Chi-Square Tests

Chi-Square Test for Independence

次 Contingency Tables

A contingency table is a cross-tabulation of n paired observations into categories

- Each cell shows the count of observations that fall into the category defined by its row (r) and column (c) heading.

Variable B	Variable A				Row Total
	1	2		c	
1	t_{11}	t_{12}	...	$t_{1 c}$	R_{1}
2	f_{21}	f_{22}	...	$t_{2 c}$	R_{2}
:			.		
r	$t_{t 1}$	t_{12}	...	f_{n}	$R_{\text {r }}$
Col Total	c_{1}	C_{2}	...	c_{c}	n

- For example:

TABLE 15.2	mer Lo	d W	ationality	WebSites
Location of Disclaimer	Nationality of Web Site			Row Total
	France	UK	USA	
Home page	56	68	35	159
Order page	19	19	28	66
Client page	6	10	16	32
Other page	12	9	13	34
Col Total	93	106	92	291

Source: Calin Gurau, Ashok Ranchhod, and Claire Gauzente, "To Legislate or Not to Legislate: A Comparative Exploratory Study of Privacy/Personalisation Factors Affecting French, UK, and US Web Sites,"Journal of Consumer Marketing 20, no. 7 (2003), p. 659.

- In a test of independence for an $r \times c$ contingency table, the hypotheses are H_{0} : Variable A is independent of variable B
H_{1} : Variable A is not independent of variable B
- Use the chi-square test for independence to test these hypotheses.
- This non-parametric test is based on frequencies.
- The n data pairs are classified into c columns and r rows and then the observed frequency $f_{j k}$ is compared with the expected frequency $e_{j k}$.
- The critical value comes from the chi-square probability distribution with n degrees of freedom.
$\mathrm{n}=$ degrees of freedom $=(r-1)(c-1)$
where $r=$ number of rows in the table
$c=$ number of columns in the table
- Appendix E contains critical values for right-tail areas of the chi-square distribution.
- The mean of a chi-square distribution is n with variance $2 n$.
- Consider the shape of the chi-square distribution:

- Assuming that H_{0} is true, the expected frequency of row j and column k is:
$e_{j k}=R_{j} C_{k} / n$
where $R_{j}=$ total for row $j(j=1,2, \ldots, r)$
$C_{k}=$ total for column $k(k=1,2, \ldots, c)$
$n=$ sample size
- The table of expected frequencies is:

	Variable A				
Variable \boldsymbol{B}	1	2	\ldots	c	Row Total
1	e_{11}	e_{12}	\ldots	$e_{1 c}$	R_{1}
2	e_{21}	e_{22}	\ldots	$e_{2 c}$	R_{2}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
r	$e_{r 1}$	$e_{r 2}$	\ldots	$e_{r c}$	R_{r}
Col Total	C_{1}	C_{2}	\ldots	C_{c}	n

- The $e_{j k}$ always sum to the same row and column frequencies as the observed frequencies.
- Step 1: State the Hypotheses
H_{0} : Variable A is independent of variable B
H_{l} : Variable A is not independent of variable B
- Step 2: State the Decision Rule

Calculate $\mathrm{n}=(r-1)(c-1)$
For a given a, look up the right-tail critical value $\left(\chi_{\mathrm{R}}^{2}\right)$ from Appendix E or by using Excel.
Reject H_{0} if $\chi_{\mathrm{R}}^{2}>$ test statistic.

- For example, for $\mathrm{n}=6$ and $\mathrm{a}=.05, \chi^{2}{ }_{.05}=12.59$.

Appendix E: Critical Values for Chi-Square										
Lef Talatiea						RighT? ¢ilAres				
0	0005	001	0025	005	0.10	0.10	0003	0003	001	0.005
1	0000	0.000	0001	0.004	0016	2006	3841	5004	6635	7.879
2	00010	0.000	0051	0.103	02.1	4.603	5991	738	9210	1060
3	0072	0.115	02.6	0.332	0384	6231	78.5	9348	11.34	1284
4	0207	0.80	0484	0.711	1064	7779	9488	1114	13.28	1486
s	0.4 .2	0.584	0831	1.14	16.0	9.236	11.07	1283	15.09	1678
6	0676	0.872	1237	1.635	2204	1084	12.99	1445	16.81	1895
7	10989	1.209	1690	$2.16{ }^{7}$	2833	1202	14.10	1601	18.48	2028
8	1344	1.648	2180	2773	3400	1336	. 5.51	1793	20.09	2195
9	1735	2.08	2700	3.33	4168	1468	1692	1902	21.67	2859
10	2156	2.58	3247	3,400	4865	1599	18.31	2018	23.21	2519

- Here is the rejection region.

- Step 3: Calculate the Expected Frequencies $\quad e_{j k}=R_{j} C_{k} / n$
- For example,

	Expected Frequencies					
Location	France			UK		Row Total
Home	$(159 \times 93) / 291=50.81$	$(159 \times 106) / 291=57.92$	$(159 \times 92) / 291=50.27$	159		
Order	$(66 \times 93) / 291=21.09$	$(66 \times 106) / 291=24.04$	$(66 \times 92) / 291=20.87$	66		
Client	$(32 \times 93) / 291=10.23$	$(32 \times 106) / 291=11.66$	$(32 \times 92) / 291=10.12$	32		
Other	$(34 \times 93) / 291=10.87$	$(34 \times 106) / 291=12.38$	$(34 \times 92) / 291=10.75$	34		
Col Total	93	106	92	291		

- Step 4: Calculate the Test Statistic

The chi-square test statistic is

$$
\chi^{2}=\sum_{j=1}^{r} \sum_{k=1}^{c} \frac{\left[f_{j k}-e_{j k}\right]^{2}}{e_{j k}}
$$

- Step 5: Make the Decision

Reject H_{0} if $\chi_{\mathrm{R}}^{2}>$ test statistic or if the
p-value $\leq \alpha$.

Chi-Square Test for Goodness-of-Fit

浆Purpose of the Test

- The goodness-of-fit (GOF) test helps you decide whether your sample resembles a particular kind of population.
- The chi-square test will be used because it is versatile and easy to understand.
- The hypotheses are:
H_{0} : The population follows a \qquad distribution
H_{1} : The population does not follow a \qquad distribution
- The blank may contain the name of any theoretical distribution (e.g., uniform, Poisson, normal).
- Assuming n observations, the observations are grouped into c classes and then
the chi-square test statistic is found using:

$$
\chi^{2}=\sum_{j=1}^{c} \frac{\left[f_{j}-e_{j}\right]^{2}}{e_{j}}
$$

where $\quad f_{j}=$ the observed frequency of observations in class j
$e_{j}=$ the expected frequency in class j if
H_{0} were true

- If the proposed distribution gives a good fit to the sample, the test statistic will be near zero.
- The test statistic follows the chi-square distribution with degrees of freedom

$$
\mathrm{n}=c-m-1
$$

where c is the no. of classes used in the test m is the no. of parameters estimated

Uniform: $v=c-m-1=v=c-0-1=c-1 \quad$ (since no parameters are estimated)

Poisson: $v=c-m-1=v=c-1-1=c-2 \quad$ (since λ is estimated)
Normal: $v=c-m-1=v=c-2-1=c-3$ (since μ and σ are estimated)

Uniform Goodness-of-Fit Test
 录Multinomial Distribution

- A multinomial distribution is defined by any k probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}$ that sum to unity.
- For example, consider the following "official" proportions of M\&M colors.

	Official π_{j}	Observed \boldsymbol{f}_{j}	Expected $\mathbf{e}_{\boldsymbol{j}}$	$\boldsymbol{f}_{\boldsymbol{j}}-\mathbf{e}_{\boldsymbol{j}}$	$\left(\boldsymbol{f}_{\boldsymbol{j}}-\boldsymbol{e}_{\boldsymbol{j}}\right)^{\mathbf{2}} / \mathbf{e}_{\boldsymbol{j}}$
Color	0.30	58	66	-8	0.9697
Brown	0.20	40	44	-4	0.3636
Red	0.10	34	22	12	6.5455
Blue	0.10	22	22	0	0.0000
Orange	0.10	30	22	8	2.9091
Green	36	44	-8	1.4545	
Yellow	0.20	320	220	0	$\chi^{2}=12.2424$
\quad Sum	1.00	220			

- The hypotheses are
$H_{0}: \pi_{1}=.30, \pi_{2}=.20, \pi_{3}=.10, \pi_{4}=.10, \pi_{5}=.10, \pi_{6}=.20$
H_{1} : At least one of the π_{j} differs from the hypothesized value
- No parameters are estimated $(m=0)$ and there are $c=6$ classes, so the degrees of freedom are
$\mathrm{n}=c-m-1=6-0-1$
- The uniform goodness-of-fit test is a special case of the multinomial in which every value has the same chance of occurrence.
- The chi-square test for a uniform distribution compares all c groups simultaneously.
- The hypotheses are:
$H_{0}: \pi_{1}=\pi_{2}=\ldots, \pi_{c}=1 / c$
H_{1} : Not all π_{j} are equal
- The test can be performed on data that are already tabulated into groups.
- Calculate the expected frequency $e_{i j}$ for each cell.
- The degrees of freedom are $\mathrm{n}=\mathrm{c}-1$ since there are no parameters for the uniform distribution.
- Obtain the critical value χ_{a}^{2} from Appendix E for the desired level of significance
α.
- The p-value can be obtained from Excel.
- Reject H_{0} if p-value $\leq \alpha$.

