
The basic notion in probability is that of a random experiment: an experi-
ment whose outcome cannot be determined in advance, but is nevertheless still
subject to analysis.

Examples of random experiments are:

1. tossing a die,

2. measuring the amount of rainfall in Brisbane in January,

3. counting the number of calls arriving at a telephone exchange during a
fixed time period,

4. selecting a random sample of fifty people and observing the number of
left-handers,

5. choosing at random ten people and measuring their height.

x = (rand(1,100) < 1/2)

bar(x)

Chapter 2

Probability Theory  

2.1 Random Experiments

Example 2.1 (Coin Tossing) The most fundamental stochastic experiment
is the experiment where a coin is tossed a number of times, say n times. Indeed,
much of probability theory can be based on this simple experiment, as we shall
see in subsequent chapters. To better understand how this experiment behaves,
we can carry it out on a digital computer, for example in Matlab. The following
simple Matlab program, simulates a sequence of 100 tosses with a fair coin(that
is, heads and tails are equally likely), and plots the results in a bar chart.
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Here x is a vector with 1s and 0s, indicating Heads and Tails, say. Typical
outcomes for three such experiments are given in Figure 1.1.

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

We can also plot the average number of “Heads” against the number of tosses.
In the same Matlab program, this is done in two extra lines of code:

y = cumsum(x)./[1:100]

plot(y)

The result of three such experiments is depicted in Figure 1.2. Notice that the
average number of Heads seems to converge to 1/2, but there is a lot of random
fluctuation.

Figure 2.1: Three experiments where a fair coin is tossed 100 times. The dark
bars indicate when “Heads” (=1) appears.
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Figure 2.2: The average number of heads in n tosses, where n = 1, . . . , 100.

Example 2.2 (Control Chart) Control charts, see Figure 1.3, are frequently
used in manufacturing as a method for quality control. Each hour the average
output of the process is measured — for example, the average weight of 10
bags of sugar — to assess if the process is still “in control”, for example, if the
machine still puts on average the correct amount of sugar in the bags. When
the process > Upper Control Limit or < Lower Control Limit and an alarm is
raised that the process is out of control, e.g., the machine needs to be adjusted,
because it either puts too much or not enough sugar in the bags. The question
is how to set the control limits, since the random process naturally
uctuatesaround its “centre” or “target” line.

Figure 2.3: Control Chart
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F̂ (t) denotes the proportion
of components that have failed at time t. One question is how F̂ (t) can be
modelled via a continuous function F , representing the lifetime distribution of
a typical component.

t (h) failed F̂ (t)

0 0 0.000
750 22 0.020
800 30 0.030
900 36 0.036

1400 42 0.042
1500 58 0.058
2000 74 0.074
2300 105 0.105

t (h) failed F̂ (t)

3000 140 0.140
5000 200 0.200
6000 290 0.290
8000 350 0.350

11000 540 0.540
15000 570 0.570
19000 770 0.770
37000 920 0.920
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Example 2.3 (Machine Lifetime) Suppose 1000 identical components are
monitored for failure, up to 50,000 hours. The outcome of such a random
experiment is typically summarised via the cumulative lifetime table and plot, as
given in Table 1.1 and Figure 1.3, respectively. Here

Table 2.1: The cumulative lifetime table

Figure 2.4: The cumulative lifetime table
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4 = 16 possible
outcomes of the experiment. Which outcomes lead to “system failure”? More-
over, if the probability of failure within some time period is known for each of
the engines, what is the probability of failure for the entire system? Again this
can be viewed as a random experiment.

Below are two more pictures of randomness. The first is a computer-generated
“plant”, which looks remarkably like a real plant. The second is real data
depicting the number of bytes that are transmitted over some communications
link. An interesting feature is that the data can be shown to exhibit “fractal”
behaviour, that is, if the data is aggregated into smaller or larger time intervals,
a similar picture will appear.
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We wish to describe these experiments via appropriate mathematical models.
These models consist of three building blocks: a sample space, a set of events
and a probability. We will now describe each of these objects.

Example 2.1 A 4-engine aeroplane is able to fly on just one engine on each
wing. All engines are unreliable.

Figure 2.5: A aeroplane with 4 unreliable engines

Number the engines: 1,2 (left wing) and 3,4 (right wing). Observe which engine
works properly during a specified period of time. There are 2

Figure 2.6: Plant growth

Figure 2.7: Telecommunications data
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Although we cannot predict the outcome of a random experiment with certainty
we usually can specify a set of possible outcomes. This gives the first ingredient
in our model for a random experiment.

Examples of random experiments with their sample spaces are:

1. Cast two dice consecutively,

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}.

2. The lifetime of a machine (in days),

Ω = R+ = { positive real numbers } .

3. The number of arriving calls at an exchange during a specified time in-
terval,

Ω = {0, 1, · · · } = Z+ .

4. The heights of 10 selected people.

Ω = {(x1, . . . , x10), xi ≥ 0, i = 1, . . . , 10} = R10
+ .

Here (x1, . . . , x10) represents the outcome that the length of the first se-
lected person is x1, the length of the second person is x2, et cetera.

Notice that for modelling purposes it is often easier to take the sample space
larger than necessary. For example the actual lifetime of a machine would
certainly not span the entire positive real axis. And the heights of the 10
selected people would not exceed 3 metres.

Often we are not interested in a single outcome but in whether or not one of a
group of outcomes occurs. Such subsets of the sample space are called events.
Events will be denoted by capital letters A,B,C, . . . . We say that event A
occurs if the outcome of the experiment is one of the elements in A.

2.2 Sample Space

Definition 2.1 The sample space of a random experiment is the set of all
possible outcomes of the experiment.

2.3 Events
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Examples of events are:

1. The event that the sum of two dice is 10 or more,

A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}.

2. The event that a machine lives less than 1000 days,

A = [0, 1000) .

3. The event that out of fifty selected people, five are left-handed,

A = {5} .

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} ,

where, for example, HTH means that the first toss is heads, the second tails,
and the third heads. An alternative sample space is the set {0, 1}3 of binary
vectors of length 3, e.g., HTH corresponds to (1,0,1), and THH to (0,1,1).

The event A that the third toss is heads is

A = {HHH,HTH, THH, TTH} .

Since events are sets, we can apply the usual set operations to them:

1. the set A ∪B (A union B) is the event that A or B or both occur,

2. the set A∩B (A intersection B) is the event that A and B both occur,

3. the event Ac (A complement) is the event that A does not occur,

4. if A ⊂ B (A is a subset of B) then event A is said to imply event B.

Two events A and B which have no outcomes in common, that is, A ∩ B = ∅,
are called disjoint events.

Example 2.5 (Coin Tossing) Suppose that a coin is tossed 3 times, and that
we “record” every head and tail (not only the number of heads or tails). The
sample space can then be written as

Example 2.6 Suppose we cast two dice consecutively. The sample space is
= {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}. Let A = {(6, 1), . . . , (6, 6)} be
the event that the first die is 6, and let B = {(1, 6), . . . , (1, 6)} be the event
that the second dice is 6. Then A∩B = {(6, 1), . . . , (6, 6)}∩{(1, 6), . . . , (6, 6)} =
{(6, 6)} is the event that both die are 6.
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It is often useful to depict events in a Venn diagram, such as in Figure 1.8
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Figure 1.8: A Venn diagram

In this Venn diagram we see

(i) A ∩ C = ∅ and therefore events A and C are disjoint.

(ii) (A∩Bc)∩ (Ac ∩B) = ∅ and hence events A∩Bc and Ac ∩B are disjoint.
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Figure 1.9: Three unreliable systems

Let Ai be the event that the ith component is functioning, i = 1, 2, 3; and let
Da, Db, Dc be the events that respectively the series, parallel and 2-out-of-3
system is functioning. Then,

Da = A1 ∩A2 ∩A3 ,

and
Db = A1 ∪A2 ∪A3 .

Example 2.7 (System Reliability) In Figure 1.9 three systems are depicted,
each consisting of 3 unreliable components. The series system works if and only
if (abbreviated as iff) all components work; the parallel system works iff at least
one of the components works; and the 2-out-of-3 system works iff at least 2 out
of 3 components work.
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Also,

Dc = (A1 ∩A2 ∩A3) ∪ (Ac1 ∩A2 ∩A3) ∪ (A1 ∩Ac2 ∩A3) ∪ (A1 ∩A2 ∩Ac3)

= (A1 ∩A2) ∪ (A1 ∩A3) ∪ (A2 ∩A3) .

Two useful results in the theory of sets are the following, due to De Morgan:
If {Ai} is a collection of events (sets) then(⋃

i

Ai

)c
=
⋂
i

Aci

and (⋂
i

Ai

)c
=
⋃
i

Aci

This is easily proved via Venn diagrams. Note that if we interpret Ai as the
event that a component works, then the left-hand side of (1.1) is the event that
the corresponding parallel system is not working. The right hand is the event
that at all components are not working. Clearly these two events are the same.

The third ingredient in the model for a random experiment is the specification
of the probability of the events. It tells us how likely it is that a particular event
will occur.

Axiom 1: P(A) ≥ 0.
Axiom 2: P(Ω) = 1.
Axiom 3: For any sequence A1, A2, . . . of disjoint events we have

P(
⋃
i

Ai) =
∑
i

P(Ai

Axiom 2 just states that the probability of the “certain” event Ω is 1. Property
(1.3) is the crucial property of a probability, and is sometimes referred to as the
sum rule. It just states that if an event can happen in a number of different
ways that cannot happen at the same time, then the probability of this event is
simply the sum of the probabilities of the composing events.

Note that a probability rule P has exactly the same properties as the common
“area measure”. For example, the total area of the union of the triangles in

2.4 Probability

Definition 2.2 A probability P is a rule (function) which assigns a positive
number to each event, and which satisfies the following axioms:

Figure 2.10 is equal to the sum of the areas of the individual triangles. This

) . (2.3)

. (2.2)

(2.1)
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is how you should interpret property (1.3). But instead of measuring areas, P
measures probabilities.

As a direct consequence of the axioms we have the following properties for P.

1. P(∅) = 0.

2. A ⊂ B =⇒ P(A) ≤ P(B).

3. P(A) ≤ 1.

4. P(Ac) = 1− P(A).

5. P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof.

1. Ω = Ω ∩ ∅ ∩ ∅ ∩ · · · , therefore, by the sum rule, P(Ω) = P(Ω) + P(∅) +
P(∅) + · · · , and therefore, by the second axiom, 1 = 1 +P(∅) +P(∅) + · · · ,
from which it follows that P(∅) = 0.

2. If A ⊂ B, then B = A∪(B∩Ac), where A and B∩Ac are disjoint. Hence,
by the sum rule, P(B) = P(A) + P(B ∩Ac), which is (by the first axiom)
greater than or equal to P(A).

3. This follows directly from property 2 and axiom 2, since A ⊂ Ω.

4. Ω = A ∪ Ac, where A and Ac are disjoint. Hence, by the sum rule and
axiom 2: 1 = P(Ω) = P(A) + P(Ac), and thus P(Ac) = 1− P(A).

5. Write A ∪ B as the disjoint union of A and B ∩ Ac. Then, P(A ∪ B) =
P(A) + P(B ∩ Ac). Also, B = (A ∩ B) ∪ (B ∩ Ac), so that P(B) =
P(A ∩B) + P(B ∩Ac). Combining these two equations gives P(A ∪B) =
P(A) + P(B)− P(A ∩B).

Figure 2.10: The probability measure has the same properties as the “area”
measure: the total area of the triangles is the sum of the areas of the idividual
triangles.

Theorem 2.1 Let A and B be events. Then,
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We have now completed our model for a random experiment. It is up to the
modeller to specify the sample space Ω and probability measure P which most
closely describes the actual experiment. This is not always as straightforward
as it looks, and sometimes it is useful to model only certain observations in the
experiment. This is where random variables come into play, and we will discuss
these in the next chapter.

Obviously, Ω = {1, 2, . . . , 6}; and some common sense shows that we should
define P by

P(A) =
|A|
6
, A ⊂ Ω,

where |A| denotes the number of elements in set A. For example, the probability
of getting an even number is P({2, 4, 6}) = 3/6 = 1/2.

In many applications the sample space is countable, i.e. Ω = {a1, a2, . . . , an} or
Ω = {a1, a2, . . .}. Such a sample space is called discrete.

The easiest way to specify a probability P on a discrete sample space is to
specify first the probability pi of each elementary event {ai} and then to
define

P(A) =
∑
i:ai∈A

pi , for all A ⊂ Ω.

This idea is graphically represented in Figure 1.11. Each element ai in the
sample is assigned a probability weight pi represented by a black dot. To find
the probability of the set A we have to sum up the weights of all the elements
in A.
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Example 2.8 Consider the experiment where we throw a fair die. How should
we define and P?

Figure 2.11: A discrete sample space
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Again, it is up to the modeller to properly specify these probabilities. Fortu-
nately, in many applications all elementary events are equally likely, and thus
the probability of each elementary event is equal to 1 divided by the total num-
ber of elements in Ω. E.g., in Example 1.8 each elementary event has probability
1/6.

Because the “equally likely” principle is so important, we formulate it as a
theorem.

P(A) =
|A|
|Ω|

.

Thus for such sample spaces the calculation of probabilities reduces to counting
the number of outcomes (in A and Ω).

When the sample space is not countable, for example Ω = R+, it is said to be
continuous.

The sample space is obviously Ω = [0, 1], which is a continuous sample space.
We cannot define P via the elementary events {x}, x ∈ [0, 1] because each of
these events must have probability 0 (!). However we can define P as follows:
For each 0 ≤ a ≤ b ≤ 1, let

P([a, b]) = b− a .

This completely specifies P. In particular, we can find the probability that the
point falls into any (sufficiently nice) set A as the length of that set.

Counting is not always easy. Let us first look at some examples:

1. A multiple choice form has 20 questions; each question has 3 choices. In
how many possible ways can the exam be completed?

2. Consider a horse race with 8 horses. How many ways are there to gamble
on the placings (1st, 2nd, 3rd).

3. Jessica has a collection of 20 CDs, she wants to take 3 of them to work.
How many possibilities does she have?

Theorem 2.2 (Equilikely Principle) If has a finite number of outcomes,
and all are equally likely, then the probability of each event A is defined as

Example 2.9 We draw at random a point in the interval [0, 1]. Each point is
equally likely to be drawn. How do we specify the model for this experiment?

2.5 Counting
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4. How many different throws are possible with 3 dice?

4

2 9

1

5

3

8 10 7

6

Urn (n balls)

Note order (yes/no)

Replace balls (yes/no)

Take k  balls

Consider an urn with n different balls, numbered 1, . . . , n from which k balls are
drawn. This can be done in a number of different ways. First, the balls can be
drawn one-by-one, or one could draw all the k balls at the same time. In the first
case the order in which the balls are drawn can be noted, in the second case
that is not possible. In the latter case we can (and will) still assume the balls are
drawn one-by-one, but that the order is not noted. Second, once a ball is drawn,
it can either be put back into the urn (after the number is recorded), or left
out. This is called, respectively, drawing with and without replacement. All
in all there are 4 possible experiments: (ordered, with replacement), (ordered,
without replacement), (unordered, without replacement) and (ordered, with
replacement). The art is to recognise a seemingly unrelated counting problem
as one of these four urn problems. For the 4 examples above we have the
following

1. Example 1 above can be viewed as drawing 20 balls from an urn containing
3 balls, noting the order, and with replacement.

2. Example 2 is equivalent to drawing 3 balls from an urn containing 8 balls,
noting the order, and without replacement.

3. In Example 3 we take 3 balls from an urn containing 20 balls, not noting
the order, and without replacement

4. Finally, Example 4 is a case of drawing 3 balls from an urn containing 6
balls, not noting the order, and with replacement.

Before we proceed it is important to introduce a notation that reflects whether
the outcomes/arrangements are ordered or not. In particular, we denote ordered
arrangements by vectors, e.g., (1, 2, 3) 6= (3, 2, 1), and unordered arrangements

To be able to comfortably solve a multitude of counting problems requires a
lot of experience and practice, and even then, some counting problems remain
exceedingly hard. Fortunately, many counting problems can be cast into the

simple framework of drawing balls from an urn, see Figure 2.12.

Figure 2.12: An urn with n balls
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by sets, e.g., {1, 2, 3} = {3, 2, 1}. We now consider for each of the four cases
how to count the number of arrangements. For simplicity we consider for each
case how the counting works for n = 4 and k = 3, and then state the general
situation.

Drawing with Replacement, Ordered

Here, after we draw each ball, note the number on the ball, and put the ball
back. Let n = 4, k = 3. Some possible outcomes are (1, 1, 1), (4, 1, 2), (2, 3, 2),
(4, 2, 1), . . . To count how many such arrangements there are, we can reason as
follows: we have three positions (·, ·, ·) to fill in. Each position can have the
numbers 1,2,3 or 4, so the total number of possibilities is 4× 4× 4 = 43 = 64.
This is illustrated via the following tree diagram:

4

1

2

3

(3,2,1)

(1,1,1)
First position

Second position
Third position

1

2

3

4

For general n and k we can reason analogously to find:

The number of ordered arrangements of k numbers chosen from
{1, . . . , n}, with replacement (repetition) is nk.

Drawing Without Replacement, Ordered

Here we draw again k numbers (balls) from the set {1, 2, . . . , n}, and note the
order, but now do not replace them. Let n = 4 and k = 3. Again there
are 3 positions to fill (·, ·, ·), but now the numbers cannot be the same, e.g.,
(1,4,2),(3,2,1), etc. Such an ordered arrangements called a permutation of
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size k from set {1, . . . , n}. (A permutation of {1, . . . , n} of size n is simply
called a permutation of {1, . . . , n} (leaving out “of size n”). For the 1st position
we have 4 possibilities. Once the first position has been chosen, we have only
3 possibilities left for the second position. And after the first two positions
have been chosen there are 2 positions left. So the number of arrangements is
4×3×2 = 24 as illustrated in Figure 1.5, which is the same tree as in Figure 1.5,
but with all “duplicate” branches removed.

4

2

3

(3,2,1)

First position
Second position

Third position

1

2

3

4

1

3

4

1

2

4

1

2

3

1

4
(2,3,1)

(2,3,4)

For general n and k we have:

The number of permutations of size k from {1, . . . , n} is nPk =
n(n− 1) · · · (n− k + 1).

In particular, when k = n, we have that the number of ordered arrangements
of n items is n! = n(n − 1)(n − 2) · · · 1, where n! is called n-factorial. Note
that

nPk =
n!

(n− k)!
.

Drawing Without Replacement, Unordered

This time we draw k numbers from {1, . . . , n} but do not replace them (no
replication), and do not note the order (so we could draw them in one grab).
Taking again n = 4 and k = 3, a possible outcome is {1, 2, 4}, {1, 2, 3}, etc.
If we noted the order, there would be nPk outcomes, amongst which would be
(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2) and (4,2,1). Notice that these 6 permuta-
tions correspond to the single unordered arrangement {1, 2, 4}. Such unordered
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arrangements without replications are called combinations of size k from the
set {1, . . . , n}.

To determine the number of combinations of size k simply need to divide nPk
be the number of permutations of k items, which is k!. Thus, in our example
(n = 4, k = 3) there are 24/6 = 4 possible combinations of size 3. In general
we have:

The number of combinations of size k from the set {1, . . . n} is

nCk =

(
n

k

)
=

nPk
k!

=
n!

(n− k)! k!
.

Note the two different notations for this number. We will use the second one.

Drawing With Replacement, Unordered

Taking n = 4, k = 3, possible outcomes are {3, 3, 4}, {1, 2, 4}, {2, 2, 2}, etc.
The trick to solve this counting problem is to represent the outcomes in a
different way, via an ordered vector (x1, . . . , xn) representing how many times
an element in {1, . . . , 4} occurs. For example, {3, 3, 4} corresponds to (0, 0, 2, 1)
and {1, 2, 4} corresponds to (1, 1, 0, 1). Thus, we can count how many distinct
vectors (x1, . . . , xn) there are such that the sum of the components is 3, and
each xi can take value 0,1,2 or 3. Another way of looking at this is to consider
placing k = 3 balls into n = 4 urns, numbered 1,. . . ,4. Then (0, 0, 2, 1) means
that the third urn has 2 balls and the fourth urn has 1 ball. One way to
distribute the balls over the urns is to distribute n − 1 = 3 “separators” and
k = 3 balls over n− 1 + k = 6 positions, as indicated in Figure 1.13.

63 4 521

Figure 1.13: distributing k balls over n urns

The number of ways this can be done is the equal to the number of ways k
positions for the balls can be chosen out of n−1 +k positions, that is,

(
n+k−1

k

)
.

We thus have:

The number of different sets {x1, . . . , xk} with xi ∈ {1, . . . , n}, i =
1, . . . , k is (

n+ k − 1

k

)
.
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Returning to our original four problems, we can now solve them easily:

1. The total number of ways the exam can be completed is 320 = 3, 486, 784, 401.

2. The number of placings is 8P3 = 336.

3. The number of possible combinations of CDs is
(

20
3

)
= 1140.

4. The number of different throws with three dice is
(

8
3

)
= 56.

More examples

Here are some more examples. Not all problems can be directly related to the
4 problems above. Some require additional reasoning. However, the counting
principles remain the same.

1. In how many ways can the numbers 1,. . . ,5 be arranged, such as 13524,
25134, etc?

Answer: 5! = 120.

2. How many different arrangements are there of the numbers 1,2,. . . ,7, such
that the first 3 numbers are 1,2,3 (in any order) and the last 4 numbers
are 4,5,6,7 (in any order)?

Answer: 3!× 4!.

3. How many different arrangements are there of the word “arrange”, such
as “aarrnge”, “arrngea”, etc?

Answer: Convert this into a ball drawing problem with 7 balls, numbered
1,. . . ,7. Balls 1 and 2 correspond to ’a’, balls 3 and 4 to ’r’, ball 5 to ’n’,
ball 6 to ’g’ and ball 7 to ’e’. The total number of permutations of the
numbers is 7!. However, since, for example, (1,2,3,4,5,6,7) is identical to
(2,1,3,4,5,6,7) (when substituting the letters back), we must divide 7! by
2!× 2! to account for the 4 ways the two ’a’s and ’r’s can be arranged. So
the answer is 7!/4 = 1260.

4. An urn has 1000 balls, labelled 000, 001, . . . , 999. How many balls are
there that have all number in ascending order (for example 047 and 489,
but not 033 or 321)?

Answer: There are 10× 9× 8 = 720 balls with different numbers. Each
triple of numbers can be arranged in 3! = 6 ways, and only one of these
is in ascending order. So the total number of balls in ascending order is
720/6 = 120.

5. In a group of 20 people each person has a different birthday. How many
different arrangements of these birthdays are there (assuming each year
has 365 days)?

Answer: 365P20.
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Once we’ve learned how to count, we can apply the equilikely principle to
calculate probabilities:

1. What is the probability that out of a group of 40 people all have different
birthdays?

Answer: Choosing the birthdays is like choosing 40 balls with replace-
ment from an urn containing the balls 1,. . . ,365. Thus, our sample
space Ω consists of vectors of length 40, whose components are cho-
sen from {1, . . . , 365}. There are |Ω| = 36540 such vectors possible,
and all are equally likely. Let A be the event that all 40 people have
different birthdays. Then, |A| = 365P40 = 365!/325! It follows that
P(A) = |A|/|Ω| ≈ 0.109, so not very big!

2. What is the probability that in 10 tosses with a fair coin we get exactly
5 Heads and 5 Tails?

Answer: Here Ω consists of vectors of length 10 consisting of 1s (Heads)
and 0s (Tails), so there are 210 of them, and all are equally likely. Let A
be the event of exactly 5 heads. We must count how many binary vectors
there are with exactly 5 1s. This is equivalent to determining in how
many ways the positions of the 5 1s can be chosen out of 10 positions,
that is,

(
10
5

)
. Consequently, P(A) =

(
10
5

)
/210 = 252/1024 ≈ 0.25.

3. We draw at random 13 cards from a full deck of cards. What is the
probability that we draw 4 Hearts and 3 Diamonds?

Answer: Give the cards a number from 1 to 52. Suppose 1–13 is Hearts,
14–26 is Diamonds, etc. Ω consists of unordered sets of size 13, without
repetition, e.g., {1, 2, . . . , 13}. There are |Ω| =

(
52
13

)
of these sets, and they

are all equally likely. Let A be the event of 4 Hearts and 3 Diamonds.
To form A we have to choose 4 Hearts out of 13, and 3 Diamonds out
of 13, followed by 6 cards out of 26 Spade and Clubs. Thus, |A| =(

13
4

)
×
(

13
3

)
×
(

26
6

)
. So that P(A) = |A|/|Ω| ≈ 0.074.

B
A

Ω

How do probabilities change when we know
some event B ⊂ Ω has occurred? Suppose B
has occurred. Thus, we know that the out-
come lies in B. Then A will occur if and only
if A ∩B occurs, and the relative chance of A
occurring is therefore

P(A ∩B)/P(B).

This leads to the definition of the condi-
tional probability of A given B:

2.6 Conditional probability and independence
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P(A |B) =
P(A ∩B)

Let B be the event that the sum is 10,

B = {(4, 6), (5, 5), (6, 4)}.

Let A be the event that one 6 is cast,

A = {(1, 6), . . . , (5, 6), (6, 1), . . . , (6, 5)}.

Then, A ∩ B = {(4, 6), (6, 4)}. And, since all elementary events are equally
likely, we have

P(A |B) =
2/36

3/36
=

2

3
.

A CB

Suppose, again without loss of generality that Monte opens curtain B. The
contestant is now offered the opportunity to switch to curtain C. Should the
contestant stay with his/her original choice (A) or switch to the other unopened
curtain (C)?

Notice that the sample space consists here of 4 possible outcomes: Ac: The
prize is behind A, and Monte opens C; Ab: The prize is behind A, and Monte
opens B; Bc: The prize is behind B, and Monte opens C; and Cb: The prize

2.4P(B)

Example 2.10 We throw two dice. Given that the sum of the eyes is 10, what
is the probability that one 6 is cast?

Example 2.11 (Monte Hall Problem) This is a nice application of condi-
tional probability. Consider a quiz in which the final contestant is to choose a
prize which is hidden behind one three curtains (A, B or C). Suppose without
loss of generality that the contestant chooses curtain A. Now the quiz master
(Monte Hall) always opens one of the other curtains: if the prize is behind B,
Monte opens C, if the prize is behind C, Monte opens B, and if the prize is
behind A, Monte opens B or C with equal probability, e.g., by tossing a coin
(of course the contestant does not see Monte tossing the coin!).
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is behind C, and Monte opens B. Let A, B, C be the events that the prize
is behind A, B and C, respectively. Note that A = {Ac,Ab}, B = {Bc} and
C = {Cb}, see Figure 1.14.

Ab

Cb Bc

1/6 1/6

1/3 1/3

Ac

Now, obviously P(A) = P(B) = P(C), and since Ac and Ab are equally likely,
we have P({Ab}) = P({Ac}) = 1/6. Monte opening curtain B means that we
have information that event {Ab,Cb} has occurred. The probability that the
prize is under A given this event, is therefore

P(A |B is opened) =
P({Ac,Ab} ∩ {Ab,Cb})

P({Ab,Cb})
=

P({Ab})
P({Ab,Cb})

=
1/6

1/6 + 1/3
=

1

3
.

This is what we expected: the fact that Monte opens a curtain does not
give us any extra information that the prize is behind A. So one could think
that it doesn’t matter to switch or not. But wait a minute! What about
P(B |B is opened)? Obviously this is 0 — opening curtain B means that we
know that event B cannot occur. It follows then that P(C |B is opened) must
be 2/3, since a conditional probability behaves like any other probability and
must satisfy axiom 2 (sum up to 1). Indeed,

P(C |B is opened) =
P({Cb} ∩ {Ab,Cb})

P({Ab,Cb})
=

P({Cb})
P({Ab,Cb})

=
1/3

1/6 + 1/3
=

2

3
.

Hence, given the information that B is opened, it is twice as likely that the
prize is under C than under A. Thus, the contestant should switch!

By the definition of conditional probability we have

P(A ∩B) = P(A)P(B |A). (1.5)

We can generalise this to n intersections A1∩A2∩· · ·∩An, which we abbreviate
as A1A2 · · ·An. This gives the product rule of probability (also called chain
rule).

1, . . . , An be a sequence of events with
P(A1 . . . An−1) > 0. Then,

P(A1 · · ·An) = P(A1)P(A2 |A1)P(A3 |A1A2) · · ·P(An |A1 · · ·An−1). (1.6)

Figure 2.14: The sample space for the Monte Hall problem.

2.6.1 Product Rule

Theorem 2.3 (Product rule) Let A
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Proof. We only show the proof for 3 events, since the n > 3 event case follows
similarly. By applying (1.4) to P(B |A) and P(C |A ∩B), the left-hand side of
(1.6) is we have,

P(A)P(B |A)P(C |A ∩B) = P(A)
P(A ∩B)

P(A)

P(A ∩B ∩ C)

P(A ∩B)
= P(A ∩B ∩ C) ,

which is equal to the left-hand size of (1.6).

Solution: Let Ai be the event that the ith ball is black. We wish to find the
probability of A1A2A3, which by the product rule (1.6) is

P(A1)P(A2 |A1)P(A3 |A1A2) =
5

10

4

9

3

8
= 0.083.

Note that this problem can also be easily solved by counting arguments, as in
the previous section.

365× 364× · · · × 326

365× 365× · · · × 365
≈ 0.109. (1.7)

We can derive this also via the product rule. Namely, let Ai be the event that
the first i people have different birthdays, i = 1, 2, . . .. Note that A1 ⊃ A2 ⊃
A3 ⊃ · · · . Therefore An = A1 ∩A2 ∩ · · · ∩An, and thus by the product rule

P(A40) = P(A1)P(A2 |A1)P(A3 |A2) · · ·P(A40 |A39) .

Now P(Ak |Ak−1 = (365− k + 1)/365 because given that the first k − 1 people
have different birthdays, there are no duplicate birthdays if and only if the
birthday of the k-th is chosen from the 365 − (k − 1) remaining birthdays.
Thus, we obtain (1.7). More generally, the probability that n randomly selected
people have different birthdays is

P(An) =
365

365
× 364

365
× 363

365
× · · · × 365− n+ 1

365
, n ≥ 1 .

A graph of P(An) against n is given in Figure 1.15. Note that the probability
P(An) rapidly decreases to zero. Indeed, for n = 23 the probability of having
no duplicate birthdays is already less than 1/2.

Example 2.12 We draw consecutively 3 balls from a bowl with 5 white and 5
black balls, without putting them back. What is the probability that all balls
will be black?

Example 2.13 (Birthday Problem) In Section 1.5 we derived by counting
arguments that the probability that all people in a group of 40 have different
birthdays is
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Suppose B1, B2, . . . , Bn is a partition of Ω. That is, B1, B2, . . . , Bn are disjoint
and their union is Ω, see Figure 1.16

A

B B B B BB2 3 4 5
61

Ω

Then, by the sum rule, P(A) =
∑n

i=1 P(A ∩Bi) and hence, by the definition of
conditional probability we have

P(A) =
∑n

i=1 P(A|Bi)P(Bi)

This is called the law of total probability.

Combining the Law of Total Probability with the definition of conditional prob-
ability gives Bayes’ Rule:

P(Bj |A) =
P(A|Bj)P(Bj)∑n
i=1 P(A|Bi)P(Bi)

Figure 2.15: The probability of having no duplicate birthday in a group of n
people, against n.

2.6.2 Law of Total Probability and Bayes’ Rule

Figure 2.16: A partition of the sample space

Example 2.14 A company has three factories (1, 2 and 3) that produce the
same chip, each producing 15%, 35% and 50% of the total production. The
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probability of a defective chip at 1, 2, 3 is 0.01, 0.05, 0.02, respectively. Suppose
someone shows us a defective chip. What is the probability that this chip comes
from factory 1?

Let Bi denote the event that the chip is produced by factory i. The {B〉} form
a partition of Ω. Let A denote the event that the chip is faulty. By Bayes’ rule,

P(B1 |A) =
0.15× 0.01

0.15× 0.01 + 0.35× 0.05 + 0.5× 0.02
= 0.052 .

Independence is a very important concept in probability and statistics. Loosely
speaking it models the lack of information between events. We say A and
B are independent if the knowledge that A has occurred does not change the
probability that B occurs. That is

A, B independent ⇔ P(A|B) = P(A)

Since P(A|B) = P(A ∩B)/P(B) an alternative definition of independence is

A, B independent ⇔ P(A ∩B) = P(A)P(B)

This definition covers the case B = ∅ (empty set). We can extend the definition
to arbitrarily many events:

1, A2, . . . , are said to be (mutually) indepen-
dent if for any n and any choice of distinct indices i1, . . . , ik,

P(Ai1 ∩Ai2 ∩ · · · ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik) .

Ω = {(0, . . . , 0), . . . , (1, . . . , 1)} .

Here 0 represent Tails and 1 represents Heads. For example, the outcome
(0, 1, 0, 1, . . .) means that the first time Tails is thrown, the second time Heads,
the third times Tails, the fourth time Heads, etc.

How should we define P? Let Ai denote the event of Heads during the ith throw,
i = 1, . . . , n. Then, P should be such that the events A1, . . . , An are independent.
And, moreover, P(Ai) should be the same for all i. We don’t know whether the
coin is fair or not, but we can call this probability p (0 ≤ p ≤ 1).

2.6.3 Independence

Definition 2.3 The events A

Remark 2.1 In most cases independence of events is a model assumption.
That is, we assume that there exists a P such that certain events are indepen-
dent.

Example 2.15 (A Coin Toss Experiment and the Binomial Law) We
ipa coin n times. We can write the sample space as the set of binary n-tuples:
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These two rules completely specify P. For example, the probability that the
first k throws are Heads and the last n− k are Tails is

P({(1, 1, . . . , 1, 0, 0, . . . , 0)}) = P(A1) · · ·P(Ak) · · ·P(Ack+1) · · ·P(Acn)

= pk(1− p)n−k.

Also, let Bk be the event that there are k Heads in total. The probability of
this event is the sum the probabilities of elementary events {(x1, . . . , xn)} such
that x1 + · · ·+ xn = k. Each of these events has probability pk(1− p)n−k, and
there are

(
n
k

)
of these. Thus,

P(Bk) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n .

We have thus discovered the binomial distribution.
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