DISCRETE RANDOM VARIABLES

DEFINITION : A discrete random variable is a function $X(s)$ from a finite or countably infinite sample space \mathcal{S} to the real numbers :

$$
X(\cdot) \quad: \quad \mathcal{S} \quad \rightarrow \quad \mathbb{R} .
$$

EXAMPLE: Toss a coin 3 times in sequence. The sample space is
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$,
and examples of random variables are

- $X(s)=$ the number of Heads in the sequence ; e.g., $X(H T H)=2$,
- $Y(s)=$ The index of the first H; e.g., $Y(T T H)=3$, 0 if the sequence has no H, i.e., $Y(T T T)=0$.

NOTE : In this example $X(s)$ and $Y(s)$ are actually integers.

Value-ranges of a random variable correspond to events in \mathcal{S}.

EXAMPLE: For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, with

$$
X(s)=\text { the number of Heads }
$$

the value
$X(s)=2$, corresponds to the event $\{H H T, H T H, T H H\}$, and the values
$1<X(s) \leq 3$, correspond to $\{H H H, H H T, H T H, T H H\}$.

NOTATION : If it is clear what \mathcal{S} is then we often just write $X \quad$ instead of $\quad X(s)$.

Value-ranges of a random variable correspond to events in \mathcal{S}, and events in \mathcal{S} have a probability.
Thus
Value-ranges of a random variable have a probability.

EXAMPLE: For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$,
with

$$
X(s)=\text { the number of Heads }
$$

we have

$$
P(0<X \leq 2)=\frac{6}{8} .
$$

QUESTION : What are the values of
$P(X \leq-1), P(X \leq 0), P(X \leq 1), P(X \leq 2), P(X \leq 3), P(X \leq 4) ?$

NOTATION : We will also write $p_{X}(x)$ to denote $P(X=x)$.
EXAMPLE : For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, with

$$
X(s)=\text { the number of Heads }
$$

we have

$$
\begin{array}{rlrl}
p_{X}(0) & \equiv P(\{T T T\}) & =\frac{1}{8} \\
p_{X}(1) & \equiv P(\{H T T, T H T, T T H\}) & =\frac{3}{8} \\
p_{X}(2) \equiv P(\{H H T, H T H, T H H\}) & =\frac{3}{8} \\
p_{X}(3) \equiv P(\{H H H\}) & =\frac{1}{8}
\end{array}
$$

where

$$
p_{X}(0)+p_{X}(1)+p_{X}(2)+p_{X}(3)=1 . \quad(\text { Why ? })
$$

Graphical representation of X.
The events $E_{0}, E_{1}, E_{2}, E_{3}$ are disjoint since $X(s)$ is a function! ($X: S \rightarrow \mathbb{R}$ must be defined for all $s \in S$ and must be single-valued.)

The graph of p_{X}.

DEFINITION :

$$
p_{X}(x) \equiv P(X=x),
$$

is called the probability mass function .

DEFINITION :

$$
F_{X}(x) \equiv P(X \leq x),
$$

is called the (cumulative) probability distribution function .

PROPERTIES:

- $F_{X}(x)$ is a non-decreasing function of x. (Why ?)
- $F_{X}(-\infty)=0$ and $F_{X}(\infty)=1$.
(Why?)
- $P(a<X \leq b)=F_{X}(b)-F_{X}(a)$.

NOTATION: When it is clear what X is then we also write

$$
p(x) \text { for } p_{X}(x) \text { and } F(x) \text { for } F_{X}(x) .
$$

EXAMPLE: With $X(s)=$ the number of Heads, and

$$
\begin{gathered}
\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}, \\
p(0)=\frac{1}{8} \quad, \quad p(1)=\frac{3}{8} \quad, \quad p(2)=\frac{3}{8}, \quad p(3)=\frac{1}{8},
\end{gathered}
$$

we have the probability distribution function

$F(-1)$	\equiv	$P(X \leq-1)$	$=$	0
$F(0)$	\equiv	$P(X \leq 0)$	$=$	$\frac{1}{8}$
$F(1)$	\equiv	$P(X \leq 1)$	$=$	$\frac{4}{8}$
$F(2)$	\equiv	$P(X \leq 2)$	$=$	$\frac{7}{8}$
$F(3)$	\equiv	$P(X \leq 3)$	$=$	1
$F(4)$	\equiv	$P(X \leq 4)$	$=$	1

We see, for example, that

$$
\begin{aligned}
P(0<X \leq 2) & =P(X=1)+P(X=2) \\
& =F(2)-F(0)=\frac{7}{8}-\frac{1}{8}=\frac{6}{8} .
\end{aligned}
$$

The graph of the probability distribution function F_{X}.

EXAMPLE : Toss a coin until "Heads" occurs.
Then the sample space is countably infinite, namely,

$$
\mathcal{S}=\{H, T H, T T H, T T T H, \cdots\}
$$

The random variable X is the number of rolls until "Heads" occurs:

$$
X(H)=1 \quad, \quad X(T H)=2 \quad, \quad X(T T H)=3 \quad, \cdots
$$

Then
and $p(1)=\frac{1}{2} \quad, \quad p(2)=\frac{1}{4} \quad, \quad p(3)=\frac{1}{8} \quad, \quad \cdots \quad$ (Why ?)

$$
F(n)=P(X \leq n)=\sum_{k=1}^{n} p(k)=\sum_{k=1}^{n} \frac{1}{2^{k}}=1-\frac{1}{2^{n}},
$$

and, as should be the case,

$$
\sum_{k=1}^{\infty} p(k)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} p(k)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=1 .
$$

NOTE: The outcomes in \mathcal{S} do not have equal probability!
EXERCISE : Draw the probability mass and distribution functions.
$X(s)$ is the number of tosses until "Heads" occurs ...
REMARK : We can also take $\mathcal{S} \equiv \mathcal{S}_{n}$ as all ordered outcomes of length n. For example, for $n=4$,

$$
\begin{aligned}
& \mathcal{S}_{4}=\{\tilde{H} H H H, \tilde{H} H H T, \tilde{H} H T H, \tilde{H} H T T, \\
& \text { H̃TH , } \tilde{H} T H T, \tilde{H} T T H, \tilde{H} T T T, \\
& \text { TH̃Hh, TH̃HT, TH̃TH, TH̃TT, } \\
& \text { TTH̃H, TTH̃T, TTTH̃, TTTT \}. }
\end{aligned}
$$

where for each outcome the first "Heads" is marked as \tilde{H}.
Each outcome in \mathcal{S}_{4} has equal probability 2^{-n} (here $2^{-4}=\frac{1}{16}$), and

$$
p_{X}(1)=\frac{1}{2} \quad, \quad p_{X}(2)=\frac{1}{4} \quad, \quad p_{X}(3)=\frac{1}{8} \quad, \quad p_{X}(4)=\frac{1}{16} \quad \cdots,
$$

independent of n.

Joint distributions

The probability mass function and the probability distribution function can also be functions of more than one variable.

EXAMPLE : Toss a coin 3 times in sequence. For the sample space
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$,
we let
$X(s)=$ \# Heads $\quad, \quad Y(s)=$ index of the first $H \quad(0$ for TTT).
Then we have the joint probability mass function

$$
p_{X, Y}(x, y)=P(X=x, Y=y) .
$$

For example,

$$
\begin{aligned}
p_{X, Y}(2,1) & =P(X=2, Y=1) \\
& =P\left(2 \text { Heads }, 1^{\text {st }} \text { toss is Heads }\right) \\
& =\frac{2}{8}=\frac{1}{4} .
\end{aligned}
$$

EXAMPLE: (continued...) For
$\mathcal{S}=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$, $X(s)=$ number of Heads, and $Y(s)=$ index of the first H, we can list the values of $p_{X, Y}(x, y)$:
Joint probability mass function

	$y=0$	$\mathbf{y}=1$	$y=2$	$y=3$	$p_{X, Y}(x, y)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$\mathbf{x}=\mathbf{2}$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

NOTE:

- The marginal probability p_{X} is the probability mass function of X.
- The marginal probability p_{Y} is the probability mass function of Y.

EXAMPLE: (continued...)
$X(s)=$ number of Heads, and $Y(s)=$ index of the first H.

	$y=0$	$\mathrm{y}=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$\mathbf{x}=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

For example,

- $X=2$ corresponds to the event $\{H H T, H T H, T H H\}$.
- $Y=1$ corresponds to the event $\{H H H, H H T, H T H, H T T\}$.
- $(X=2$ and $Y=1)$ corresponds to the event $\{H H T, H T H\}$.

QUESTION : Are the events $X=2$ and $Y=1$ independent?

The events $E_{i, j} \equiv\{s \in S: X(s)=i, Y(s)=j\}$ are disjoint. QUESTION : Are the events $X=2$ and $Y=1$ independent?

DEFINITION :

$$
p_{X, Y}(x, y) \equiv P(X=x, Y=y),
$$

is called the joint probability mass function .

DEFINITION :

$$
F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)
$$

is called the joint (cumulative) probability distribution function.

NOTATION : When it is clear what X and Y are then we also write

$$
p(x, y) \text { for } p_{X, Y}(x, y) \text {, }
$$

and

$$
F(x, y) \text { for } \quad F_{X, Y}(x, y) .
$$

EXAMPLE: Three tosses : $X(s)=\#$ Heads, $Y(s)=$ index $1^{\text {st }} H$.
Joint probability mass function $p_{X, Y}(x, y)$

| | $y=0$ | $y=1$ | $y=2$ | $y=3$ | $p_{X}(x)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x=0$ | $\frac{1}{8}$ | 0 | 0 | 0 | $\frac{1}{8}$ |
| $x=1$ | 0 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{3}{8}$ |
| $x=2$ | 0 | $\frac{2}{8}$ | $\frac{1}{8}$ | 0 | $\frac{3}{8}$ |
| $x=3$ | 0 | $\frac{1}{8}$ | 0 | 0 | $\frac{1}{8}$ |
| $p_{Y}(y)$ | $\frac{1}{8}$ | $\frac{4}{8}$ | $\frac{2}{8}$ | $\frac{1}{8}$ | 1 |

Joint distribution function $F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$F_{X}(\cdot)$
$x=0$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$x=1$	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{3}{8}$	$\frac{4}{8}$	$\frac{4}{8}$
$x=2$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{6}{8}$	$\frac{7}{8}$	$\frac{7}{8}$
$x=3$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	1	1
$F_{Y}(\cdot)$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	1	1

Note that the distribution function F_{X} is a copy of the 4th column, and the distribution function F_{Y} is a copy of the 4th row. (Why ?)

In the preceding example :
Joint probability mass function $p_{X, Y}(x, y)$

| | $y=0$ | $y=1$ | $y=2$ | $y=3$ | $p_{X}(x)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x=0$ | $\frac{1}{8}$ | 0 | 0 | 0 | $\frac{1}{8}$ |
| $x=1$ | 0 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{3}{8}$ |
| $x=2$ | 0 | $\frac{2}{8}$ | $\frac{1}{8}$ | 0 | $\frac{3}{8}$ |
| $x=3$ | 0 | $\frac{1}{8}$ | 0 | 0 | $\frac{1}{8}$ |
| $p_{Y}(y)$ | $\frac{1}{8}$ | $\frac{4}{8}$ | $\frac{2}{8}$ | $\frac{1}{8}$ | 1 |

Joint distribution function $F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$F_{X}(\cdot)$
$x=0$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$x=1$	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{3}{8}$	$\frac{4}{8}$	$\frac{4}{8}$
$x=2$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{6}{8}$	$\frac{7}{8}$	$\frac{7}{8}$
$x=3$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	1	1
$F_{Y}(\cdot)$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	1	1

QUESTION : Why is
$P(1<X \leq 3,1<Y \leq 3)=F(3,3)-F(1,3)-F(3,1)+F(1,1) ?$

EXERCISE :

Roll a four-sided die (tetrahedron) two times.
(The sides are marked $1,2,3,4$.)
Suppose each of the four sides is equally likely to end facing down. Suppose the outcome of a single roll is the side that faces down (!).

Define the random variables X and Y as

$$
X=\text { result of the first roll } \quad, \quad Y=\text { sum of the two rolls. }
$$

- What is a good choice of the sample space \mathcal{S} ?
- How many outcomes are there in \mathcal{S} ?
- List the values of the joint probability mass function $p_{X, Y}(x, y)$.
- List the values of the joint cumulative distribution function $F_{X, Y}(x, y)$.

EXERCISE :

Three balls are selected at random from a bag containing

$$
2 \text { red , } 3 \text { green , } 4 \text { blue balls. }
$$

Define the random variables

$$
R(s)=\text { the number of red balls drawn, }
$$

and

$$
G(s)=\text { the number of green balls drawn. }
$$

List the values of

- the joint probability mass function $p_{R, G}(r, g)$.
- the marginal probability mass functions $p_{R}(r)$ and $p_{G}(g)$.
- the joint distribution function $F_{R, G}(r, g)$.
- the marginal distribution functions $F_{R}(r)$ and $F_{G}(g)$.

Independent random variables

Two discrete random variables $X(s)$ and $Y(s)$ are independent if

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y), \quad \text { for all } x \text { and } y
$$

or, equivalently, if their probability mass functions satisfy

$$
p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y), \quad \text { for all } x \text { and } y,
$$

or, equivalently, if the events

$$
E_{x} \equiv X^{-1}(\{x\}) \quad \text { and } \quad E_{y} \equiv Y^{-1}(\{y\})
$$

are independent in the sample space \mathcal{S}, i.e.,

$$
P\left(E_{x} E_{y}\right)=P\left(E_{x}\right) \cdot P\left(E_{y}\right), \quad \text { for all } x \text { and } y .
$$

NOTE :

- In the current discrete case, x and y are typically integers.
- $X^{-1}(\{x\}) \equiv\{s \in \mathcal{S}: X(s)=x\}$.

Three tosses : $X(s)=\#$ Heads, $Y(s)=$ index $1^{\text {st }} H$.

- What are the values of $p_{X}(2), p_{Y}(1), p_{X, Y}(2,1)$?
- Are X and Y independent?

RECALL:

$X(s)$ and $Y(s)$ are independent if for all x and y :

$$
p_{X, Y}(x, y)=p_{X}(x) \cdot p_{Y}(y) .
$$

EXERCISE :

Roll a die two times in a row.
Let

$$
X \text { be the result of the } 1^{\text {st }} \text { roll , }
$$

and

$$
Y \text { the result of the } 2^{\text {nd }} \text { roll } .
$$

Are X and Y independent, i.e., is

$$
p_{X, Y}(k, \ell)=p_{X}(k) \cdot p_{Y}(\ell), \quad \text { for all } 1 \leq k, \ell \leq 6 ?
$$

EXERCISE :

Are these random variables X and Y independent?

Joint probability mass function $p_{X, Y}(x, y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$x=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

EXERCISE : Are these random variables X and Y independent?
Joint probability mass function $p_{X, Y}(x, y)$

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

Joint distribution function $F_{X, Y}(x, y) \equiv P(X \leq x, Y \leq y)$

	$y=1$	$y=2$	$y=3$	$F_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{2}$
$x=2$	$\frac{5}{9}$	$\frac{25}{36}$	$\frac{5}{6}$	$\frac{5}{6}$
$x=3$	$\frac{2}{3}$	$\frac{5}{6}$	1	1
$F_{Y}(y)$	$\frac{2}{3}$	$\frac{5}{6}$	1	1

QUESTION : Is $F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)$?

PROPERTY:

The joint distribution function of independent random variables X and Y satisfies

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y), \quad \text { for all } x, y
$$

PROOF :

$$
\begin{aligned}
F_{X, Y}\left(x_{k}, y_{\ell}\right) & =P\left(X \leq x_{k}, Y \leq y_{\ell}\right) \\
& =\sum_{i \leq k} \sum_{j \leq \ell} p_{X, Y}\left(x_{i}, y_{j}\right) \\
& =\sum_{i \leq k} \sum_{j \leq \ell} p_{X}\left(x_{i}\right) \cdot p_{Y}\left(y_{j}\right) \quad \text { (by independence) } \\
& =\sum_{i \leq k}\left\{p_{X}\left(x_{i}\right) \cdot \sum_{j \leq \ell} p_{Y}\left(y_{j}\right)\right\} \\
& =\left\{\sum_{i \leq k} p_{X}\left(x_{i}\right)\right\} \cdot\left\{\sum_{j \leq \ell} p_{Y}\left(y_{j}\right)\right\} \\
& =F_{X}\left(x_{k}\right) \cdot F_{Y}\left(y_{\ell}\right) .
\end{aligned}
$$

Conditional distributions

Let X and Y be discrete random variables with joint probability mass function

$$
p_{X, Y}(x, y)
$$

For given x and y, let

$$
E_{x}=X^{-1}(\{x\}) \quad \text { and } \quad E_{y}=Y^{-1}(\{y\})
$$

be their corresponding events in the sample space \mathcal{S}.

Then

$$
P\left(E_{x} \mid E_{y}\right) \equiv \frac{P\left(E_{x} E_{y}\right)}{P\left(E_{y}\right)}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)} .
$$

Thus it is natural to define the conditional probability mass function

$$
p_{X \mid Y}(x \mid y) \equiv P(X=x \mid Y=y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

Three tosses : $X(s)=\#$ Heads, $Y(s)=$ index $1^{\text {st }} H$.

- What are the values of $P(X=2 \mid Y=1)$ and $P(Y=1 \mid X=2)$?

EXAMPLE : (3 tosses : $X(s)=\#$ Heads, $Y(s)=$ index $\left.1^{\text {st }} H.\right)$
Joint probability mass function $p_{X, Y}(x, y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$x=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

Conditional probability mass function $p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$.

	$y=0$	$y=1$	$y=2$	$y=3$
$x=0$	1	0	0	0
$x=1$	0	$\frac{2}{8}$	$\frac{4}{8}$	1
$x=2$	0	$\frac{4}{8}$	$\frac{4}{8}$	0
$x=3$	0	$\frac{2}{8}$	0	0
	1	1	1	1

EXERCISE : Also construct the Table for $p_{Y \mid X}(y \mid x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)}$.

EXAMPLE:
Joint probability mass function $p_{X, Y}(x, y)$

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

Conditional probability mass function $p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$.

	$y=1$	$y=2$	$y=3$
$x=1$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$x=2$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$x=3$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
	1	1	1

QUESTION : What does the last Table tell us?
EXERCISE : Also construct the Table for $P(Y=y \mid X=x)$.

Expectation

The expected value of a discrete random variable X is

$$
E[X] \equiv \sum_{k} x_{k} \cdot P\left(X=x_{k}\right)=\sum_{k} x_{k} \cdot p_{X}\left(x_{k}\right) .
$$

Thus $E[X]$ represents the weighted average value of X.
($E[X]$ is also called the mean of X.

EXAMPLE: The expected value of rolling a die is

$$
E[X]=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+\cdots+6 \cdot \frac{1}{6}=\frac{1}{6} \cdot \sum_{k=1}^{6} k=\frac{7}{2} .
$$

EXERCISE : Prove the following :

- $E[a X]=a E[X]$,
- $E[a X+b]=a E[X]+b$.

EXAMPLE: Toss a coin until "Heads" occurs. Then

$$
\mathcal{S}=\{H, T H, T T H, T T T H, \cdots\} .
$$

The random variable X is the number of tosses until "Heads" occurs :

$$
X(H)=1 \quad, \quad X(T H)=2 \quad, \quad X(T T H)=3
$$

Then
$E[X]=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\cdots=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k}{2^{k}}=2$.

n	$\sum_{k=1}^{n} k / 2^{k}$
1	0.50000000
2	1.00000000
3	1.37500000
10	1.98828125
40	1.99999999

REMARK :
Perhaps using $\mathcal{S}_{n}=\{$ all sequences of n tosses $\}$ is better \cdots

The expected value of a function of a random variable is

$$
E[g(X)] \equiv \sum_{k} g\left(x_{k}\right) p\left(x_{k}\right) .
$$

EXAMPLE:

The pay-off of rolling a die is $\$ k^{2}$, where k is the side facing up.
What should the entry fee be for the betting to break even?

SOLUTION: Here $g(X)=X^{2}$, and

$$
E[g(X)]=\sum_{k=1}^{6} k^{2} \frac{1}{6}=\frac{1}{6} \frac{6(6+1)(2 \cdot 6+1)}{6}=\frac{91}{6} \cong \$ 15.17 .
$$

The expected value of a function of two random variables is

$$
E[g(X, Y)] \equiv \sum_{k} \sum_{\ell} g\left(x_{k}, y_{\ell}\right) p\left(x_{k}, y_{\ell}\right) .
$$

EXAMPLE:

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

$$
\begin{align*}
E[X] & =1 \cdot \frac{1}{2}+2 \cdot \frac{1}{3}+3 \cdot \frac{1}{6}=\frac{5}{3} \\
E[Y] & =1 \cdot \frac{2}{3}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}=\frac{3}{2} \\
E[X Y] & =1 \cdot \frac{1}{3}+2 \cdot \frac{1}{12}+3 \cdot \frac{1}{12} \\
& +2 \cdot \frac{2}{9}+4 \cdot \frac{1}{18}+6 \cdot \frac{1}{18} \\
& +3 \cdot \frac{1}{9}+6 \cdot \frac{1}{36}+9 \cdot \frac{1}{36}=\frac{5}{2} . \tag{So?}
\end{align*}
$$

PROPERTY:

- If X and Y are independent then $E[X Y]=E[X] E[Y]$.

PROOF :

$$
\begin{aligned}
E[X Y] & =\sum_{k} \sum_{\ell} x_{k} y_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k} \sum_{\ell} x_{k} y_{\ell} p_{X}\left(x_{k}\right) p_{Y}\left(y_{\ell}\right) \quad \text { (by independence) } \\
& =\sum_{k}\left\{x_{k} p_{X}\left(x_{k}\right) \sum_{\ell} y_{\ell} p_{Y}\left(y_{\ell}\right)\right\} \\
& =\left\{\sum_{k} x_{k} p_{X}\left(x_{k}\right)\right\} \cdot\left\{\sum_{\ell} y_{\ell} p_{Y}\left(y_{\ell}\right)\right\} \\
& =E[X] \cdot E[Y]
\end{aligned}
$$

EXAMPLE: See the preceding example!

PROPERTY: $E[X+Y]=E[X]+E[Y]$.

PROOF :

$$
\begin{aligned}
E[X+Y] & =\sum_{k} \sum_{\ell}\left(x_{k}+y_{\ell}\right) p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k} \sum_{\ell} x_{k} p_{X, Y}\left(x_{k}, y_{\ell}\right)+\sum_{k} \sum_{\ell} y_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k} \sum_{\ell} x_{k} p_{X, Y}\left(x_{k}, y_{\ell}\right)+\sum_{\ell} \sum_{k} y_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right) \\
& =\sum_{k}\left\{x_{k} \sum_{\ell} p_{X, Y}\left(x_{k}, y_{\ell}\right)\right\}+\sum_{\ell}\left\{y_{\ell} \sum_{k} p_{X, Y}\left(x_{k}, y_{\ell}\right)\right\} \\
& =\sum_{k}\left\{x_{k} p_{X}\left(x_{k}\right)\right\}+\sum_{\ell}\left\{y_{\ell} p_{Y}\left(y_{\ell}\right)\right\} \\
& =E[X]+E[Y] .
\end{aligned}
$$

NOTE : X and Y need not be independent!

EXERCISE :

Probability mass function $p_{X, Y}(x, y)$

	$y=6$	$y=8$	$y=10$	$p_{X}(x)$
$x=1$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$x=2$	0	$\frac{1}{5}$	0	$\frac{1}{5}$
$x=3$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$p_{Y}(y)$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$	1

Show that

- $E[X]=2, E[Y]=8, E[X Y]=16$
- X and Y are not independent

Thus if

$$
E[X Y]=E[X] E[Y],
$$

then it does not necessarily follow that X and Y are independent!

Variance and Standard Deviation

Let X have mean

$$
\mu=E[X] .
$$

Then the variance of X is

$$
\operatorname{Var}(X) \equiv E\left[(X-\mu)^{2}\right] \equiv \sum_{k}\left(x_{k}-\mu\right)^{2} p\left(x_{k}\right),
$$

which is the average weighted square distance from the mean.

We have

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2} .
\end{aligned}
$$

The standard deviation of X is

$$
\sigma(X) \equiv \sqrt{\operatorname{Var}(X)}=\sqrt{E\left[(X-\mu)^{2}\right]}=\sqrt{E\left[X^{2}\right]-\mu^{2}} .
$$

which is the average weighted distance from the mean.

EXAMPLE: The variance of rolling a die is

$$
\begin{aligned}
\operatorname{Var}(X)= & \sum_{k=1}^{6}\left[k^{2} \cdot \frac{1}{6}\right]-\mu^{2} \\
& =\frac{1}{6} \frac{6(6+1)(2 \cdot 6+1)}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12} .
\end{aligned}
$$

The standard deviation is

$$
\sigma=\sqrt{\frac{35}{12}} \cong 1.70
$$

Covariance

Let X and Y be random variables with mean

$$
E[X]=\mu_{X} \quad, \quad E[Y]=\mu_{Y}
$$

Then the covariance of X and Y is defined as
$\operatorname{Cov}(X, Y) \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\sum_{k, \ell}\left(x_{k}-\mu_{X}\right)\left(y_{\ell}-\mu_{Y}\right) p\left(x_{k}, y_{\ell}\right)$.
We have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right] \\
& =E[X Y]-\mu_{X} \mu_{Y}-\mu_{Y} \mu_{X}+\mu_{X} \mu_{Y} \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

We defined

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\sum_{k, \ell}\left(x_{k}-\mu_{X}\right)\left(y_{\ell}-\mu_{Y}\right) p\left(x_{k}, y_{\ell}\right) \\
& =E[X Y]-E[X] E[Y] .
\end{aligned}
$$

NOTE:
$\operatorname{Cov}(X, Y)$ measures "concordance " or " coherence " of X and Y :

- If $X>\mu_{X}$ when $Y>\mu_{Y}$ and $X<\mu_{X}$ when $Y<\mu_{Y}$ then

$$
\operatorname{Cov}(X, Y)>0 .
$$

- If $X>\mu_{X}$ when $Y<\mu_{Y}$ and $X<\mu_{X}$ when $Y>\mu_{Y}$ then

$$
\operatorname{Cov}(X, Y)<0 .
$$

EXERCISE: Prove the following :

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$,
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$,
- $\operatorname{Cov}(c X, Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X, c Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$,
- Var $(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.

PROPERTY:

If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.

PROOF :

We have already shown (with $\mu_{X} \equiv E[X]$ and $\mu_{Y} \equiv E[Y]$) that
$\operatorname{Cov}(X, Y) \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-E[X] E[Y]$,
and that if X and Y are independent then

$$
E[X Y]=E[X] E[Y]
$$

from which the result follows.

EXERCISE : (already used earlier ...)
Probability mass function $p_{X, Y}(x, y)$

	$y=6$	$y=8$	$y=10$	$p_{X}(x)$
$x=1$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$x=2$	0	$\frac{1}{5}$	0	$\frac{1}{5}$
$x=3$	$\frac{1}{5}$	0	$\frac{1}{5}$	$\frac{2}{5}$
$p_{Y}(y)$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$	1

Show that

- $E[X]=2, E[Y]=8, E[X Y]=16$
- $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0$
- X and Y are not independent

Thus if

$$
\operatorname{Cov}(X, Y)=0,
$$

then it does not necessarily follow that X and Y are independent!

PROPERTY:

If X and Y are independent then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

PROOF :

We have already shown (in an exercise !) that

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y),
$$

and that if X and Y are independent then

$$
\operatorname{Cov}(X, Y)=0
$$

from which the result follows.

EXERCISE :

Compute

$$
\begin{gathered}
E[X], E[Y], E\left[X^{2}\right], E\left[Y^{2}\right] \\
E[X Y], \operatorname{Var}(X), \operatorname{Var}(Y) \\
\operatorname{Cov}(X, Y)
\end{gathered}
$$

for
Joint probability mass function $p_{X, Y}(x, y)$

	$y=0$	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=0$	$\frac{1}{8}$	0	0	0	$\frac{1}{8}$
$x=1$	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{3}{8}$
$x=2$	0	$\frac{2}{8}$	$\frac{1}{8}$	0	$\frac{3}{8}$
$x=3$	0	$\frac{1}{8}$	0	0	$\frac{1}{8}$
$p_{Y}(y)$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	1

EXERCISE :

Compute

$$
\begin{gathered}
E[X], E[Y], E\left[X^{2}\right], E\left[Y^{2}\right] \\
E[X Y], \operatorname{Var}(X), \operatorname{Var}(Y) \\
\operatorname{Cov}(X, Y)
\end{gathered}
$$

for
Joint probability mass function $p_{X, Y}(x, y)$

	$y=1$	$y=2$	$y=3$	$p_{X}(x)$
$x=1$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
$x=2$	$\frac{2}{9}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
$x=3$	$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{6}$
$p_{Y}(y)$	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	1

