Biology Department, College of Education, Salahaddin University - Erbil

Primer Design

Lecturer: Asst. Prof. Dr. Sevan O Majed sevan.majed@su.edu.krd

Lab-4

Practical molecular biology

Why are primers important?

- Primer is one of the PCR or DNA sequencing reagents.
- Good primer design: PCR works great and the result is great.
- Bad primer design: PCR works terribly and the result is rubbish.

- PCR buffer
- dNTP Mix
- Taq DNA polymerase
- Primer
- Template
- DDW

What is Primer?

Primer: is a short synthetic oligonucleotide DNA sequence (18 – 30 bps) that binds to its complementary region on template DNA & provides starting site for DNA polymerase. Usually, two primers (forward & reverse primers) are used. It is used in many molecular techniques from PCR to DNA sequencing.

Template	5' GATCACCGATTAGATAATTACCGACAAAGACCAT 3'
Primer	3' CTAGTGGCTAATCTATTAATG 5'
Annealing	<pre>5' GATCACCGATTAGATAATTACCGACAAAGACCAT 3' </pre>

Very brief PCR reminder

PCR is a molecular technique to amplify large quantities of a specific DNA sequence. It includes 3 steps.

Good primer's traits

- Primer length determines the specificity and significantly affects its annealing to the template.
- A. Too Short: low specificity, resulting in non-specific amplification.
- B. Too Long: decrease the template-binding efficiency at normal annealing temperature due to the higher probability of forming secondary structures such as hairpins.

Good primer's traits

- Base composition: usually average G+C content around 50-60% will give you the right melting/annealing temperature for ordinary PCR reactions and appropriate hybridization stability.
- GC increases the primer efficiency due to the stronger hydrogen bonding of GC.
 - 3' ATGCCGTGCTACCTGATACGCGCATTTTAT
 - 5' TACGGCACGATGGACTATGCG 3'

Good primer's traits

3. Max 3' end stability: it is critical that the stability at the 3' end be high.

3' ATGCCGTGCTACCTGATACGCGCATTTTAT

5' TACGGCACGATGGACTATGCG 3'

Basics of primer design

- Primer melting temperature (*T*_m): is the most important factor in determining The optimal PCR annealing temperature (*T*_m). It is important that all primers used in a reaction have similar *T*_m so that annealing is at a similar temperature.
- Melting temperature (T_m) between 50-70 is preferred.

Melting temperature (T_m) calculation

DNA has stability that depends on the sequence of the double helix. Heat can be used to disrupt this duplex. higher G + C content DNA has a higher T_m than lower G + C content DNA.

A simple, generic formula for calculating the $T_{\rm m}$ is:

$T_{\rm m} = 4(G+C) + 2(A+T)^{\circ} C$

Example: Find T_m of the following sequence:

GTGCTCGCCAAACATGAAAT

$$T_{\rm m} = 4 \ (4 + 5) + 2 \ (7 + 4)$$

 $T_{\rm m} = 4$ (9) + 2 (11) = 58° C

Software for primer designing

1.Primer 3 2.PCR primer designer 3. The primer generator **4.Primer Quest** 5.Raw primer 6.PRIMO

Avoidance and prevention of secondary structure

- 5'- and 3'- ends of a primer should not be complementary, otherwise partially double-stranded internal hairpin structure will be formed at 30°C & amplified.
- Forward primer should not be complementary to reverse primer, otherwise primer-dimers will be formed.
- To avoid secondary structures, primers should contain 50% G + C

