
Plant Hormones

Plant hormones – a natural substance (produced by plant) that acts to control plant activities. Also called PGRs (plant growth regulators, because it controls start growth, stop growth, modify growth & development. Plant growth regulators – include plant hormones (natural & synthetic), but also include **non-nutrient chemicals not found naturally in plants** that when applied to plants, influence their **growth and development**.

In plants, **many behavioral patterns** and functions are controlled by **hormones**. These are "**chemical messengers**" influencing many patterns of **plant development**.

They are **produced in one part** of a plant and then transported to **other parts**, where they initiate a response.

They are stored in regions where **stimulus** are and then **released** for transport through either phloem or mesophyll when the appropriate stimulus occurs.

Types of growth regulators

- 1. Auxins (IAA, NAA, 2,4-D, 2,4,5-T)
- 2. Cytokinins (kinetin)

- 3. Abscisic acid (ABA)
- 4. Gibberellins (GAx)
- 5. **Ethylene** (C₂H₄)
- 6. Also: New emerging PGRs include brassinosteroids and jasmonic acid

Auxins

They are control stem elongation. Produced in **tips of stems**. Migrate from cell to cell in stems.

- 1. Auxins responsible for plants bending towards light (Phototropism).
- 2. Auxins responsible for plant response to **gravity** (**Gravitropism**). Move to lowest side and cause stem tissue to elongate stem curves upwards.
- 3. Auxins **controls apical dominance**, move down the stem from the terminal bud and inhibit growth of side shoots.

Pinching = removing the terminal bud or breaking the apical dominance. Pinching - stops flow of auxins down the stem and allows side shoots to develop, produces bushy, well-branched crops

4. Auxins **encourage root development in cuttings.** Some plants produce plenty of auxins to make rooting cuttings easy. Other plants need synthetic auxins such as IBA.

Gibberellins

Produced in stem and root apical meristems, seed embryos, young leaves. It controls:

- 1. Cell elongation and cell division
- 2. Stimulate development of flowers
- 3. Cause internodes to stretch.

High light intensity = no stretch

Low light intensity = long internodes. Leaves are raised to capture light.

Greenhouse problem – plants spaced too closely to one another. Plants shade one another – results in stretching, less compact plants, weaker stems, loss in value. **B-Nine** is a growth regulator that **inhibits gibberellin** and controls plant height in bedding plants.

4. Break seed dormancy and **enhance germination.**

Cytokinins

Produced in **roots**, transported through xylem. They control:

- 1. **Cell division** (used in tissue culture)
- 2. Cell **differentiation** (used in tissue culture for plant organ formation)
- 3. Formation of callus tissue
- 4. Delay aging process in plants
- Cytokinins vs. Auxins:

Work together to control **cell differentiation and cell division**

- In stems
- a. Auxins inhibit lateral shoots,
- b. cytokinins promote lateral shoots
- In roots
- a. Auxins promote root branching,
- b. cytokinins inhibit root branching

Ethylene Gas

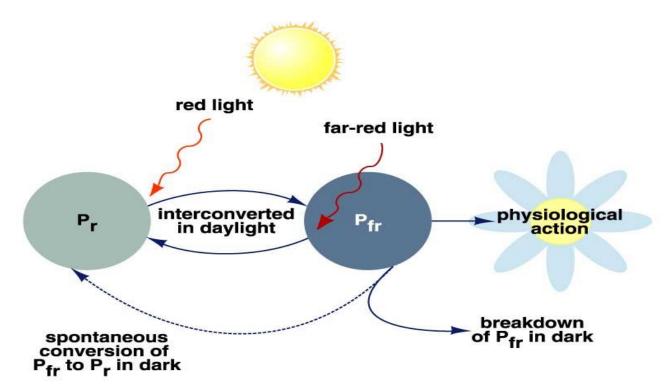
Colorless gas. Produced in:

- a. nodes of stems,
- b. ripening fruits,
- c. dying leaves

Ethylene exposure

- 1. Thickens stems
- 2. Breaks down chlorophyll
- 3. Weakens cell membranes
- 4. Softens cell walls

Abscisic Acid – The Plant Stress Hormone


Widespread in plant body – moves readily through plant. ABA appears to be synthesized (made) by the leaves. Interact with other hormones in the plant, counteracting the growth – promoting the effects of auxins & gibberellins. It controls:

- 1. Involved with leaf and **fruit abscission** (fall),
- 2. **Onset of dormancy** in seeds and onset of dormancy (rest period) in **perennial flowers** and shrubs.

3. ABA is effective in inducing **closure of stomata in leaves**, indicating a role in the **stress physiology** in plants. (ex: increases in ABA following water, heat and high salinity stress to the plant)

Florigen

A hormone called florigen both stimulates and inhibits flowering. Since flowering is sometimes a function of day length. Pigments called phytochromes are involved in "measuring" day length. The ratio of different forms of this pigments change as a function sunlight exposure and can thus be used by the plants to set their "internal biological clocks".

