## CONTINUOUS RANDOM VARIABLES

DEFINITION: A continuous random variable is a function $X(s)$ from an uncountably infinite sample space $\mathcal{S}$ to the real numbers $\mathbb{R}$,

$$
X(\cdot) \quad: \quad \mathcal{S} \quad \rightarrow \quad \mathbb{R} .
$$

## EXAMPLE :

Rotate a pointer about a pivot in a plane (like a hand of a clock).
The outcome is the angle where it stops : $2 \pi \theta$, where $\theta \in(0,1]$.
A good sample space is all values of $\theta$, i.e. $\mathcal{S}=(0,1]$.
A very simple example of a continuous random variable is $X(\theta)=\theta$.

Suppose any outcome, i.e., any value of $\theta$ is "equally likely".
What are the values of

$$
P\left(0<\theta \leq \frac{1}{2}\right) \quad, \quad P\left(\frac{1}{3}<\theta \leq \frac{1}{2}\right) \quad, \quad P\left(\theta=\frac{1}{\sqrt{2}}\right) ?
$$

The (cumulative) probability distribution function is defined as

$$
F_{X}(x) \equiv P(X \leq x)
$$

Thus

$$
F_{X}(b)-F_{X}(a) \equiv P(a<X \leq b)
$$

We must have

$$
F_{X}(-\infty)=0 \quad \text { and } \quad F_{X}(\infty)=1
$$

i.e.,

$$
\lim _{x \rightarrow-\infty} F_{X}(x)=0
$$

and

$$
\lim _{x \rightarrow \infty} F_{X}(x)=1
$$

Also, $F_{X}(x)$ is a non-decreasing function of $x$. (Why?)
NOTE : All the above is the same as for discrete random variables !

EXAMPLE: In the " pointer example", where $X(\theta)=\theta$, we have the probability distribution function


Note that

$$
\begin{gathered}
F\left(\frac{1}{3}\right) \equiv P\left(X \leq \frac{1}{3}\right)=\frac{1}{3} \quad, \quad F\left(\frac{1}{2}\right) \equiv P\left(X \leq \frac{1}{2}\right)=\frac{1}{2}, \\
P\left(\frac{1}{3}<X \leq \frac{1}{2}\right)=F\left(\frac{1}{2}\right)-F\left(\frac{1}{3}\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} .
\end{gathered}
$$

QUESTION : What is $P\left(\frac{1}{3} \leq X \leq \frac{1}{2}\right)$ ?

The probability density function is the derivative of the probability distribution function :

$$
f_{X}(x) \equiv F_{X}^{\prime}(x) \equiv \frac{d}{d x} F_{X}(x)
$$

EXAMPLE: In the "pointer example"

$$
F_{X}(x)= \begin{cases}0, & x \leq 0 \\ x, & 0<x \leq 1 \\ 1, & 1<x\end{cases}
$$

Thus

$$
f_{X}(x)=F_{X}^{\prime}(x)= \begin{cases}0, & x \leq 0 \\ 1, & 0<x \leq 1 \\ 0, & 1<x\end{cases}
$$

NOTATION: When it is clear what $X$ is then we also write

$$
f(x) \text { for } f_{X}(x), \quad \text { and } \quad F(x) \text { for } F_{X}(x) .
$$

EXAMPLE: ( continued...)

$$
F(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
x, & 0<x \leq 1 \\
1, & 1<x
\end{array} \quad, \quad f(x)= \begin{cases}0, & x \leq 0 \\
1, & 0<x \leq 1 \\
0, & 1<x\end{cases}\right.
$$



Distribution function


NOTE :
$P\left(\frac{1}{3}<X \leq \frac{1}{2}\right)=\int_{\frac{1}{3}}^{\frac{1}{2}} f(x) d x=\frac{1}{6}=$ the shaded area.

In general, from
with

$$
f(x) \equiv F^{\prime}(x)
$$

$$
F(-\infty)=0 \quad \text { and } \quad F(\infty)=1
$$

we have from Calculus the following basic identities:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} F^{\prime}(x) d x=F(\infty)-F(-\infty)=1, \\
& \int_{-\infty}^{x} f(x) d x=F(x)-F(-\infty)=F(x)=P(X \leq x), \\
& \int_{a}^{b} f(x) d x=F(b)-F(a)=P(a<X \leq b), \\
& \int_{a}^{a} f(x) d x=F(a)-F(a)=0=P(X=a) .
\end{aligned}
$$

EXERCISE : Draw graphs of the distribution and density functions

$$
F(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
1-e^{-x}, & x>0
\end{array} \quad, \quad f(x)=\left\{\begin{array}{ll}
0, & x \leq 0 \\
e^{-x}, & x>0
\end{array},\right.\right.
$$

and verify that

- $F(-\infty)=0, \quad F(\infty)=1$,
- $\quad f(x)=F^{\prime}(x)$,
- $F(x)=\int_{0}^{x} f(x) d x, \quad$ (Why is zero as lower limit OK ?)
- $\int_{0}^{\infty} f(x) d x=1$,
- $P(0<X \leq 1)=F(1)-F(0)=F(1)=1-e^{-1} \cong 0.63$,
- $P(X>1)=1-F(1)=e^{-1} \cong 0.37$,
- $P(1<X \leq 2)=F(2)-F(1)=e^{-1}-e^{-2} \cong 0.23$.

EXERCISE : For positive integer $n$, consider the density functions

$$
f_{n}(x)=\left\{\begin{array}{cc}
c x^{n}\left(1-x^{n}\right), & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Determine the value of $c$ in terms of $n$.
- Draw the graph of $f_{n}(x)$ for $n=1,2,4,8,16$.
- Determine the distribution function $F_{n}(x)$.
- Draw the graph of $F_{n}(x)$ for $n=1,2,3,4,8,16$.
- Determine $P\left(0 \leq X \leq \frac{1}{2}\right)$ in terms of $n$.
- What happens to $P\left(0 \leq X \leq \frac{1}{2}\right)$ when $n$ becomes large?
- Determine $P\left(\frac{9}{10} \leq X \leq 1\right)$ in terms of $n$.
- What happens to $P\left(\frac{9}{10} \leq X \leq 1\right)$ when $n$ becomes large?


## Joint distributions

A joint probability density function $f_{X, Y}(x, y)$ must satisfy

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1 \quad(\text { "Volume" }=1)
$$

The corresponding joint probability distribution function is

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}(x, y) d x d y
$$

By Calculus we have $\quad \frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}=f_{X, Y}(x, y)$.

Also,

$$
P(a<X \leq b, c<Y \leq d)=\int_{c}^{d} \int_{a}^{b} f_{X, Y}(x, y) d x d y
$$

## EXAMPLE :

If

$$
f_{X, Y}(x, y)= \begin{cases}1 & \text { for } x \in(0,1] \text { and } y \in(0,1] \\ 0 & \text { otherwise }\end{cases}
$$

then, for $x \in(0,1]$ and $y \in(0,1]$,

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\int_{0}^{y} \int_{0}^{x} 1 d x d y=x y
$$

Thus

$$
F_{X, Y}(x, y)=x y, \quad \text { for } x \in(0,1] \text { and } y \in(0,1] .
$$

For example

$$
P\left(X \leq \frac{1}{3}, Y \leq \frac{1}{2}\right) \quad=\quad F_{X, Y}\left(\frac{1}{3}, \frac{1}{2}\right)=\frac{1}{6} .
$$




Also,

$$
P\left(\frac{1}{3} \leq X \leq \frac{1}{2}, \frac{1}{4} \leq Y \leq \frac{3}{4}\right)=\int_{\frac{1}{4}}^{\frac{3}{4}} \int_{\frac{1}{3}}^{\frac{1}{2}} f(x, y) d x d y=\frac{1}{12} .
$$

EXERCISE : Show that we can also compute this as follows :

$$
F\left(\frac{1}{2}, \frac{3}{4}\right)-F\left(\frac{1}{3}, \frac{3}{4}\right)-F\left(\frac{1}{2}, \frac{1}{4}\right)+F\left(\frac{1}{3}, \frac{1}{4}\right)=\frac{1}{12} .
$$

and explain why !

## Marginal density functions

The marginal density functions are

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \quad, \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

with corresponding marginal distribution functions

$$
\begin{aligned}
& F_{X}(x) \equiv P(X \leq x)=\int_{-\infty}^{x} f_{X}(x) d x=\int_{-\infty}^{x} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d y d x \\
& F_{Y}(y) \equiv P(Y \leq y)=\int_{-\infty}^{y} f_{Y}(y) d y=\int_{-\infty}^{y} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

By Calculus we have

$$
\frac{d F_{X}(x)}{d x}=f_{X}(x) \quad, \quad \frac{d F_{Y}(y)}{d y}=f_{Y}(y)
$$

EXAMPLE: If

$$
\begin{aligned}
& \text { PLE : If } \\
& f_{X, Y}(x, y)= \begin{cases}1 & \text { for } x \in(0,1] \text { and } y \in(0,1], \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

then, for $x \in(0,1]$ and $y \in(0,1]$,

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{1} f_{X, Y}(x, y) d y=\int_{0}^{1} 1 d y=1 \\
& f_{Y}(y)=\int_{0}^{1} f_{X, Y}(x, y) d x=\int_{0}^{1} 1 d x=1 \\
& F_{X}(x)=P(X \leq x)=\int_{0}^{x} f_{X}(x) d x=x \\
& F_{Y}(y)=P(Y \leq y)=\int_{0}^{y} f_{Y}(y) d y=y
\end{aligned}
$$

For example

$$
P\left(X \leq \frac{1}{3}\right)=F_{X}\left(\frac{1}{3}\right)=\frac{1}{3} \quad, \quad P\left(Y \leq \frac{1}{2}\right)=F_{Y}\left(\frac{1}{2}\right)=\frac{1}{2}
$$

## EXERCISE :

Let $F_{X, Y}(x, y)=\left\{\begin{array}{cl}\left(1-e^{-x}\right)\left(1-e^{-y}\right) & \text { for } x \geq 0 \text { and } y \geq 0, \\ 0 & \text { otherwise } .\end{array}\right.$

- Verify that

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F}{\partial x \partial y}=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$



Density function $f_{X, Y}(x, y)$


Distribution function $F_{X, Y}(x, y)$

EXERCISE: ( continued $\cdot$..)
$F_{X, Y}(x, y)=\left(1-e^{-x}\right)\left(1-e^{-y}\right) \quad, \quad f_{X, Y}(x, y)=e^{-x-y}, \quad$ for $x, y \geq 0$.

Also verify the following :

- $\quad F(0,0)=0 \quad, \quad F(\infty, \infty)=1$,
- $\int_{0}^{\infty} \int_{0}^{\infty} f_{X, Y}(x, y) d x d y=1, \quad$ (Why zero lower limits ?)
- $f_{X}(x)=\int_{0}^{\infty} e^{-x-y} d y=e^{-x}$,
- $f_{Y}(y)=\int_{0}^{\infty} e^{-x-y} d x=e^{-y}$.
- $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$. (So ?)

EXERCISE: ( continued $\cdot \cdot$ )
$F_{X, Y}(x, y)=\left(1-e^{-x}\right)\left(1-e^{-y}\right) \quad, \quad f_{X, Y}(x, y)=e^{-x-y}, \quad$ for $x, y \geq 0$.

Also verify the following :

- $F_{X}(x)=\int_{0}^{x} f_{X}(x) d x=\int_{0}^{x} e^{-x} d x=1-e^{-x}$,
- $F_{Y}(y)=\int_{0}^{y} f_{Y}(y) d y=\int_{0}^{y} e^{-y} d y=1-e^{-y}$,
- $F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)$.
- $P(1<x<\infty)=F_{X}(\infty)-F_{X}(1)=1-\left(1-e^{-1}\right)=e^{-1} \cong 0.37$,
- $P(1<x \leq 2,0<y \leq 1)=\int_{0}^{1} \int_{1}^{2} e^{-x-y} d x d y$

$$
=\left(e^{-1}-e^{-2}\right)\left(1-e^{-1}\right) \cong 0.15,
$$

## Independent continuous random variables

Recall that two events $E$ and $F$ are independent if

$$
P(E F)=P(E) P(F) .
$$

Continuous random variables $X(s)$ and $Y(s)$ are independent if

$$
P\left(X \in I_{X}, Y \in I_{Y}\right)=P\left(X \in I_{X}\right) \cdot P\left(Y \in I_{Y}\right),
$$

for all allowable sets $I_{X}$ and $I_{Y}$ (typically intervals) of real numbers.

Equivalently, $X(s)$ and $Y(s)$ are independent if for all such sets $I_{X}$ and $I_{Y}$ the events

$$
X^{-1}\left(I_{X}\right) \text { and } Y^{-1}\left(I_{Y}\right),
$$

are independent in the sample space $\mathcal{S}$.

NOTE :

$$
\begin{aligned}
X^{-1}\left(I_{X}\right) & \equiv\left\{s \in \mathcal{S}: X(s) \in I_{X}\right\}, \\
Y^{-1}\left(I_{Y}\right) & \equiv\left\{s \in \mathcal{S}: Y(s) \in I_{Y}\right\}
\end{aligned}
$$

FACT : $X(s)$ and $Y(s)$ are independent if for all $x$ and $y$

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y) .
$$

EXAMPLE : The random variables with density function

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
e^{-x-y} & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

are independent because (by the preceding exercise)

$$
f_{X, Y}(x, y)=e^{-x-y}=e^{-x} \cdot e^{-y}=f_{X}(x) \cdot f_{Y}(y) .
$$

NOTE:

$$
F_{X, Y}(x, y)=\left\{\begin{array}{cc}
\left(1-e^{-x}\right)\left(1-e^{-y}\right) & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

also satisfies (by the preceding exercise)

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
$$

## PROPERTY:

For independent continuous random variables $X$ and $Y$ we have

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y), \quad \text { for all } x, y
$$

## PROOF :

$$
\begin{aligned}
F_{X, Y}(x, y) & =P(X \leq x, Y \leq y) \\
& =\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(x, y) d y d x \\
& =\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X}(x) \cdot f_{Y}(y) d y d x \quad \text { (by independence) } \\
& =\int_{-\infty}^{x}\left[f_{X}(x) \cdot \int_{-\infty}^{y} f_{Y}(y) d y\right] d x \\
& =\left[\int_{-\infty}^{x} f_{X}(x) d x\right] \cdot\left[\int_{-\infty}^{y} f_{Y}(y) d y\right] \\
& =F_{X}(x) \cdot F_{Y}(y)
\end{aligned}
$$

REMARK : Note how the proof parallels that for the discrete case !

## Conditional distributions

Let $X$ and $Y$ be continuous random variables.
For given allowable sets $I_{X}$ and $I_{Y}$ (typically intervals), let

$$
E_{x}=X^{-1}\left(I_{X}\right) \quad \text { and } \quad E_{y}=Y^{-1}\left(I_{Y}\right),
$$

be their corresponding events in the sample space $\mathcal{S}$.
We have

$$
P\left(E_{x} \mid E_{y}\right) \equiv \frac{P\left(E_{x} E_{y}\right)}{P\left(E_{y}\right)}
$$

The conditional probability density function is defined as

$$
f_{X \mid Y}(x \mid y) \equiv \frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

When $X$ and $Y$ are independent then

$$
f_{X \mid Y}(x \mid y) \equiv \frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

(assuming $\left.f_{Y}(y) \neq 0\right)$.

EXAMPLE : The random variables with density function

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x \geq 0 \text { and } y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

have (by previous exercise) the marginal density functions

$$
f_{X}(x)=e^{-x} \quad, \quad f_{Y}(y)=e^{-y}
$$

for $x \geq 0$ and $y \geq 0$, and zero otherwise.

Thus for such $x, y$ we have

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{e^{-x-y}}{e^{-y}}=e^{-x}=f_{X}(x),
$$

i.e., information about $Y$ does not alter the density function of $X$.

Indeed, we have already seen that $X$ and $Y$ are independent.

## Expectation

The expected value of a continuous random variable $X$ is

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

which represents the average value of $X$ over many trials.

The expected value of a function of a random variable is

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

The expected value of a function of two random variables is

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d y d x
$$

## EXAMPLE :

For the pointer experiment

$$
f_{X}(x)= \begin{cases}0, & x \leq 0 \\ 1, & 0<x \leq 1 \\ 0, & 1<x\end{cases}
$$

we have

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2},
$$

and

$$
E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} .
$$

EXAMPLE : For the joint density function

$$
f_{X, Y}(x, y)= \begin{cases}e^{-x-y} & \text { for } x>0 \text { and } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

we have (by previous exercise) the marginal density functions
$f_{X}(x)=\left\{\begin{array}{ll}e^{-x} & \text { for } x>0, \\ 0 & \text { otherwise },\end{array}\right.$ and $\quad f_{Y}(y)= \begin{cases}e^{-y} & \text { for } y>0, \\ 0 & \text { otherwise } .\end{cases}$

Thus $E[X]=\int_{0}^{\infty} x e^{-x} d x=-\left.\left[(x+1) e^{-x}\right]\right|_{0} ^{\infty}=1 . \quad($ Check ! $)$
Similarly

$$
E[Y]=\int_{0}^{\infty} y e^{-y} d y=1
$$

and

$$
\begin{equation*}
E[X Y]=\int_{0}^{\infty} \int_{0}^{\infty} x y e^{-x-y} d y d x=1 \tag{Check!}
\end{equation*}
$$

## EXERCISE :

Prove the following for continuous random variables:

- $E[a X]=a E[X]$,
- $E[a X+b]=a E[X]+b$,
- $E[X+Y]=E[X]+E[Y]$,
and compare the proofs to those for discrete random variables.


## EXERCISE :

A stick of length 1 is split at a randomly selected point $X$.
( Thus $X$ is uniformly distributed in the interval $[0,1]$. )
Determine the expected length of the piece containing the point $1 / 3$.

PROPERTY: If $X$ and $Y$ are independent then

$$
E[X Y]=E[X] \cdot E[Y] .
$$

## PROOF :

$$
\begin{aligned}
E[X Y] & =\int_{\mathbb{R}} \int_{\mathbb{R}} x y f_{X, Y}(x, y) d y d x \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} x y f_{X}(x) f_{Y}(y) d y d x \quad \text { (by independence) } \\
& =\int_{\mathbb{R}}\left[x f_{X}(x) \int_{\mathbb{R}} y f_{Y}(y) d y\right] d x \\
& =\left[\int_{\mathbb{R}} x f_{X}(x) d x\right] \cdot\left[\int_{\mathbb{R}} y f_{Y}(y) d y\right] \\
& =E[X] \cdot E[Y] .
\end{aligned}
$$

REMARK : Note how the proof parallels that for the discrete case !

EXAMPLE: For

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x>0 \text { and } y>0 \\
0 & \text { otherwise },
\end{array}\right.
$$

we already found

$$
f_{X}(x)=e^{-x} \quad, \quad f_{Y}(y)=e^{-y}
$$

so that

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y),
$$

i.e., $X$ and $Y$ are independent.

Indeed, we also already found that

$$
E[X]=E[Y]=E[X Y]=1,
$$

so that

$$
E[X Y]=E[X] \cdot E[Y] .
$$

## Variance

Let $\quad \mu=E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
Then the variance of the continuous random variable $X$ is

$$
\operatorname{Var}(X) \equiv E\left[(X-\mu)^{2}\right] \equiv \int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) d x
$$

which is the average weighted square distance from the mean.

As in the discrete case, we have

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2}=E\left[X^{2}\right]-\mu^{2} .
\end{aligned}
$$

The standard deviation of $X$ is

$$
\sigma(X) \equiv \sqrt{\operatorname{Var}(X)}=\sqrt{E\left[X^{2}\right]-\mu^{2}} .
$$

which is the average weighted distance from the mean.

EXAMPLE : For $f(x)= \begin{cases}e^{-x}, & x>0, \\ 0, & x \leq 0,\end{cases}$ we have

$$
\begin{aligned}
E[X] & =\mu=\int_{0}^{\infty} x e^{-x} d x=1 \quad(\text { already done ! ) } \\
E\left[X^{2}\right] & =\int_{0}^{\infty} x^{2} e^{-x} d x=-\left.\left[\left(x^{2}+2 x+2\right) e^{-x}\right]\right|_{0} ^{\infty}=2, \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-\mu^{2}=2-1^{2}=1 \\
\sigma(X) & =\sqrt{\operatorname{Var}(X)}=1 .
\end{aligned}
$$

NOTE : The two integrals can be done by "integration by parts".

## EXERCISE :

Also use the Method of Moments to compute $E[X]$ and $E\left[X^{2}\right]$.

EXERCISE : For the random variable $X$ with density function

$$
f(x)=\left\{\begin{array}{lc}
0, & x \leq-1 \\
\mathrm{c}, & -1<x \leq 1 \\
0, & x>1
\end{array}\right.
$$

- Determine the value of $c$
- Draw the graph of $f(x)$
- Determine the distribution function $F(x)$
- Draw the graph of $F(x)$
- Determine $E[X]$
- Compute $\operatorname{Var}(X)$ and $\sigma(X)$
- Determine $P\left(X \leq-\frac{1}{2}\right)$
- Determine $P\left(|X| \geq \frac{1}{2}\right)$

EXERCISE : For the random variable $X$ with density function

$$
f(x)=\left\{\begin{array}{cc}
x+1, & -1<x \leq 0 \\
1-x, & 0<x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Draw the graph of $f(x)$
- Verify that $\int_{-\infty}^{\infty} f(x) d x=1$
- Determine the distribution function $F(x)$
- Draw the graph of $F(x)$
- Determine $E[X]$
- Compute $\operatorname{Var}(X)$ and $\sigma(X)$
- Determine $P\left(X \geq \frac{1}{3}\right)$
- Determine $P\left(|X| \leq \frac{1}{3}\right)$

EXERCISE : For the random variable $X$ with density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{3}{4}\left(1-x^{2}\right), & -1<x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Draw the graph of $f(x)$
- Verify that $\int_{-\infty}^{\infty} f(x) d x=1$
- Determine the distribution function $F(x)$
- Draw the graph of $F(x)$
- Determine $E[X]$
- Compute $\operatorname{Var}(X)$ and $\sigma(X)$
- Determine $P(X \leq 0)$
- Compute $P\left(X \geq \frac{2}{3}\right)$
- Compute $P\left(|X| \geq \frac{2}{3}\right)$

EXERCISE : Recall the density function

$$
f_{n}(x)= \begin{cases}c x^{n}\left(1-x^{n}\right), & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

considered earlier, where $n$ is a positive integer, and where

$$
c=\frac{(n+1)(2 n+1)}{n} .
$$

- Determine $E[X]$.
- What happens to $E[X]$ for large $n$ ?
- Determine $E\left[X^{2}\right]$
- What happens to $E\left[X^{2}\right]$ for large $n$ ?
- What happens to $\operatorname{Var}(X)$ for large $n$ ?


## Covariance

Let $X$ and $Y$ be continuous random variables with mean

$$
E[X]=\mu_{X} \quad, \quad E[Y]=\mu_{Y}
$$

Then the covariance of $X$ and $Y$ is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & \equiv E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f_{X, Y}(x, y) d y d x .
\end{aligned}
$$

As in the discrete case, we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right] \\
& =E[X Y]-E[X] E[Y] .
\end{aligned}
$$

As in the discrete case, we also have
PROPERTY 1:

- Var $(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$, and

PROPERTY 2: If $X$ and $Y$ are independent then

- $\operatorname{Cov}(X, Y)=0$,
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.


## NOTE:

- The proofs are identical to those for the discrete case !
- As in the discrete case, if $\operatorname{Cov}(X, Y)=0$ then $X$ and $Y$ are not necessarily independent!

EXAMPLE: For

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
e^{-x-y} & \text { for } x>0 \text { and } y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

we already found

$$
f_{X}(x)=e^{-x} \quad, \quad f_{Y}(y)=e^{-y}
$$

so that

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y),
$$

i.e., $X$ and $Y$ are independent.

Indeed, we also already found

$$
E[X]=E[Y]=E[X Y]=1,
$$

so that

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0 .
$$

## EXERCISE :

Verify the following properties :

- $\operatorname{Var}(c X+d)=c^{2} \operatorname{Var}(X)$,
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$,
- $\operatorname{Cov}(c X, Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X, c Y)=c \operatorname{Cov}(X, Y)$,
- $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$,
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.


## EXERCISE :

For the random variables $X, Y$ with joint density function

$$
f(x, y)=\left\{\begin{array}{cc}
45 x y^{2}(1-x)\left(1-y^{2}\right), & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Verify that $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=1$.
- Determine the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$.
- Are $X$ and $Y$ independent?
- What is the value of $\operatorname{Cov}(X, Y)$ ?


The joint probability density function $f_{X Y}(x, y)$.

## Markov's inequality.

For a continuous nonnegative random variable $X$, and $c>0$, we have

$$
P(X \geq c) \leq \frac{E[X]}{c}
$$

## PROOF :

$$
\begin{aligned}
E[X]=\int_{0}^{\infty} x f(x) d x & =\int_{0}^{c} x f(x) d x+\int_{c}^{\infty} x f(x) d x \\
& \geq \int_{c}^{\infty} x f(x) d x \\
& \geq c \int_{c}^{\infty} f(x) d x \quad \text { (Why ?) } \\
& =c P(X \geq c) .
\end{aligned}
$$

## EXERCISE :

Show Markov's inequality also holds for discrete random variables.

Markov's inequality : For continuous nonnegative $X, c>0$ :

$$
P(X \geq c) \leq \frac{E[X]}{c}
$$

EXAMPLE: For

$$
f(x)=\left\{\begin{array}{cc}
e^{-x} & \text { for } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
E[X]=\int_{0}^{\infty} x e^{-x} d x=1 \quad(\text { already done }!)
$$

Markov's inequality gives

$$
\begin{aligned}
& c=1: \quad P(X \geq 1) \leq \frac{E[X]}{1}=\frac{1}{1}=1(!) \\
& c=10: \quad P(X \geq 10) \leq \frac{E[X]}{10}=\frac{1}{10}=0.1
\end{aligned}
$$

QUESTION : Are these estimates "sharp"?

QUESTION : Are these estimates "sharp" ?
Markov's inequality gives

$$
\begin{array}{ll}
c=1: & P(X \geq 1) \leq \frac{E[X]}{1}=\frac{1}{1}=1(!) \\
c=10: & P(X \geq 10) \leq \frac{E[X]}{10}=\frac{1}{10}=0.1
\end{array}
$$

The actual values are

$$
\begin{gathered}
P(X \geq 1)=\int_{1}^{\infty} e^{-x} d x=e^{-1} \cong 0.37 \\
P(X \geq 10)=\int_{10}^{\infty} e^{-x} d x=e^{-10} \cong 0.000045
\end{gathered}
$$

EXERCISE : Suppose the score of students taking an examination is a random variable with mean 65 .
Give an upper bound on the probability that a student's score is greater than 75 .

Chebyshev's inequality: For (practically) any random variable $X$ :

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

where $\mu=E[X]$ is the mean, $\sigma=\sqrt{\operatorname{Var}(X)}$ the standard deviation.
PROOF : Let $Y \equiv(X-\mu)^{2}$, which is nonnegative.
By Markov's inequality

$$
P(Y \geq c) \leq \frac{E[Y]}{c}
$$

Taking $c=k^{2} \sigma^{2}$ we have

$$
\begin{align*}
P(|X-\mu| \geq k \sigma) & =P\left((X-\mu)^{2} \geq k^{2} \sigma^{2}\right)=P\left(Y \geq k^{2} \sigma^{2}\right) \\
& \leq \frac{E[Y]}{k^{2} \sigma^{2}}=\frac{\operatorname{Var}(X)}{k^{2} \sigma^{2}}=\frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}}
\end{align*}
$$

NOTE : This inequality also holds for discrete random variables.

EXAMPLE : Suppose the value of the Canadian dollar in terms of the US dollar over a certain period is a random variable $X$ with

$$
\text { mean } \mu=0.98 \text { and standard deviation } \sigma=0.05 \text {. }
$$

What can be said of the probability that the Canadian dollar is valued between $\$ 0.88 \mathrm{US}$ and $\$ 1.08 \mathrm{US}$,
that is,

$$
\text { between } \mu-2 \sigma \text { and } \mu+2 \sigma \text { ? }
$$

SOLUTION: By Chebyshev's inequality we have

$$
P(|X-\mu| \geq 2 \sigma) \leq \frac{1}{2^{2}}=0.25
$$

Thus

$$
P(|X-\mu|<2 \sigma)>1-0.25=0.75
$$

that is,

$$
P(\$ 0.88 \mathrm{US}<\mathrm{Can} \$<\$ 1.08 \mathrm{US})>75 \%
$$

## EXERCISE :

The score of students taking an examination is a random variable with mean $\mu=65$ and standard deviation $\sigma=5$.

- What is the probability a student scores between 55 and 75 ?
- How many students would have to take the examination so that the probability that their average grade is between 60 and 70 is at least $80 \%$ ?
HINT : Defining

$$
\bar{X}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right), \quad(\text { the average grade })
$$

we have

$$
\mu_{\bar{X}}=E[\bar{X}]=\frac{1}{n} n \mu=\mu=65 \text {, }
$$

and, assuming independence,

$$
\operatorname{Var}(\bar{X})=n \frac{\sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}=\frac{25}{n}, \quad \text { and } \quad \sigma_{\bar{X}}=\frac{5}{\sqrt{n}} .
$$

