SAMPLE SPACES

DEFINITION :

The sample space is the set of all possible outcomes of an experiment.

EXAMPLE: When we flip a coin then sample space is
where

$$
\mathcal{S}=\{H, T\},
$$

and

$$
H \text { denotes that the coin lands "Heads up" }
$$

T denotes that the coin lands "Tails up".
For a "fair coin" we expect H and T to have the same " chance " of occurring, i.e., if we flip the coin many times then about 50% of the outcomes will be H.

We say that the probability of H to occur is 0.5 (or 50%).
The probability of T to occur is then also 0.5 .

EXAMPLE :

When we roll a fair die then the sample space is

$$
\mathcal{S}=\{1,2,3,4,5,6\} .
$$

The probability the die lands with k up is $\frac{1}{6},(k=1,2, \cdots, 6)$.

When we roll it 1200 times we expect a 5 up about 200 times.

The probability the die lands with an even number up is

$$
\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2} .
$$

EXAMPLE :

When we toss a coin 3 times and record the results in the sequence that they occur, then the sample space is
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$.
Elements of \mathcal{S} are "vectors ", "sequences ", or " ordered outcomes".

We may expect each of the 8 outcomes to be equally likely.

Thus the probability of the sequence $H T T$ is $\frac{1}{8}$.

The probability of a sequence to contain precisely two Heads is

$$
\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8}
$$

EXAMPLE: When we toss a coin 3 times and record the results without paying attention to the order in which they occur, e.g., if we only record the number of Heads, then the sample space is

$$
\mathcal{S}=\{\{H, H, H\},\{H, H, T\},\{H, T, T\},\{T, T, T\}\} .
$$

The outcomes in \mathcal{S} are now sets ; i.e., order is not important.
Recall that the ordered outcomes are
\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}.
Note that

$\{H, H, H\}$	corresponds to	one	of the ordered outcomes,
$\{H, H, T\}$	$"$	three	$"$
$\{H, T, T\}$	$"$	three	$"$
$\{T, T, T\}$	$"$	one	$"$

Thus $\{H, H, H\}$ and $\{T, T, T\}$ each occur with probability $\frac{1}{8}$, while $\{H, H, T\}$ and $\{H, T, T\}$ each occur with probability $\frac{3}{8}$.

Events

In Probability Theory subsets of the sample space are called events.

EXAMPLE: The set of basic outcomes of rolling a die once is

$$
\mathcal{S}=\{1,2,3,4,5,6\},
$$

so the subset $E=\{2,4,6\}$ is an example of an event.

If a die is rolled once and it lands with a 2 or a 4 or a 6 up then we say that the event E has occurred.

We have already seen that the probability that E occurs is

$$
P(E)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2} .
$$

The Algebra of Events

Since events are sets, namely, subsets of the sample space \mathcal{S}, we can do the usual set operations :

If E and F are events then we can form

$$
\begin{array}{ll}
E^{c} & \text { the complement of } E \\
E \cup F & \text { the union of } E \text { and } F \\
E F & \text { the intersection of } E \text { and } F
\end{array}
$$

We write $E \subset F$ if E is a subset of F.
REMARK : In Probability Theory we use

$$
\begin{array}{ll}
E^{c} & \text { instead of } \\
E \bar{E}, \\
E F & \text { instead of } \\
E \cap F, \\
E \subset F & \text { instead of } \\
E \subseteq F .
\end{array}
$$

If the sample space \mathcal{S} is finite then we typically allow any subset of \mathcal{S} to be an event.

EXAMPLE : If we randomly draw one character from a box containing the characters a, b, and c, then the sample space is

$$
\mathcal{S}=\{a, b, c\},
$$

and there are 8 possible events, namely, those in the set of events

$$
\mathcal{E}=\{\{ \},\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

If the outcomes a, b, and c, are equally likely to occur, then

$$
\begin{gathered}
P\left(\})=0, P(\{a\})=\frac{1}{3}, \quad P(\{b\})=\frac{1}{3}, \quad P(\{c\})=\frac{1}{3},\right. \\
P(\{a, b\})=\frac{2}{3}, P(\{a, c\})=\frac{2}{3}, P(\{b, c\})=\frac{2}{3}, P(\{a, b, c\})=1 .
\end{gathered}
$$

For example, $P(\{a, b\})$ is the probability the character is an a or a b.

We always assume that the set \mathcal{E} of allowable events includes the complements, unions, and intersections of its events.

EXAMPLE: If the sample space is

$$
\mathcal{S}=\{a, b, c, d\},
$$

and we start with the events

$$
\mathcal{E}_{0}=\{\{a\},\{c, d\}\},
$$

then this set of events needs to be extended to (at least)
$\mathcal{E}=\{\{ \},\{a\},\{c, d\},\{b, c, d\},\{a, b\},\{a, c, d\},\{b\},\{a, b, c, d\}\}$.

EXERCISE : Verify \mathcal{E} includes complements, unions, intersections.

Axioms of Probability

A probability function P assigns a real number (the probability of E) to every event E in a sample space \mathcal{S}.
$P(\cdot)$ must satisfy the following basic properties :

- $0 \leq P(E) \leq 1$,
- $\quad P(\mathcal{S})=1$,
- For any disjoint events $E_{i}, i=1,2, \cdots, n$, we have

$$
P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots P\left(E_{n}\right) .
$$

Further Properties

PROPERTY 1:

$$
\begin{equation*}
P\left(E \cup E^{c}\right)=P(E)+P\left(E^{c}\right)=1 . \tag{Why?}
\end{equation*}
$$

Thus

$$
P\left(E^{c}\right)=1-P(E) .
$$

EXAMPLE:

What is the probability of at least one "H" in four tosses of a coin?

SOLUTION : The sample space \mathcal{S} will have 16 outcomes. (Which?)

$$
P(\text { at least one } \mathrm{H})=1-P(\text { no } \mathrm{H})=1-\frac{1}{16}=\frac{15}{16} .
$$

PROPERTY 2:

$$
P(E \cup F)=P(E)+P(F)-P(E F)
$$

PROOF (using the third axiom) :

$$
\begin{aligned}
P(E \cup F) & =P(E F)+P\left(E F^{c}\right)+P\left(E^{c} F\right) \\
& =\left[P(E F)+P\left(E F^{c}\right)\right]+\left[P(E F)+P\left(E^{c} F\right)\right]-P(E F) \\
& =\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F})-\mathrm{P}(\mathrm{EF}) . \quad(\text { Why ? })
\end{aligned}
$$

NOTE:

- Draw a Venn diagram with E and F to see this !
- The formula is similar to the one for the number of elements :

$$
n(E \cup F)=n(E)+n(F)-n(E F)
$$

So far our sample spaces \mathcal{S} have been finite.
\mathcal{S} can also be countably infinite, e.g., the set \mathbb{Z} of all integers.
\mathcal{S} can also be uncountable, e.g., the set \mathbb{R} of all real numbers.

EXAMPLE : Record the low temperature in Montreal on January 8 in each of a large number of years.

We can take \mathcal{S} to be the set of all real numbers, i.e., $\mathcal{S}=\mathbb{R}$.
(Are there are other choices of \mathcal{S} ?)
What probability would you expect for the following events to have?

$$
\text { (a) } P(\{\pi\}) \quad \text { (b) } P(\{x:-\pi<x<\pi\})
$$

(How does this differ from finite sample spaces?)

We will encounter such infinite sample spaces many times ...

