

Chi-Square Test for Independence

*****Contingency Tables

A contingency table is a cross-tabulation of n paired observations into categories

• Each cell shows the count of observations that fall into the category defined by its row (r) and column (c) heading.

Variable B	1	2		с	Row Total
1	f ₁₁	f ₁₂		f _{1c}	R ₁
2	f ₂₁	f ₂₂		f _{2c}	R ₂
:	:	:	:	:	:
, ,	f	f		f	р
Col Total	C ₁	C ₂		C_c	n, n

• For example:

TABLE 15.2 Privacy Di	WebSites			
	Natio			
Location of Disclaimer	France	UK	USA	Row Total
Home page	56	68	35	159
Order page	19	19	28	66
Client page	6	10	16	32
Other page	12	9	13	34
Col Total	93	106	92	291

Source: Calin Gurau, Ashok Ranchhod, and Claire Gauzente, "To Legislate or Not to Legislate: A Comparative Exploratory Study of Privacy/Personalisation Factors Affecting French, UK, and US Web Sites," *Journal of Consumer Marketing* 20, no. 7 (2003), p. 659.

- In a test of independence for an $r \ge c$ contingency table, the hypotheses are
- H_0 : Variable A is independent of variable B
- H_1 : Variable A is not independent of variable B
- Use the *chi-square test for independence* to test these hypotheses.
- This *non-parametric* test is based on *frequencies*.
- The *n* data pairs are classified into *c* columns and *r* rows and then the *observed frequency* f_{ik} is compared with the *expected frequency* e_{ik} .

• The critical value comes from the *chi-square probability distribution* with n degrees of freedom.

n = degrees of freedom = (r-1)(c-1)

where r = number of rows in the table

c = number of columns in the table

• Appendix E contains critical values for right-tail areas of the chi-square distribution.

- The mean of a chi-square distribution is n with variance 2n.
- Consider the shape of the chi-square distribution:

• Assuming that H_0 is true, the expected frequency of row *j* and column *k* is: $e_{jk} = R_j C_k / n$

where R_j = total for row j (j = 1, 2, ..., r)

 C_k = total for column k (k = 1, 2, ..., c)

n =sample size

• The table of expected frequencies is:

Variable B	1	2	 с	Row Total
1	e ₁₁	e ₁₂	 e _{1c}	<i>R</i> ₁
2	e ₂₁	e ₂₂	 e _{2c}	R ₂
:				÷
r	e _{r1}	e _{r2}	 e _{rc}	R,
Col Total	C ₁	C ₂	 C _c	n

• The e_{jk} always sum to the same row and column frequencies as the observed frequencies.

• Step 1: State the Hypotheses

 H_0 : Variable A is independent of variable B

 H_1 : Variable A is not independent of variable B

• Step 2: State the Decision Rule

Calculate n = (r - 1)(c - 1)For a given a, look up the right-tail critical value (χ^2_R) from Appendix E or

by using Excel. Reject H_0 if χ^2_R > test statistic.

• For example, for n = 6 and a = .05, $\chi^{2}_{.05} = 12.59$.

	010 010 010	ne critical va	lue that defi	nes the spec	ified area for the	stated degrees o	f freedom (?)	l,		\rightarrow
Left Tail Area Right Tail Area										
v	0.005	0.01	0.025	0.05	0.10	0.10	0.03	0.023	0.01	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.241	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4,605	5.991	7.378	9.210	10.60
3	0.072	0.115	0216	0.352	0.134	6.201	7.815	9.34\$	11.34	12.84
4	0 207	0.297	0.434	0.711	1064	7.779	9.438	11.14	13.28	1426
5	0.412	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09	16.75
6	0.676	0.872	1 237	1.635	2 204	10.64	12.39	14.45	16.31	18 55
7	0.989	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48	20.28
8	1344	1.646	2.180	2.733	3,490	13 36	15.51	17.53	20.09	2195
9	1735	2.062	2,700	3.325	4.168	14.68	16.92	19.02	21.67	23.59
10	2.156	2.558	3 2 4 7	3,940	4265	15.99	18.31	20.42	23.21	25.19

• Here is the rejection region.

chi square test-4

• Step 3: Calculate the Expected Frequencies

$$e_{jk} = R_j C_k / n$$

Expected Frequencies				
Location	France	UK	USA	Row Total
Home	(159 × 93)/291 = 50.81	(159 × 106)/291 = 57.92	(159 × 92)/291 = 50.27	159
Order	(66 × 93)/291 = 21.09	(66 × 106)/291 = 24.04	(66 × 92)/291 = 20.87	66
Client	(32 × 93)/291 = 10.23	(32 × 106)/291 = 11.66	(32 × 92)/291 = 10.12	32
Other	(34 × 93)/291 = 10.87	(34 × 106)/291 = 12.38	(34 × 92)/291 = 10.75	34
Col Total	93	106	92	291

• For example,

• Step 4: Calculate the Test Statistic

The chi-square test statistic is

$$\chi^2 = \sum_{j=1}^r \sum_{k=1}^c \frac{[f_{jk} - e_{jk}]^2}{e_{jk}}$$

• Step 5: Make the Decision

Reject H_0 if χ_{R}^{2} > test statistic or if the

p-value $\leq \alpha$.

Chi-Square Test for Goodness-of-Fit

**Purpose of the Test*

• The *goodness-of-fit* (*GOF*) test helps you decide whether your sample resembles a particular kind of population.

- The chi-square test will be used because it is versatile and easy to understand.
- The hypotheses are:

 H_0 : The population follows adistribution

 H_1 : The population does not follow adistribution

• The blank may contain the name of any theoretical distribution (e.g., uniform, Poisson, normal).

• Assuming *n* observations, the observations are grouped into *c* classes and then

the chi-square test statistic is found using:

$$\chi^{2} = \sum_{j=1}^{c} \frac{[f_{j} - e_{j}]^{2}}{e_{j}}$$

where f_j = the observed frequency of observations in class j e_j = the expected frequency in class j if

 H_0 were true

• If the proposed distribution gives a good fit to the sample, the test statistic will be near zero.

• The test statistic follows the chi-square distribution with degrees of freedom n = c - m - 1

where c is the no. of classes used in the test m is the no. of parameters estimated

Uniform:	v = c - m - 1 = v = c - 0 - 1 = c - 1	(since no parameters are estimated)
Poisson:	$\nu = c - m - 1 = \nu = c - 1 - 1 = c - 2$	(since λ is estimated)
Normal:	v = c - m - 1 = v = c - 2 - 1 = c - 3	(since μ and σ are estimated)

Uniform Goodness-of-Fit Test

*Multinomial Distribution

- A *multinomial distribution* is defined by any k probabilities $p_1, p_2, ..., p_k$ that sum to unity.
- For example, consider the following "official" proportions of M&M colors.

Color	Official π_j	Observed f _j	Expected e _j	$f_j - e_j$	$(f_j - e_j)^2/e_j$
Brown	0.30	58	66	-8	0.9697
Red	0.20	40	44	_4	0.3636
Blue	0.10	34	22	12	6.5455
Orange	0.10	22	22	0	0.0000
Green	0.10	30	22	8	2.9091
Yellow	0.20	36	44	-8	1.4545
Sum	1.00	220	220	0	$\chi^2 = 12.2424$

• The hypotheses are

 H_0 : $\pi_1 = .30$, $\pi_2 = .20$, $\pi_3 = .10$, $\pi_4 = .10$, $\pi_5 = .10$, $\pi_6 = .20$

 H_1 : At least one of the π_i differs from the hypothesized value

• No parameters are estimated (m = 0) and there are c = 6 classes, so the degrees of freedom are

n = c - m - 1 = 6 - 0 - 1

• The *uniform goodness-of-fit* test is a special case of the multinomial in which every value has the same chance of occurrence.

• The chi-square test for a uniform distribution compares all c groups simultaneously.

• The hypotheses are:

*H*₀: $\pi_1 = \pi_2 = ..., \pi_c = 1/c$

 H_1 : Not all π_i are equal

- The test can be performed on data that are already tabulated into groups.
- Calculate the expected frequency e_{ii} for each cell.
- The degrees of freedom are n = c 1 since there are no parameters for the uniform distribution.
- Obtain the critical value χ^2_{a} from Appendix E for the desired level of significance

α.

- The *p*-value can be obtained from Excel.
- Reject H_0 if p-value $\leq \alpha$.