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Abstract: Medulloblastoma is one of the common primary central nervous system (CNS)
malignancies in pediatric patients. The mainstream treatment is surgical resection
preceded and/or followed by chemoradiotherapy; however, their serious side effects
necessitate a better understanding of medulloblastoma biology. Circular RNA
(circRNA) and long non-coding RNA (lncRNA) regulate microRNA (miRNA)
expression, leading to the regulation of mRNA expression. Although growing evidence
has highlighted the significance of circRNA and lncRNA-associated competing
endogenous RNA (ceRNA) networks in cancers, no study has comprehensively
investigated them in medulloblastoma. For this aim, the Web of Science, PubMed,
Scopus, and Embase were systematically searched to obtain the relevant papers
published before 16 September 2023, adhering to the PRISMA-ScR statement.
HOTAIR, NEAT1, linc-NeD125, HHIP-AS1, CRNDE, and TP73-AS1 are the oncogenic
lncRNAs, and Nkx2-2as is a tumor-suppressive lncRNA that develop lncRNA-
associated ceRNA networks in medulloblastoma. circSKA3 and circRNA_103128 are
upregulated oncogenic circRNAs that develop circRNA-associated ceRNA networks in
medulloblastoma. In summary, this study has highlighted the current evidence on the
circRNA and lncRNA-associated ceRNA networks and their effect on miRNA and
mRNA expression involved in various signaling pathways of medulloblastoma.
Suppressing the oncogenic ceRNA networks and augmenting tumor-suppressive
ceRNA networks can provide ample opportunities for medulloblastoma treatment.
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Abstract 27 

Medulloblastoma is one of the common primary central nervous system (CNS) malignancies in 28 

pediatric patients. The mainstream treatment is surgical resection preceded and/or followed by 29 

chemoradiotherapy; however, their serious side effects necessitate a better understanding of 30 

medulloblastoma biology. Circular RNA (circRNA) and long non-coding RNA (lncRNA) regulate 31 

microRNA (miRNA) expression, leading to the regulation of mRNA expression. Although 32 

growing evidence has highlighted the significance of circRNA and lncRNA-associated competing 33 

endogenous RNA (ceRNA) networks in cancers, no study has comprehensively investigated them 34 

in medulloblastoma. For this aim, the Web of Science, PubMed, Scopus, and Embase were 35 

systematically searched to obtain the relevant papers published before 16 September 2023, 36 

adhering to the PRISMA-ScR statement. HOTAIR, NEAT1, linc-NeD125, HHIP-AS1, CRNDE, 37 

and TP73-AS1 are the oncogenic lncRNAs, and Nkx2-2as is a tumor-suppressive lncRNA that 38 

develop lncRNA-associated ceRNA networks in medulloblastoma. circSKA3 and 39 

circRNA_103128 are upregulated oncogenic circRNAs that develop circRNA-associated ceRNA 40 

networks in medulloblastoma. In summary, this study has highlighted the current evidence on the 41 

circRNA and lncRNA-associated ceRNA networks and their effect on miRNA and mRNA 42 

expression involved in various signaling pathways of medulloblastoma. Suppressing the 43 

oncogenic ceRNA networks and augmenting tumor-suppressive ceRNA networks can provide 44 

ample opportunities for medulloblastoma treatment.  45 

 46 
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1. Introduction 55 

Medulloblastoma is recognized as the most prevalent form of brain tumor in children, accounting 56 

for nearly 20% of all brain tumors found in pediatric patients (1). Medulloblastoma is most 57 

commonly diagnosed before age 15 and has two incidence peaks between the ages of 3–4 and 8–58 

9 (2). The tumor is rarely detected in older patients, comprising less than 1% of all primary CNS 59 

tumors in adults (3). According to the latest classification scheme, medulloblastoma is divided into 60 

two distinct categories, i.e., histologically defined and genetically defined. Histologically, 61 

medulloblastoma can be categorized into different types, including classic, desmoplastic/nodular 62 

(DN), and large cell/anaplastic (LCA). Genetic classification divides it into four molecular 63 

subtypes, i.e., wingless (WNT), sonic hedgehog (SHH), group 3, and group 4. Each of these 64 

subtypes has distinct clinical and molecular characteristics (4). The primary therapeutic strategies 65 

for medulloblastoma include a combination of surgical resection, radiotherapy, and chemotherapy. 66 

However, clinical outcomes have been poor, and 5-year survival rates are between 60% and 80% 67 

(5, 6). Hence, an in-depth investigation into the molecular mechanisms underlying 68 

medulloblastoma pathogenesis is imperative to improve patients' prognosis and clinical outcomes. 69 

Non-coding RNAs (ncRNAs) are a class of RNAs that lack the ability to encode functional 70 

proteins. In recent years, studies have indicated that these ncRNAs play vital regulatory roles in 71 

the initiation and progression of various cancers (7). In line with a recent study, it has been 72 

demonstrated that the expression levels of various ncRNAs are notably different between 73 

medulloblastoma and normal cerebellar cells (8). ncRNAs can be classified into various classes 74 

based on size and function. The three primary classes of regulatory non-coding RNAs are 75 

microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). 76 

Owing to their intrinsic characteristics, they may exhibit tissue or disease specificity and can be 77 

detected in all bodily fluids, which makes them potentially desirable to be used as biomarkers (9). 78 

lncRNAs are a class of RNA molecules that are longer than 200 nucleotides in length (10). Through 79 

multiple mechanisms, they play a crucial role in regulating gene expression at various levels, 80 

including epigenetic, transcriptional, and post-transcriptional regulation. This regulatory role holds 81 

particular significance in the CNS (11). Most lncRNAs are presumed to be transcribed and 82 

processed similarly to mRNAs. They are primarily transcribed by RNA polymerase II (Pol II) and 83 

often possess 5′-end m7G caps and 3′-end poly(A) tails (12). Regarding the chromosomal position, 84 
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lncRNAs are classified into promoter-associated lncRNAs, antisense, intronic, enhancer RNAs, 85 

divergent, intergenic, and transcription start site-associated lncRNAs (13). lncRNAs function as 86 

competitive endogenous RNAs (ceRNAs) within a regulatory network by serving as a "sponge" 87 

for target miRNAs (14).   88 

Circular RNAs (circRNAs) are single-stranded RNA transcripts with a covalently closed circular 89 

structure. They are produced through an alternative splicing process and lack the 5′ caps and 3′ 90 

poly(A) tails; this structural feature in circRNAs renders them resistant to degradation by 91 

ribonucleases (15). Furthermore, most circRNAs exhibit evolutionary conservation across various 92 

species (16). circRNAs are generated through the transcription of precursor mRNA (pre-mRNA) 93 

by RNA polymerase II. They can function as molecular sponges for miRNAs, thus regulating their 94 

biological activities (17). Recent evidence has indicated that aberrant expression of circRNAs 95 

occurs in diverse cancer types, including breast cancer (18), pancreatic ductal adenocarcinoma 96 

(19), bladder carcinoma (20), glioblastoma (21), and medulloblastoma (22).  97 

miRNAs are a class of short, single-stranded RNA molecules comprising 18 to 22 nucleotides that 98 

exert a significant regulatory role in gene expression at the post-transcriptional level (23). In the 99 

last decade, accumulating studies have been dedicated to the quantitative and qualitative 100 

assessment of miRNA expression, revealing significant alterations in their expression profiles in 101 

different diseases (24-27). A single miRNA can have multiple targets; therefore, a dysregulated 102 

miRNA expression can dysregulate a wide range of crucial signaling pathways (28). The 103 

conventional miRNA biogenesis pathway follows a two-step process involving nuclear and 104 

cytoplasmic cleavage events. Nonetheless, there are alternative biogenesis pathways that vary in 105 

the number of cleavage events and the responsible enzymes (29). miRNAs are initially transcribed 106 

by RNA polymerase II in the nucleus, leading to the formation of primary miRNA transcripts (pri-107 

miRNAs) with stem-loop structures (30). Subsequently, the microprocessor complex, comprising 108 

the RNase III enzyme Drosha and its cofactor DGCR8, cleaves pri-miRNA to generate a precursor 109 

miRNA (pre-miRNA) (31). Interacting with RanGTP/Exportin-5 transports pre-miRNA from the 110 

nucleus to the cytoplasm (32). In the cytoplasm, RNase III enzyme Dicer recognizes pre-miRNAs 111 

and cleaves them into mature duplex miRNA, which later unwinds into two separate strands, the 112 

guide and passenger strands (28, 33). The guide strand is integrated into the RNA-induced 113 
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silencing complex (RISC) and guides RISC to complementary target mRNAs for 114 

post‑transcriptional gene silencing (28). 115 

ceRNAs are a group of RNA molecules that play a significant role in gene regulation. These 116 

ceRNAs share miRNA recognition elements (MREs), thereby regulating each other (34). In this 117 

regard, the circRNA and lncRNA-mediated ceRNA have been extensively studied in various 118 

cancers (35-37). However, there is no comprehensive study to systematically review the current 119 

knowledge on the significance of these networks in medulloblastoma. This scoping review 120 

presented current evidence on the identified circRNA and lncRNA-mediated ceRNA networks and 121 

their significance in medulloblastoma development. These insights can pave the way for 122 

developing novel therapeutic and biomarker tools for affected patients.  123 

2. Method 124 

2.1 Scoping review protocol 125 

The guidelines for recommended reporting items for systematic reviews and meta-analyses 126 

extension for scoping reviews (PRISMA-ScR) are followed by the present scoping review (39). 127 

The five steps of the present scoping review include formulating the research question, identifying 128 

the relevant publications, selecting studies, charting the data, and summarizing and disclosing the 129 

findings.  130 

2.2 Research question 131 

Given the significant role of the ceRNA network in the regulation of gene expression, the present 132 

study aimed to comprehensively review the current knowledge on the circRNA and lncRNA-133 

associated ceRNA networks in medulloblastoma development.  134 

2.3. Relevant publication Identification 135 

The Web of Science, PubMed, Scopus, and Embase were systematically searched to find the 136 

relevant studies published before 16 September 2023; the systematic searches did not have any 137 

restriction on language, country, or time. LncRNA, circRNA, miRNA, ceRNA, medulloblastoma, 138 

and their different versions, along with the Emtree and medical subject headings (MeSh) terms, 139 

were used for the systematic search (Supplementary data).  140 

2.4. Study selection 141 
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After retrieving the publications from the above-mentioned databases and removing duplicated 142 

records, the papers were reviewed in two phases. In the first phase, the title and abstract of the 143 

obtained studies were reviewed. In the second phase, the full texts of the remaining papers were 144 

thoroughly reviewed. The criteria for inclusion were the following. First, the included study must 145 

be an original paper published in English. Second, the included study must study the interaction 146 

between lncRNA with miRNA or circRNA with miRNAs in medulloblastoma. Third, the 147 

experimental study must contain at least one of the human medulloblastoma cell lines.   148 

2.5. Data charting 149 

The studied ncRNAs and the related axis, medulloblastoma cell line, and the effect of the studied 150 

axis on medulloblastoma formation were all extracted from the included studies. 151 

2.6. Summarizing and reporting the obtained results 152 

The present scoping review summarizes the results of the studies that were included and also 153 

investigates the effect of the identified ncRNAs on the development of medulloblastoma that were 154 

not present in the included studies.  155 

2.7. In silico study  156 

To extend the understanding of the impact of ceRNA on cellular singling pathways, miRPathDB 157 

v2.0 was used to access the Reactome database. A minimum of two significant miRNAs per 158 

pathway and strong experimental evidence were the criteria for the related analysis. 159 

3. Results: 160 

3.1. Systematic search results 161 

The systematic search on Web of Science, PubMed, Scopus, and Embase identified 149 papers 162 

published before 16 September 2023. After removing duplicated studies, 57 papers were also 163 

excluded based on reviewing their title and abstracts. Ultimately, seven papers were excluded from 164 

the present scoping review because they did not meet the above-mentioned inclusion criteria in the 165 

full-text assessment phase. Fig. 1 shows the flowchart of the study's flow chart.  166 

3.2. The characteristics of the included papers 167 
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The included studies were published between 2017 and 2023. Daoy was the most studied 168 

medulloblastoma human cell line. According to the ATCC, this cell line was obtained from a 4-169 

year-old white male with desmoplastic cerebellar type. HOTAIR, NEAT1, linc-NeD125, HHIP-170 

AS1, CRNDE, and TP73-AS1 are the identified oncogenic lncRNA in medulloblastoma, and 171 

Nkx2-2as is a tumor-suppressive lncRNA in medulloblastoma. Based on the current experimental 172 

evidence, circSKA3, which spongs miR-326, miR-520h, and miR-383-5p, and circRNA_103128, 173 

which sponges miR-129-5p, are upregulated oncogenic circRNA in medulloblastoma.   174 

3.3. The enrichment analysis 175 

Based on the Reactome database, the identified miRNAs regulate various cellular pathways, like 176 

cell cycle, apoptosis, MAPK1/ERK2 pathway, etc. For instance, miR-106a-5p, miR-23a-3p, and 177 

miR-129-5p are enriched for apoptosis (Fig. 2). 178 

4. Discussion 179 

Despite the recent advances in our understanding of medulloblastoma biology, the clinical outcome 180 

of affected patients is still unfavorable. A better understanding of ncRNAs and ceRNAs might 181 

provide valuable insights regarding treating medulloblastoma (40). The following discusses the 182 

current evidence on the significance of circRNA and lncRNA-associated ceRNA networks in 183 

medulloblastoma.  184 

HOTAIR-mediated ceRNA 185 

As a located lncRNA on chromosome 12, homeobox transcript antisense intergenic RNA 186 

(HOTAIR) can interact with PRC2, LSD1, and miRs, leading to gene expression regulation (41). 187 

Zhang et al. have reported that HOTAIR expression level is substantially upregulated in 188 

medulloblastoma tissues and cell lines compared with non-tumoral ones. HOTAIR knockdown 189 

improves apoptosis rate, decreases the cell viability, clonogenicity, migration, and invasion, and 190 

decreases tumor volume in animal models; this oncogenic effect is medicated via the 191 

HOTAIR/miR-1-3p and miR-206/ YY1 axes in medulloblastoma. Also, the ectopic expression of 192 

miR-1-3p and miR-206 has been associated with decreased tumor growth in animal models (42). 193 

In line with this, it has been shown that miR-206 is downregulated in medulloblastoma tissues, 194 

and its increased expression decreased the cell viability and migration of medulloblastoma cells 195 

via the miR-206/LASP1 axis (43).  196 
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NEAT1-mediated ceRNA 197 

As a component of nuclear paraspeckles, nuclear-enriched abundant transcript 1 (NEAT1) is 198 

located on chromosome 11q13.1; this lncRNA is dysregulated in various cancers, like glioma and 199 

medulloblastoma (44, 45). Ge et al. have shown that NEAT1 knockdown increases the 200 

chemosensivity of medulloblastoma cells and potentiates cisplatin-mediated apoptosis activation. 201 

This chemoresistance of medulloblastoma cells is mediated via the NEAT1/miR-23a-3p/GLS axis 202 

(44). Also, it has been reported that NEAT1 knockdown increases the chemosensitivity of 203 

glioblastoma cells to temozolomide (46).  204 

linc-NeD125-mediated ceRNA 205 

Linc-NeD125 is a long intergenic ncRNA that is located on chromosome 11. Laneve et al. have 206 

reported that linc-NeD125 expression level is substantially increased in G4 medulloblastoma, and 207 

its knockdown decreases the proliferation of G4 medulloblastoma cells and downregulates the 208 

protein expression of CDK6, MYCN, SNCAIP, and KDM6A via the linc-NeD125/miR-19a-3p, 209 

miR-19b-3p, miR-106a-5p/CDK6, MYCN, SNCAIP, and KDM6A axes (47). The knockdown of 210 

linc-NeD125 suppresses the proliferation of neuroblastoma cells as well (48).   211 

HHIP-AS1-mediated ceRNA 212 

Hedgehog interacting protein-antisense 1 (HHIP-AS1) is a lncRNA located on chromosome 4. 213 

Bartl et al. have shown that HHIP-AS1 knockdown decreases the cell viability and proliferation 214 

of tumoral cells and increases the survival of medulloblastoma models by altering the mitotic 215 

spindle organization; the proliferative effect of HHIP-AS1 is mediated through the HHIP-216 

AS1/miR-425-5p/DYNC1I2 axis (49).  217 

CRNDE-mediated ceRNA 218 

Colorectal neoplasia differentially expressed (CRNDE) is a lncRNA located on chromosome 16. 219 

It has been reported that CRNDE expression level is elevated in medulloblastoma tissues compared 220 

to adjacent non-tumoral tissues, and its knockdown arrests the cycle at the S phase, activates 221 

apoptosis rate, inhibits clonogenicity, reduces the proliferation of medulloblastoma cells in vitro. 222 

CRNDE knockdown also decreases tumor growth in animal models of medulloblastoma (50). 223 

Consistent with this, Sun et al. have shown that CRNDE knockdown or miR-29c-3p ectopic 224 
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expression decreases migration, invasion, clonogenicity, and proliferation and increases the 225 

apoptosis of medulloblastoma cells and inhibits tumor growth in animal models of 226 

medulloblastoma via the CRNDE/miR-29c-3p axis. Besides, the increased expression of miR-29c-227 

3p has been associated with improved chemosensitivity of medulloblastoma cells to cisplatin (51).  228 

TP73-AS1-mediated ceRNA 229 

LncRNA TP73-AS1 is located on chromosome 1, and its expression is dysregulated in cancers like 230 

medulloblastoma and lung adenocarcinoma (52, 53). Li et al. have shown that TP73-AS1 231 

expression level is increased in medulloblastoma tissues compared to non-tumoral tissues, and 232 

TP73-AS1 knockdown decreases the proliferation, migration, and invasion and enhances the 233 

apoptosis of medulloblastoma cells via the TP73-AS1/miR-494-3p/ELF5A2 axis. TP73-AS1 234 

knockdown also reduces tumor growth in animal models of medulloblastoma (54). Increased 235 

expression of TP73-AS1 has been associated with poor prognosis of TP53 wild-type SHH 236 

medulloblastoma patients, and its knockdown increases apoptosis, decreases migration and 237 

proliferation, and increases survival of animal models (53).   238 

Nkx2-2as-mediated ceRNA 239 

Nkx2-2as is a lncRNA that is located on chromosome 20. Zhang et al. have shown that Nkx2-2as 240 

decreases the proliferation, clonogenicity, invasion, and tumor sphere of medulloblastoma cells 241 

via the Nkx2-2as/miR-103a-3p, miR-107, and miR-548m/BTG2, LATS1 and LAST2. In animal 242 

models of medulloblastoma, Nkx2-2as ectopic expression decreases the tumor growth, and the 243 

administrating intracerebellar of Nkx2-2as lentiviruses increases the survival of affected mice (55).  244 

circSKA3-mediated ceRNA 245 

CircRNA spindle and kinetochore-associated complex subunit 3 (circSKA3) is dysregulated in 246 

cancers like breast cancer and medulloblastoma (56, 57). Wang et al. have reported that circSKA3 247 

is considerably upregulated in medulloblastoma tissues, and circSKA3 silencing or miR-383-5p 248 

ectopic expression decreases the cell viability, arrests the cell cycle at sub-G1 phase, enhances the 249 

apoptosis, and reduces the migration and invasion of medulloblastoma cells via the 250 

circSKA3/miR-383-5p/FOXM1 axis. In addition, in vivo results have demonstrated that circSKA3 251 

silencing decreases tumor weight in animal models of medulloblastoma (57). Zhao et al. have 252 

reported comparable results regarding the oncogenic nature of circSKA3 leveraging both in vitro 253 
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and in vivo assays and highlighted the circSKA3/miR-326/ID3 axis in medulloblastoma (58). In 254 

line with these, Liu et al. have demonstrated that circSKA3 overexpression enhances cell viability, 255 

increases the migration and invasion of medulloblastoma cells, and results in cell cycle progression 256 

via the circSKA3/miR-520h/CDK6 axis (59). 257 

circRNA-103128-mediated ceRNA 258 

circRNA_103128, also known as hsa_circ_0061694, is located on chromosome 21, and its 259 

expression level is increased in medulloblastoma tissues; Yin et al. have reported that circRNA-260 

103128 knockdown is associated with increased apoptosis rate, reduced cell viability, migration, 261 

invasion, and clonogenicity of medulloblastoma cells, and decreased tumor weight in animal 262 

models via the circRNA_103128/miR-129-5p/SOX4 (60). miR-129-5p mimic has anti-tumoral 263 

effects in terms of decreasing cell viability and arresting the cell cycle in glioblastoma cells as well 264 

(61).   265 

In brief, the circRNA and lncRNA-associated ceRNA topic in medulloblastoma is an emerging 266 

topic. For this reason, the present scoping review was conducted to study the extent and scope of 267 

research conducted on this topic. Given the fact that this topic is relatively new, the extent of 268 

research on medulloblastoma is relatively lower than on glioma; therefore, further studies are 269 

needed to pave the way for the application of ceRNA-related therapy for medulloblastoma. The 270 

current evidence indicates that HOTAIR, NEAT1, linc-NeD125, HHIP-AS1, CRNDE, and TP73-271 

AS1 are oncogenic lncRNAs and  Nkx2-2as is a tumor-suppressive lncRNA that forms lncRNA-272 

associated ceRNAs in medulloblastoma. Also, circSKA3 and circRNA-103128 are oncogenic 273 

circRNAs that have circRNA-mediated ceRNA in medulloblastoma. Targeting oncogenic ones and 274 

ectopic expression of tumor suppressive ones can be a promising approach for treating 275 

medulloblastoma.  276 
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Figure legend: 434 

Figure. 1 The flowchart of the study 435 

Figure. 2 The enrichment analyses of miRNAs 436 
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Table. 1 The characteristics of the included studies 459 

No Reference Identified axis Cell line Effect on medulloblastoma 

1 Zhang et al. (42) HOTAIR/miR-1-3p and 

miR-206/ YY1 

Daoy and D283  Stimulated oncogenic lncRNA in 

medulloblastoma 

2 Ge et al. (44) NEAT1/miR-23a-3p/GLS Daoy and D341 Stimulated oncogenic lncRNA in 

medulloblastoma 

3 Laneve et al. (47) linc-NeD125/miR-19a-

3p, miR-19b-3p, 

miR-106a-5p/CDK6, 

MYCN, SNCAIP, and 

KDM6A 

D283 and CHLA-01 Stimulated oncogenic lncRNA in 

group 

4 medulloblastomas 

4 Bartl et al. (49) HHIP-AS1/miR-425-5p/ 

DYNC1I2 

Daoy  Oncogenic lncRNA in 

medulloblastoma 

5 Sun et al. (51) CRNDE/miR-29c-3p Daoy and D341 Stimulated oncogenic lncRNA in 

cisplatin-treated medulloblastoma 

6 Li et al. (54) TP73-AS1/miR-494-3p/ 

ELF5A2 

Daoy and D341 Stimulated oncogenic lncRNA in  

medulloblastoma 

7 Zhang et al. (55) Nkx2-2as/miR-103a-3p, 

miR-107 and miR-548m 

/BTG2, LATS1, and 

LAST2 

Daoy, D341, and  

HEK293T 

Tumor-suppressive lncRNA in 

medulloblastoma 
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8 Zhao et al. (58) circSKA3/miR-326/ID3 Daoy and D283 Stimulated oncogenic circRNA in 

medulloblastoma 

9 Liu et al. (59) circSKA3/miR-520h/ 

CDK6 

Daoy Stimulated oncogenic circRNA in 

medulloblastoma 

10 Wang et al. (57) circSKA3/miR-383-5p/ 

FOXM1 

Daoy and ONS-76 Stimulated oncogenic circRNA in 

medulloblastoma 

11 Yin et al. (60) circRNA-103128/miR-

129-5p/SOX4 

Daoy Stimulated oncogenic circRNA in 

medulloblastoma 
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