Ministry of Higher Education and Scientific research

- **Department of General Science**
- **College of Basic Education**
- University of Salahaddin
- Subject: Semiconductors
- Course Book (Year 2) (2nd Semester)
- Lecturer's name: Dr. Wala Dizayee
- Academic Year: 2022/2023

Course Book

1. Course name	Semiconductors		
2. Lecturer in charge	Wala Dizayee		
3. Department/ College	General Science /Basic Education		
4. Contact	e-mail: wala.dizayee@su.edu.krd		
	Tel: (optional)		
5. Time (in hours) per week	For example Theory: 3		
	Practical: 0		
6. Office hours			
7. Course code			
8. Teacher's academic profile	https://academics.su.edu.krd/wala.dizayee		
9. Keywords	Semiconductors,		

10. Course overview:

- This course will introduce students to the foundations of Semiconductors, therefore the course is intended to cover some of the standard concepts, like; Bonds of materials, Type of Semiconductors according to their structure, Fermi energy etc.

- Learn about the theory and applications of semiconductor concepts by using a simple and clear mathematic to explain the physics.

- Help the student to gain experience in reading and scientific writing.

-The course aims to introduce and explain the foundational concepts of semiconductor for students, which will help them to take up more advanced topics in later years.

11. Course objective:

- The course will provide an introduction of basic semiconductor concepts.

- Consternate on a number of topics like; **semiconductor, Types, Properties, Classification of solid and mathematical equations** to explain the physical concepts.

- Clarify the physical concepts through a range of examples and applications.

12. Student's obligation:

- Students should attend in all lectures, either in hall or online.

- Participation in classroom discussions and solving practical examples related to the subjects.

- Home works and quiz.

- The students are required to do two mid-term exams and a final exam.

13. Forms of teaching

- White board.
- Data Show power point presentation.
- Homework and problem solving in the class.
- Group activity & individual activity.
- Group assignments & individual assignments.

14. Assessment scheme

- One mid-term exams and a final exam.
- Daily Activity (Group activity & individual activity).
- Attendance of students.
- Homework (Group assignments & individual assignments).
- Reports.
- Posters.

15. Student learning outcome:

- The student will be familiar with the basic ideas to understand several concepts about **semiconductor, Types, Properties, Classification of solid and mathematical equations** and,...., etc.

- To gain experience about how to think scientifically and critically in seeking for new knowledge.

16. Course Reading List and References:

- Key references:
- A- Useful references:
- 1- Introduction to solid state physics (Charles kittel).
- 2- Elementary solid state physics principle and application (M.A Omer).
- 3- Solid state physics.
- 4- Electronic circuit analysis and design (Donald A-Neamens).
- 5- Semiconductor of devices fundamentals (Robert F.pierrel).
- 6- Principle of semiconductor Devices (B Van zeghloroeck).
- 7- https://inst.eecs.berkeley.edu/~ee130/sp03/lecture.html

8-https://ocw.ece.cornell.edu/courses/ece-5330-semiconductor-optoelectronics/ece-5330lectures-notes-and-handouts/

9-https://ocw.ece.cornell.edu/courses/ece-5330-semiconductor-optoelectronics/ece-5330homework-and-exams/

- 10- https://byjus.com/jee/semiconductors/ googd
- 11- https://byjus.com/jee/semiconductors/
- 12- https://examsdaily.in/physics-study-materials-important-topics

13-

https://chem.libretexts.org/Courses/College_of_Marin/CHEM_114%3A_Introductory_Chemistry/

03%3A_Matter_and_Energy/3.03%3A_Classifying_Matter_According_to_Its_State-_Solid%2C_Liquid%2C_and_Gas Ministry of Higher Education and Scientific research

17. The Topics:	Lecturer's name
1- States of Matter: General Introduction	
2- Properties Of Matter: General Introduction	
3- Review on semiconductor historical and development industrial	
4- Classification of solid by electrical conduction	
5- Types of material	
6- Atomic structure	
7-Band structure of a material defines the band of energy levels that an electron can occupy	
8- Electronic Materials	
8-1- Insulator	
8-2- Conductors	
8-3- Semiconductor	
9- Type of semiconductor	
10- Intrinsic (Pure) Semiconductors	
11- Extrinsic (Impure) Semiconductors	
11-1- N-Type semiconductors	
11-2- P-Type semiconductors	
12-Types of solid state by electrical conduction	
13- Electron in atom	
14- Doping	
15- Bohr's model for hydrogen atom	
16- Calculations based on Bohr's Model	
16-1- Radius of nth orbit	
16-2- calculation of velocity	

16-3- 2-Energy of electron in nth orbit			
17- Limitations of Bohr's Model			
18- Band theory of a solid			
19- Band Gap or Energy Band Gap			
20- Classification of material based on energy band theory:			
21-Fermi energy			
22- Direct and Indirect Band Gap Semiconductors			
23- Crystal defects in semiconductors			
18. Practical Topics (If there is any)			
19. Examinations:			
Total :100%			
Final exam: 60%			
1 st term: 40%			
1 st term: 40%			
Midterm exams: 30%			
Activates: 10% (Homework?? %, quizzes:?? %, Participation ?? %, poster?? %,			
presentation?? %, Group activity & individual activity?? % and ,,,,,,,,,)			
20. Extra notes:			
21. Peer review: I read this course book it's very good and I signed on it.			