SPECIAL CONTINUOUS RANDOM VARIABLES

The Uniform Random Variable

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & a<x \leq b \\
0, & \text { otherwise }
\end{array} \quad, \quad F(x)=\left\{\begin{array}{cl}
0, & x \leq a \\
\frac{x-a}{b-a}, & a<x \leq b \\
1, & x>b
\end{array}\right.\right.
$$

(Already introduced earlier for the special case $a=0, b=1$.)

EXERCISE :

Show that the uniform density function

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & a<x \leq b \\
0, & \text { otherwise }
\end{array}\right.
$$

has mean

$$
\mu=\frac{a+b}{2}
$$

and standard deviation

$$
\sigma=\frac{b-a}{2 \sqrt{3}}
$$

A joint uniform random variable:

$$
f(x, y)=\frac{1}{(b-a)(d-c)} \quad, \quad F(x, y)=\frac{(x-a)(y-c)}{(b-a)(d-c)},
$$

for $x \in(a, b], y \in(c, d]$.

Here $x \in[0,1], y \in[0,1]$.

EXERCISE :

Consider the joint uniform density function

$$
f(x, y)= \begin{cases}c & \text { for } x^{2}+y^{2} \leq 4 \\ 0 & \text { otherwise } .\end{cases}
$$

- What is the value of c ?
- What is $P(X<0)$?
- What is $P(X<0, Y<0)$?
- What is $f(x \mid y=1)$?

HINT : No complicated calculations are needed !

The Exponential Random Variable

$$
f(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x}, & x>0 \\
0, & x \leq 0
\end{array} \quad, \quad F(x)= \begin{cases}1-e^{-\lambda x}, & x>0 \\
0, & x \leq 0\end{cases}\right.
$$

$$
\begin{aligned}
E[X] & =\mu=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda} \quad(\text { Check }!), \\
E\left[X^{2}\right] & =\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x=\frac{2}{\lambda^{2}} \quad(\text { Check }!) \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-\mu^{2}=\frac{1}{\lambda^{2}} \\
\sigma(X) & =\sqrt{\operatorname{Var}(X)}=\frac{1}{\lambda} .
\end{aligned}
$$

NOTE : The two integrals can be done by "integration by parts".
EXERCISE : (Done earlier for $\lambda=1$) :
Also use the Method of Moments to compute $E[X]$ and $E\left[X^{2}\right]$.

The Exponential density and distribution functions

$$
f(x)=\lambda e^{-\lambda x} \quad, \quad F(x)=1-e^{-\lambda x}
$$

for $\lambda=0.25,0.50,0.75,1.00$ (blue), 1.25, 1.50, 1.75, 2.00 (red).

PROPERTY: From

$$
F(x) \equiv P(X \leq x)=1-e^{-\lambda x}, \quad(\text { for } x>0)
$$

we have

$$
P(X>x)=1-\left(1-e^{-\lambda x}\right)=e^{-\lambda x} .
$$

Also, for $\Delta x>0$,
$P(X>x+\Delta x \mid X>x)=\frac{P(X>x+\Delta x, X>x)}{P(X>x)}$

$$
=\frac{P(X>x+\Delta x)}{P(X>x)}=\frac{e^{-\lambda(x+\Delta x)}}{e^{-\lambda x}}=e^{-\lambda \Delta x}
$$

CONCLUSION : $\quad P(X>x+\Delta x \mid X>x)$
only depends on Δx (and λ), and not on x !
We say that the exponential random variable is "memoryless".

EXAMPLE :

Let the density function $f(t)$ model failure of a device,

$$
f(t)=e^{-t}, \quad(\text { taking } \lambda=1)
$$

i.e., the probability of failure in the time-interval $(0, t]$ is

$$
F(t)=\int_{0}^{t} f(t) d t=\int_{0}^{t} e^{-t} d t=1-e^{-t}
$$

with

$$
F(0)=0, \quad(\text { the device works at time } 0)
$$

and

$$
F(\infty)=1, \quad(\text { the device must fail at some time })
$$

$$
F(t)=1-e^{-t}
$$

Let E_{t} be the event that the device still works at time t :

$$
P\left(E_{t}\right)=1-F(t)=e^{-t} .
$$

The probability it still works at time $t+1$ is

$$
P\left(E_{t+1}\right)=1-F(t+1)=e^{-(t+1)} .
$$

The probability it still works at time $t+1$, given it works at time t is
$P\left(E_{t+1} \mid E_{t}\right)=\frac{P\left(E_{t+1} E_{t}\right)}{P\left(E_{t}\right)}=\frac{P\left(E_{t+1}\right)}{P\left(E_{t}\right)}=\frac{e^{-(t+1)}}{e^{-t}}=\frac{1}{e}$,
which is independent of t !

QUESTION : Is such an exponential distribution realistic if the "device" is your heart, and time t is measured in decades?

The Standard Normal Random Variable

The standard normal random variable has density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}, \quad-\infty<x<\infty
$$

with mean

$$
\begin{equation*}
\mu=\int_{-\infty}^{\infty} x f(x) d x=0 \tag{Check!}
\end{equation*}
$$

Since

$$
E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f(x) d x=1, \quad(\text { more difficult } \cdots)
$$

we have

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-\mu^{2}=1, \quad \text { and } \quad \sigma(X)=1
$$

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

The standard normal density function $f(x)$.

$$
\Phi(\mathrm{x})=F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} x^{2}} d x
$$

The standard normal distribution function $F(x)$ (often denoted by $\Phi(\mathrm{x})$).

The Standard Normal Distribution $\Phi(z)$

z	$\Phi(z)$	z	$\Phi(z)$
0.0	.5000	-1.2	.1151
-0.1	.4602	-1.4	.0808
-0.2	.4207	-1.6	.0548
-0.3	.3821	-1.8	.0359
-0.4	.3446	-2.0	.0228
-0.5	.3085	-2.2	.0139
-0.6	.2743	-2.4	.0082
-0.7	.2420	-2.6	.0047
-0.8	.2119	-2.8	.0026
-0.9	.1841	-3.0	.0013
-1.0	.1587	-3.2	.0007

(For example, $P(Z \leq-2.0)=\Phi(-2.0)=2.28 \%)$

QUESTION : How to get the values of $\Phi(z)$ for positive z ?

EXERCISE :

Suppose the random variable X has the standard normal distribution.
What are the values of

- $\quad P(X \leq-0.5)$
- $\quad P(X \leq 0.5)$
- $\quad P(|X| \geq 0.5)$
- $\quad P(|X| \leq 0.5)$
- $P(-1 \leq X \leq 1)$
- $P(-1 \leq X \leq 0.5)$

The General Normal Random Variable

The general normal density function is

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}
$$

where, not surprisingly,

$$
E[X]=\mu \quad \text { (Why ?) }
$$

One can also show that

$$
\operatorname{Var}(X) \equiv E\left[(X-\mu)^{2}\right]=\sigma^{2},
$$

so that σ is in fact the standard deviation.

The standard normal (black) and the normal density functions with $\mu=-1, \sigma=0.5$ (red) and $\mu=1.5, \sigma=2.5$ (blue).

To compute the mean of the general normal density function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}
$$

consider

$$
\begin{aligned}
E[X-\mu] & =\int_{-\infty}^{\infty}(x-\mu) f(x) d x \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty}(x-\mu) e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}} d x \\
& =\left.\frac{-\sigma^{2}}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}\right|_{-\infty} ^{\infty}=0
\end{aligned}
$$

Thus the mean is indeed

$$
E[X]=\mu
$$

NOTE: If X is general normal we have the very useful formula:

$$
P\left(\frac{X-\mu}{\sigma} \leq c\right)=\Phi(c)
$$

i.e., we can use the Table of the standard normal distribution!

PROOF : For any constant c we have
$P\left(\frac{X-\mu}{\sigma} \leq c\right)=P(X \leq \mu+c \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\mu+c \sigma} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}} d x$.
Let $y \equiv(x-\mu) / \sigma$, so that $x=\mu+y \sigma$.
Then the new variable y ranges from $-\infty$ to c, and

$$
(x-\mu)^{2} / \sigma^{2}=y^{2} \quad, \quad d x=\sigma d y
$$

so that

$$
P\left(\frac{X-\mu}{\sigma} \leq c\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{c} e^{-\frac{1}{2} y^{2}} d y=\Phi(c)
$$

(the standard normal distribution)

EXERCISE: Suppose X is normally distributed with

$$
\text { mean } \mu=1.5 \quad \text { and } \quad \text { standard deviation } \quad \sigma=2.5 \text {. }
$$

Use the standard normal Table to determine:

- $\quad P(X \leq-0.5)$
- $\quad P(X \geq 0.5)$
- $\quad P(|X-\mu| \geq 0.5)$
- $\quad P(|X-\mu| \leq 0.5)$

The Chi-Square Random Variable

Suppose

$$
X_{1}, X_{2}, \cdots, X_{n},
$$

are independent standard normal random variables.

Then

$$
\chi_{\mathrm{n}}^{2} \equiv X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2},
$$

is called the chi-square random variable with n degrees of freedom.

We will show that

$$
E\left[\chi_{n}^{2}\right]=n \quad, \quad \operatorname{Var}\left(\chi_{n}^{2}\right)=2 n \quad, \quad \sigma\left(\chi_{n}^{2}\right)=\sqrt{2 n} .
$$

NOTE :

The ${ }^{2}$ in χ_{n}^{2} is part of its name, while ${ }^{2}$ in X_{1}^{2}, etc. is "power 2 "!

The Chi-Square density and distribution functions for $n=1,2, \cdots, 10$.
(In the Figure for F, the value of n increases from left to right.)

If $n=1$ then

$$
\chi_{1}^{2} \equiv X_{1}^{2}, \quad \text { where } \quad X \equiv X_{1} \quad \text { is standard normal } .
$$

We can compute the moment generating function of χ_{1}^{2} :

$$
\begin{aligned}
E\left[e^{t \chi_{1}^{2}}\right]=E\left[e^{t X^{2}}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x^{2}} e^{-\frac{1}{2} x^{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}(1-2 t)} d x
\end{aligned}
$$

Let

$$
1-2 t=\frac{1}{\hat{\sigma}^{2}}, \quad \text { or equivalently }, \quad \hat{\sigma} \equiv \frac{1}{\sqrt{1-2 t}} .
$$

Then

$$
E\left[e^{t \chi_{1}^{2}}\right]=\hat{\sigma} \cdot \frac{1}{\sqrt{2 \pi} \hat{\sigma}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2} / \hat{\sigma}^{2}} d x=\hat{\sigma}=\frac{1}{\sqrt{1-2 t}} .
$$

(integral of a normal density function)

Thus we have found that:

The moment generating function of χ_{1}^{2} is

$$
\psi(t) \equiv E\left[e^{t \chi_{1}^{2}}\right]=\frac{1}{\sqrt{1-2 t}},
$$

with which we can compute

$$
\begin{aligned}
E\left[\chi_{1}^{2}\right] & =\psi^{\prime}(0)=1, \quad(\text { Check }!) \\
E\left[\left(\chi_{1}^{2}\right)^{2}\right] & =\psi^{\prime \prime}(0)=3, \quad(\text { Check }!) \\
\operatorname{Var}\left(\chi_{1}^{2}\right) & =E\left[\left(\chi_{1}^{2}\right)^{2}\right]-E\left[\chi_{1}^{2}\right]^{2}=2 .
\end{aligned}
$$

We found that

$$
E\left[\chi_{1}^{2}\right]=1 \quad, \quad \operatorname{Var}\left(\chi_{1}^{2}\right)=2 .
$$

In the general case where

$$
\chi_{n}^{2} \equiv X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}
$$

we have

$$
E\left[\chi_{n}^{2}\right]=E\left[X_{1}^{2}\right]+E\left[X_{2}^{2}\right]+\cdots+E\left[X_{n}^{2}\right]=n,
$$

and since the X_{i} are assumed independent,

$$
\operatorname{Var}\left[\chi_{n}^{2}\right]=\operatorname{Var}\left[X_{1}^{2}\right]+\operatorname{Var}\left[X_{2}^{2}\right]+\cdots+\operatorname{Var}\left[X_{n}^{2}\right]=2 n,
$$

and

$$
\sigma\left(\chi_{n}^{2}\right)=\sqrt{2 n} .
$$

The Chi-Square density functions for $n=5,6, \cdots, 15$.
(For large n they look like normal density functions!)

THE CENTRAL LIMIT THEOREM

The density function of the Chi-Square random variable

$$
\chi_{n}^{2} \equiv \tilde{X}_{1}+\tilde{X}_{2}+\cdots+\tilde{X}_{n}
$$

where

$$
\tilde{X}_{i}=X_{i}^{2}, \quad \text { and } \quad X_{i} \text { is standard normal, } i=1,2, \cdots, n,
$$

starts looking like a normal density function when n gets large.

- This remarkable fact holds much more generally !
- It is known as the Central Limit Theorem (CLT).

