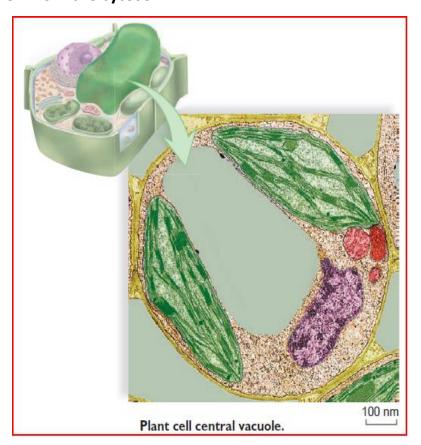

Vacuoles: Diverse Maintenance Compartments

 Vacuoles are membrane-bounded vesicles whose functions vary in different kinds of cells.

Types of vacuoles:


- Food vacuole (phagocytosis).
- Contractile vacuole (pumping excess water out).
- Central vacuole (only in plant & fungi cells).

Contractile vacuole

Central vacuole

- In plants and fungi, which lack lysosomes, vacuoles carry out hydrolysis.
- Mature plant cells generally contain a large central vacuole.
- The central vacuole develops by joining of smaller vacuoles, themselves derived from the endoplasmic reticulum and Golgi apparatus.
- The vacuolar membrane is selective in transporting solutes.
- The solution inside the central vacuole, called cell sap which differs in composition from the cytosol.

Functions of central vacuole

 Acts as storage of an important organic compounds (proteins stockpiled in the vacuoles of storage cells in seeds) and inorganic ions (K & Cl).

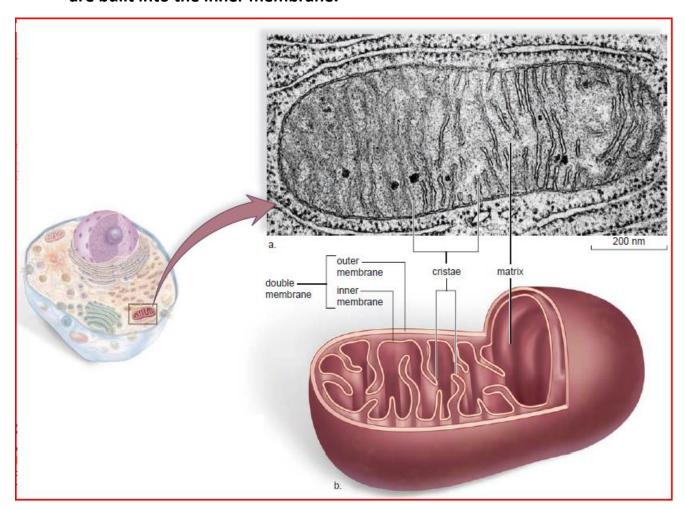
- Acts as disposal sites for metabolic waste products.
- Colour the cells by storing pigments (red & blue pigment in petal of flowers) to attract pollinating insects.
- Protect plant against predators by containing poison or unpalatable to animals.
- Enabling the cell to become larger (growth) by absorbing large amount of water.

Mitochondria: Power house: Change energy from one form to another

- In eukaryotic cells, mitochondria (singular, mitochondrion) are the organelles that convert energy to forms those cells can use for work.
- Mitochondria are the sites of <u>cellular respiration</u>, the metabolic process that generates ATP by extracting energy from sugars, fats, and other fuels with the help of oxygen.
- Mitochondria are found in nearly all eukaryotic cells, including: plants,
 animals, fungi, and most protists and even in human intestinal parasite.
- Mitochondria are about 1 10 μm long.
- Mitochondria have two membranes.
- The membrane proteins of mitochondria are made by:
- (1) Free ribosomes in the cytosol.
- (2) Mitochondrial ribosomes contained within mitochondria themselves. (But NOT by ribosomes bound to rough ER).

Mitochondria DNA & proteins

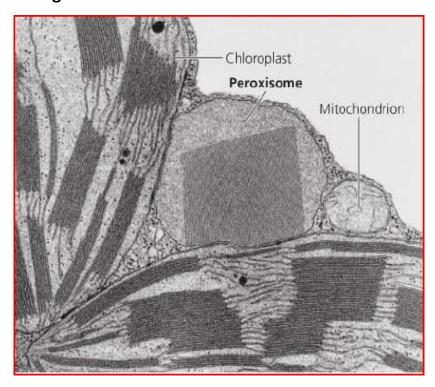
- Mitochondria contain a small amount of DNA which used to program the synthesis of the most of the organelle's proteins made by its own ribosomes.
- Other types of proteins imported from the cytosol which used in mitochondria are programmed by nuclear DNA.
- Mitochondria are semiautonomous organelles that grow and reproduce within the cell.
- Some cells have a single large mitochondrion, but more often a cell has hundreds or even thousands of mitochondria; the number correlates with the cell's level of metabolic activity.
- Mitochondria can move around, change their shapes, and fuse or divide into two.


Mitochondria membranes

- Mitochondria have two membranes made of phospholipid bilayer with embedded proteins:
- Outer membrane: smooth & separate mitochondria from cytosol.
- Inner membrane: convoluted, with infoldings called cristae which give large surface area, thus enhancing the productivity of cellular respiration.

Mitochondria Structure

- The inner membrane divides the mitochondrion into two internal compartments:
- Intermembrane space: the narrow region between the inner and outer membranes.


- Mitochondrial matrix: enclosed by the inner membrane which contains many different enzymes, mitochondrial DNA & ribosomes.
- Enzymes in the matrix catalyse some steps of cellular respiration.
- Proteins that function in respiration, including the enzyme that makes ATP are built into the inner membrane.

Peroxisomes: Oxidation

- Specialised metabolic compartment bounded by a single membrane.
- Roughly spherical & contains a granular or crystalline core, thought to be a dense collection of enzyme molecules.

■ These enzymes whose actions result in hydrogen peroxide (H₂O₂), from which the organelle derives its name.

 Enzymes in peroxisome synthesised by free ribosomes and transported into a peroxisome from the cytoplasm.

Function of peroxisomes

- Some peroxisomes use oxygen to break fatty acids down (oxidation) into smaller molecules that can then be transported to mitochondria, where they are used as fuel for cellular respiration.
- In liver, peroxisomes detoxify alcohol and other harmful compounds by transferring hydrogen from the poisons to oxygen.
- H₂O₂ formed by peroxisome enzymes is itself toxic, but the organelle also contains an enzyme (catalase) that converts H₂O₂ to water and oxygen (important of cellular compartmental structure).

Peroxisomes in plant

In fat-storing tissues of plant seeds, specialised peroxisomes called (glyoxysomes) which contain enzymes that convert fatty acids to sugar, that uses by seeds as a source of energy and carbon until it can produce its own sugar by photosynthesis.

Peroxisome growing

- Peroxisomes do NOT bud from the endomembrane system like lysosome.
- Peroxisomes grow larger by joining:
 - A. proteins made in cytosol
 - B. lipids made: (1) in the ER (2) synthesised within the peroxisome itself.
- Peroxisomes may increase in number by dividing in two when they reach a certain size.

Plasma membrane (= Cell membrane = Plasmalemma)

- Thin semi-permeable membrane surrounds the cytoplasm in a cell of both prokaryote and eukaryote organisms.
- About 8 nm in thickness.
- Seen only by electron microscope.

Functions of Plasma membrane

- Selective permeability:
- It controls traffic into & out of cell it surrounds.
- It allows some substances to cross it more easily than others; therefore,
 its function is to protect the integrity of the interior of the cell.
- Supporting the cell: it helps support the cell and maintain its shape because
 it serves as a base of attachment for the cytoskeleton.

Definitions:

Contractile vacuole: is a vacuole that pump excess water out of the cell, thereby maintaining a suitable concentration of ions and molecules inside the cell of many freshwater protists.

Central vacuole: In a mature plant cell, a large membranous sac with diverse roles in growth, storage, colouring and protect the plant against predators.

Cell sap: the solution inside the central vacuole which differs in composition from the cytosol.

Cellular respiration: the metabolic process done by mitochondria that generates **ATP** by extracting energy from sugars, fats, and other fuels with the help of oxygen.

Crista: An infolding of the inner membrane of a mitochondrion that increase the surface area.

Mitochondrial matrix: The compartment of the mitochondrion enclosed by the inner membrane and containing many different enzymes, as well as mitochondrial DNA and ribosomes.

Peroxisome: A specialised metabolic organelle that have roughly spherical and often have a granular or crystalline core that is thought to be a dense collection of enzyme molecules. These enzymes whose actions result in hydrogen peroxide (H_2O_2) which used in oxidation reaction in the cell.

Glyoxysome: A Specialised peroxisomes found in the fat-storing tissues of plant seeds. These organelles contain enzymes that initiate the conversion of fatty acids to sugar, which the emerging seedling uses as a source of energy and carbon until it can produce its own sugar by photosynthesis.