having a curvature.

« The length of the radius of curvature of surface is called the radius of curvature, R.

» The reciprocal of the length of the radius of curvature is known as the curvature C(C=
1/R). A lens has two centers of curvature and two radii of curvature, one for each refracting
surface.

« The line joining the centers of curvature of the two curved surfaces is called the principal
axis.

» The points where the principal axis intersects the two refracting surfaces are called the
front vertex and the back vertex.

* The point F to which a set of rays parallel to the principal axis is caused to converge (in
case of convex lens) or appear to diverge (in case of concave lens) is the principal focus.

« For every lens, there is a point on the principal axis for which the rays passing through it
are not deviated by the lens. Such a point is called the optical centre.

« The distance between the focal point F and the optical center of the lens is called the
focal length of the lens.

« The plane perpendicular to the principal axis of lens and passing through its focal point is

known as the focal plane.

4.3 Image Tracing
We may use graphical ray tracing to determine the position of the image formed by a

lens. To find the image, we take the help of characteristic rays shown in Fig.




1. One is the ray parallel to the principal axis, which after refraction, passes through focal
point F».

2. Second ray is the ray that passes through the first focal point F, of the lens; after
refraction, it travels parallel to the principal axis.

3. The third ray, usually called chief ray goes through the optical centre of the lens and
emerges without deviation. Using any two of the three characteristic rays, we can readily

determine the image of any object-point or of any extended object.

4.4 Location of the Image
A convex lens produces a real or virtual image depending on the location of the
object. A concave lens always produces virtual images of real objects.
(i)  When the object at infinity, the image is just to the right of the focal plane.

The image is real, inverted, and smaller in size than the object (m< 1).

U —
Object at R _J,CH . Image at F
infinity *""“"T':_fj;::?‘ F Point, real
T T -
N N\ LY and inverted
:P"
(i)

(i) As the object beyond 2F approaches the lens. The image is real and

inverted. This is the configuration for cameras and eyeballs.

o/
Object beyond : Image between F and 2F
2F T\\\{

. I I .
B2F F -. F\ oF Real, inverted
? \ and diminished
- AT
_ -

(il)  When the object is at 2F, the image is real, inverted and of the same size as

the object (m = 1). This is the configuration of a photocopier.
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A .
Object at 2F ==\

T PN 8 Image at 2F
o ™ ! )
B'-E-.l-__-————-— r!= . "'-q._h_ F*:j;:;"EF Real, inverted
7 ~Y and of same size
. A

(iii)

(iv)  When the object is in between 2F and F, the image is enlarged (m > 1), real

and inverted. This configuration corresponds to the film projector.

A
: ! Image beyond 2F
Object between *\ G F oF B’ .
F and 2F 2IF B —l; ; 4 r Real, inverted
N and magnified
(iv) A

(v)  When the object is precisely at F, there is no image as the emerging rays are

parallel in effect the image is at infinity.

. S Image at infinity
Object at F B ~ ~ Real, inverted
F V\A\ﬁ\\ and very much
(

' Toinfinity ~ magmified
v)
(vi)  With the object closer in than one F, the image reappears. It is virtual, erect

and enlarged (m > 1). This is the configuration of the magnifying glass.

Beyond 2F and
behind the object
Virtual, erect and
magnified

Object between
Fand C
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4.6 Sign Convention

Y
DIRECTION CLF;LIGHT DISTANCE ABOVE AXIS
— ve AXIAL DISTANCE + va
TB + ve AXIAL DISTANCE
' P
X A oly l X
OP + ve 7
OA —ve Q
AB + ve
PQ — ve DISTANCE BELOW AXIS
- ve
YP

4.7 Thin Lens

Lenses are broadly classified into thin and thick lenses. A lens is said to be thin
if the thickness of the lens can be neglected when compared to the lengths of the
radii of curvature of its two refracting surfaces, and to the distances of the objects and
images from it. No lens is actually a thin lens. Yet many simple lenses commonly used can

be treated as equivalent to a thin lens.

>
Ai"“_"-f:_E
- :_ffi" .'I‘ ‘h
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1 1 1 1
V_U_( _ El_R_j ........... (4.1)
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4.8 Lens Maker's Equation
If the object is at infinity, the image will form at the principle focus of the lens. When

1

u=oo, —
u

=0 and v=f

Equation (4.1) become

Equation (4.2) is known as the lens makers' formula.

Now by comparing equation (4.1) and (4.2) we see that:

t . 1r (4.3)
v u f

The above equation is known as the Gauss formula for a lens.

11 1
Using sign convention, we get: To==

v f

4.8.1. Positions of the Principal Foci
Each individual surface of the lens has its own focal points and planes and the lens as a
whole has its own pair of focal points and focal planes. The focal points and focal planes

of the lens are known as principal focal points and principal focal planes.
(i) If a point object is placed on
the principal axis such that the

rays refracted by the lens are

parallel to the axis, then the

position of the point object is | v
|1—f1—h|4~—12"-b| le— f, —>te fz_’l

called the first principal focus
(a) (b)

F1 (see Fig. (a)) of the lens.
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The distance at the first principal focus from the optical center C of the lens is
called the first principal focal length f;. We can find f1 as follows the plane
perpendicular to the axis and passing through the first focal point is known
as the first principal focal plane.

Using u = f;, and v = < into equ. (4.1), we get

1 1 (1 1]
— | = |=(u-1)] =—-—
Loy L 1]

or f —(ll l)h N (4.4)

(i)  If the object is situated at infinity, the position of the image on the axis is
known as the second principal focus F2 (see Fig. (b)). the distance of the
second principal focus from the optical center C is called the second
principal focal length, f..

Using u = e and v =f, into equ. {4.1) , we get

1 1 1
f_2 = (/u—l)|:——R—:| ........... (4.5)

The plane perpendicular to the axis and passing through the second focal point is known

as the second principal focal plane.

It follows from equ.(4.4) and (4.5) that
fi=f (46)

Thus, every thin lens in air has two focal points (F1 and F2), one on each side of the

lens and equidistant from the centre.
It will be seen that the second focal, length (f.) of a

converging lens is positive and the first (fy) negative, while for a
diverging lens the reverse is true (see Fig.4.8c).

The two focal lengths of thin lens in air are numerically equal.
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4.9 Newton's Lens Equation
Let hy, be the height of the object and h, be the image height. From the similar

triangles to the left of the lens we find that:

h _h h, X

= — =
Xl fl h2 fl

|
I
|
1
|

1
+1, ——-——-)%4———-——-1-)(2 —l

+v NI
To the right of the lens we have:
hl h2 hl f2
[
Combining both equations by eliminating h;/h;
x_5
f, X
X X, = F o f 4.7)
When a medium is the same on both sides of the lens the equation reduces to:
XX, = F 2, (4.8)

This is known as Newton's lens equation.

4.10 Magnification
o size of image
~ size of object

Magnification is defined as:

We distinguish three types of magnification, namely lateral magnification, longitudinal

magnification and angular magnification.
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4.10.1. Lateral Magnification
Lateral or transverse magnification of a lens is defined as the ratio of the length of the

image to the length of the object size.

According to sign convention, the distances above the principal axis of the lens are
taken positive and those below the axis are negative. Hence, the lateral magnification is
positive for an erect image and negative for an inverted image.

The lateral magnification corresponding to Newton's formula may be written as:
mefe_f_X
h —x f

4.10.2. Longitudinal Magnification

The longitudinal magnification is defined as the ratio of an infinitesimal axial length

in the region of the image to the corresponding length in the region of the object.

dx;
= —L 411
LT (4.11)
Differentiating equation (4.8) we get:
f? 2
mL _—7_—m .............. (412)

4.10.3. Angular Magnification
Angular magnification is defined as the ratio of slopes of emergent ray and conjugate
incident ray with the principal axis.

_tang,
tan g,

/4

4.11 Deviation by a Thin Lens
A lens may be considered to be made up of a large number of prisms placed one
above the other. It is necessary to find the deviation produced by a particular section of the
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lens. Let a ray of monochromatic light parallel to the principal axis be incident on a thin

lens, after refraction it will pass through the 'second focus, F; (see Fig. (a)).

tan5:E
f

In the paraxial region ¢ begin small then tanod =96

S=—
f

The deviation suffered corresponding to the ray OA incident at A is given by (see
Fig.(b)):
o =ZA0L + ZAIL

s_h ., h_ F‘%““H
—u  +V vV u f

This shows that the deviation produced by a lens is independent of the position of the object.

4.12 Power
The power of a lens is the measure of its ability to produce convergence of a parallel
beam of light. The unit in which the power of a lens is measured is called a diopter (D).

1
Focal length in meter

mathematically power =

The power of a pair of lenses of focal lengths f; and f> placed in contact is equal to:
1 1 1
+



4.13 Equivalent Focal Length of Two Thin Lenses
When two thin lenses are arranged
coaxially, the image formed by the first ¢

lens system becomes the object for a

second lens system and the two systems

act as a single optical system forming the

final image from the original object.

We find that two lenses, separated by a finite distance, can be replaced by a single thin
lens called an equivalent lens. The equivalent lens, when placed at a suitable fixed point,
will produce an image of the same size as that produced by the combination of the two lenses.
The focal length of equivalent lens is called equivalent focal length. We now derive an

expression for the equivalent focal length of the combination of two lenses.

4.13.1 Focal Length of the Equivalent Lens

Deviation produced by the first lens L, is 8, =h, / f,
Deviation produced by the second lens L, is &, = h,/ f,

But O =5 +09,
h_h B
f h 5
The A'*s AL F, and BL,F, are similar.
AL _ BL,
LA LA
or ﬁ = —‘hz
Hh fHi—d
—d
or hy = " (f}] )

Using equation (4.29) into equ.(4.27), we get
b _ b mh = d)

f £ hHi5
1_1, fi-d
AT AR
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Therefore, the equivalent focal length is given by

hts

f =f]+f2‘-d ............................ {4.16)
or f= —ifz

where A=d - (f] +f,) and is known as the optical interval between the two lenses.

Note:

1. Equ. (4.16) shows that if the distance d between the two convex lenses exceeds the sum
of their focal lengths (f; + f,), the system becomes divergent, because of negative focal
length.

2. If the medium between the two convex lenses is other than air, then the equ.(4.16) for
equivalent focal length would become:

f — f,f

f, + f2—d
y7;

Where A is the refractive index of the medium.

4.13.3 POWER
When two thin lenses of focal length f1 and f2 are placed coaxial and separated

by a distance d the equivalent focal length is given by:

1 1 1 d

e

f fl f2 fl f2

P = Pl + PZ — d.P1P2 ------------------ (420)
Thick Lens

4.14 Introduction

A Thick lens is a physically large lens having two spherical surfaces separated
by a distance, which is not negligible in comparison to the radii of curvature of the
spherical surfaces. In other words, a thick lens is a lens whose thickness cannot be treated

as small in comparison to its focal length.
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4.15 Thick Lens Equation
4.15.1 Extended Object at Infinity

Let AB be a ray parallel to the axis and coming from infinity. After refracting along

BG, it emerges at G at the second surface and goes along GF,. Let the medium on either

side of the lens be air.

)

Fome
‘NI

A\
A\

n

(@)

g%(

~ NN
S

l»)

o

4.15.1.1 Focal length of a thick lens
LetP,F =-f and P,F, =f,. But f, = - f,. We designate the numerical value by f.
Let I be the position of the image formed by refraction at the first surface BC when the object
is lying at infinity. Thus,
Cl=v,
Since u = e, we can write for refraction at the first surface
p_o1_pt o1 p-l

vy o~ R v KR
As the second surface refracted the ray BG along F, and formed the final image at F,, we can
write for refraction at the second surface

(6.1)

1w _pd
DF, DI -R, (6.2)
The pairs of Al H,P.F, , GDF, and BCI, GDI are similar. Therefore,
hF, _H,h _BC_CI
DF, GD GD DI
DF, _DI
PF, CI (6.3)
1 1 DI
T (6.4)

or }-=D_F2 v,
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Multiplying equ.(6.2) by DI, we get
DI n-1

— —u==—".p;I
pF, '~ R,
DF2 _Rz

Substituting the above expression in (6.4), we obtain

1_1 u_“__l.}_);]
f vl R,

-

1 p-1
—|p-—(CI-CD :|
Y R, ( )
AsCD=tand CI=v,,

l_ LW _p-1 p-1 1t (6.5)

— — —
= — — *

Using the expression (6.1) for 1/v, into the above equation, we obtain
1_B@=1) p-1 p-t =)
o W R’ R uR
(r-1)_p-1, (-1
R R WRE
11 ] MUK

=(u-1)| —-—
W=Dz & [* wrE,

;(u—l):[-l———'—]+(”_l)f] (6.6)

or

R, R, ) URR,

On putting ¢ = 0, equ.(6.6) reduces to equation for a thin lens
1 1 1
L gueaf i 1]
fi (=1) R R
Therefore, we can write equ.(6.6) as also

2
1_1, (-1

f i HWRR

(6.7)
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4.15.1.2 Power

The power of a thick lens is given by

2
pol_B-1) (-1) (w-1) ¢
f Ry R, RR, n
The power of the first refracting surface is
-1
p= (n-1)
R
and the power of the second refracting surface is
-1
P =- (k-1)
&,
!
P=P1+P£—P1Pz'ﬁ (6.13)

4.16 Behavior of Lens as Thickness Increases
In case of a double convex lens, R, is positive and R, is
negative. When we take these signs into consideration, the thick
lens equation may be rewritten as
1 1 1 —1) ¢t
—=(u-1) | —+ _(u-Dr
f R ! R L1 u_R FR e
Equ.(6.14) indicates that the value of 1/f decreases with
the increasing thickness. The critical thickness, ¢, beyond

which a thick convergent lens changes into a divergent lens is

:l (6.14)

given by
-1) 1.
—1—+ L_ (1) 7 =0
R,r er IJ_RIR"
, - (R+R") (6.15)
p=1
For a lens for which R"=R" (= R), the above equation
reduces to
_ 2UR

&

=1
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4.17 Glass Sphere as a Lens
Let us consider a glass sphere of radius R and refractive index £ , placed in air. The
focal length of a thick lens in air is given by

o [ 0201]

1
f R, R, nh R,
In the case of a sphere-lens, we have R, = +R,

R2=—Randl‘=2R.
1 _ 1 1 (u-1) (2R)
- ?--r(l,l,—l) [E-PE— “RZ ]

=(u—1)%[1-£7—1]

L
_2(k-1)
LR
F=_HR_ (6.16) —R—{e—R—
2(n-1)
The relation (6.16) gives the focal length of a
sphere-lens.

% ////N1i N, % |O,
' Y
[}

-
-

4.18 Combination of Two Thick Lenses
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Example 4.2: A convex lens of fof:al'length 24 cm (p = 1.5) is totally immersed in

water (i = 1.33). Find its focal Iength in water.

Solution. Here ,H,=15 ,u, =133 - u =1/1.33
wHe = M, X R, = 1.5/1.33 =1.125
1 ( I 1
f )( R, R ]
When the lens is in air,
1 [ |
=151} — —— | s {i)
24cm ( )( R R2]
when the lens is in water,
—1-'=(1 125-1) I S {ii)
J R, R,
Dividing the expression (i) by (ii), we get
f __05
24cm  0.125
=96 cm.
QUESTIONS

‘Im!

L
.

Prove that in the case of a thin convex lens
1 _1 1 1 1
—— = -1l ==—
f v u (u ][ R, R, J
Show that the least possible distance between an object and its real image in a convex

lens is four times the focal length of the lens.

Deduce for a thin lens an equation connecting the focal length, the radii of curvature of
the surfaces and the refractive indices of the material of the lens and surrounding the

medium.
Show that the deviation produced by a thin lens is independent of the posirtion of the
object.

Two thin convex lenses of focal length f; cm and f, cm are coaxial and separated by d.
show that the equivalent focal length f of the combination is given by the relation

hby
htf-d
Derive an expression for the equivalent focal length of a system of two thin lenses separated
by a finite distance when the space between them is filled with a medium of refractive
index i (1> 1).

f:

Calculate the equivalent focal length of two thin co-axial lenses separated by a finite
distance.
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9.

10.

n
L]

0.

- Calculate the focal length of a plano-convex lens

Prove that for a combination of two thin lenses of focal lengths f, and f, separated by a
distance d, the focal length of the combination is given by

What is an equivalent lens? In what respect it is called an equivalent lens?

Derive an expression for the power of an equivalent lens corresponding to two thin lenses
of known power kept coaxially in air separated by a certain distance. Also find an
expression for its position from any of the two lenses.

What do you understand by the power of a lens? Calculate the power of two thin lenses
of focal length f, and f, separated by a distance d.

PROBLEMS FOR PRACTICE

for which the radius of the curved surface is
40 cm. (= 1.5). [Ans: f=40cm]
Find the focal length of a plano-convex lens,
the radius of the curved surface being
10 cm (p = 1.5). [Ans: f=20cm]

A sunshine recorder globe of 10 cm diameter is
made of glass of refractive index 1.5. A ray of
light enters it parallel to the axis. Find the
position where the ray meets the axis.

[Ans: 2.5 cm from the second surface]

Plano-convex lens.

A convex lens of focal length 24 cm (L= 1.5) is
totally immersed in water (1L =1.33). Find the focal length of the lens in water.

[Ans: =96 cm]

The two surfaces of a double concave lens are of radii of curvature 10 and 30 cm. Find its
focal length in water. (1, =133, , = 1.5). [Ans: f=60cm]

‘water
A concavo-convex lens has a refractive index of 1.5 and the radii of curvature of its
surfaces are 15 cm and 30 cm. The concave surface is upwards and it is filled with a
liquid of refractive index 1.6. Calculate the focal length of the liquid-glass combination.
[Ans: f=2727cm]
Two convex lenses of focal length 10 cm and 20 cm are placed at 5 cm apart in air, find

glass

the focal length of equivalent lens. . (Nagpur, 2005)
Calculate the Focal length of a double convex lens for which the radius of curvature of
each surface is 30 cm and Refractive Index of glass is 1.5. (Nagpur, 2004)
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