Mechanics

1.Units, dimensional analysis and trigonometry

1.1.Dimensional analysis

- Dimensional analysis is a way of making sure that an equation is correct, and that you have the right units in your answer.
- The dimensions in an equation are the units that we are working in (cm, s, Kg etc).
- We will mostly work with $S I$ units (kg, m, s), with some use being made of $\operatorname{cgs}(\mathrm{cm}, \mathrm{gm}, \mathrm{s})$ and US customary units.
- If you write an answer with no units, or incorrect units, you will drop a point.

2-1Scalars

1.A scalar quantity is a quantity that has magnitude only and has no direction in space

Examples of Scalar Quantities:

- Length
- Area
- Volume
- Time
- Mass

2-2Vectors

2- A vector quantity is a quantity that has both magnitude and a direction in space

Examples of Vector

 Quantities:- Displacement
- Velocity
- Acceleration
- Force

3-Properties of Vectors

1. Equality of Two Vectors

- Two vectors are equal if they have the same magnitude (same units) and same direction

2. Parallel translation in a diagram

- Any vector can be moved parallel to itself without being affected

3. Negative vectors are directed in the opposite direction of positive vectors
4. Resultant Vector

- The resultant vector is the sum of a given set of vectors

$$
\vec{R}=\vec{A}+\vec{B}+\ldots
$$

4- Unit Vector:

Is a vector whose magnitude is equal to one only and dimensionless, show the direction of the original vector $\vec{A},|\vec{A}|$ is the magnitude of \vec{A}.

$$
\vec{A}=\hat{a} A \quad \text { or } \quad \vec{A}=\hat{a}|\vec{A}|
$$

So that, the unit vector is equal to: $\quad \hat{a}=\frac{\vec{A}}{A} \quad$ or $\quad \hat{a}=\frac{\vec{A}}{|\vec{A}|}$

The symbols \mathbf{i}, \mathbf{j} and \mathbf{k} represent unit vectors pointing in the directions x, y and z positives, respectively

4- Unit Vector:

Now V can be written $V=V_{x} \mathbf{i}+V_{y} \mathbf{j}$.
If we need to add the vector $\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}$ with
the vector $\mathbf{B}=B_{x} i+B_{y} \mathbf{j} \quad$ we write
$\mathbf{R}=\mathbf{A}+\mathbf{B}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+B_{x} \mathbf{i}+B_{y} \mathbf{j}=\left(A_{x}+B_{x}\right) \mathbf{i}+\left(A_{y}+B_{y}\right) \mathbf{j}$.

1. The components of \mathbf{R} are $\mathbf{R}_{\mathbf{x}}=\mathbf{A}_{\mathbf{x}}+\mathbf{B}_{\mathbf{x}}$ and $\mathbf{R}_{\mathbf{y}}=\mathbf{A}_{\mathbf{y}}+\mathbf{B}_{\mathbf{y}}$
$\xrightarrow[\vec{A}=\hat{a} A]{\longrightarrow}$

$$
\vec{A}=\hat{i} A_{x}+\hat{j} A_{y}
$$

$\vec{A}=\hat{i} A_{x}+\hat{j} A_{y}+\hat{k} A_{z}$

5- Working out the components of a vector

- The projection of vectors along coordinate axes are called component of a vector.
Projection of $\overrightarrow{\boldsymbol{A}}$ on x-axis is $\mathbf{A}_{\mathbf{x}}$ Projection of $\overrightarrow{\boldsymbol{A}}$ on y-axis is \mathbf{A}_{y}
- All vectors can be split into horizontal $\left(\mathrm{A}_{\mathrm{x}}\right)$ and vertical (A_{y}) components.
- So that This vector can be represented as the sum:
- Thus, $\quad A=A_{x}+\vec{A}_{y}$

$$
|A|=\sqrt{\left|A_{x}\right|^{2}+\left|A_{y}\right|^{2}}
$$

$$
A_{x}=A \cos \theta \quad A_{y}=A \sin \theta
$$

$$
\tan \theta=\frac{A_{y}}{A_{x}}
$$

$A=\sqrt{A_{x}^{2}+A_{y}^{2}}=|\vec{A}| \cdot \vec{A}$ is a unit vector, if $|\vec{A}|=1$.
$\vec{A}=A_{x} \hat{i}+A_{,} \hat{j}$, where \hat{i} and \hat{j} are unit vectors in the x - and y-directions, respectively.

6- Properties of Vectors

$$
\begin{array}{ll}
\vec{a}+\vec{b}=\vec{c} & \text { Addition } \\
\vec{a}+\vec{b}=\vec{b}+\vec{a} & \text { Commutative Property } \\
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) & \text { Associative Property } \\
c(\vec{a}+\vec{b})=c \vec{a}+c \vec{b} & \text { Distributive Property } \\
(c+d) \vec{a}=c \vec{a}+d \vec{a} & \text { Distributive Property }
\end{array}
$$

7- Resultant of Two Vectors

The resultant is the sum or the combined effect

 of two vector quantitiesVectors in the same direction ($\theta=0$):

Vectors in opposite directions ($\theta=180$):

$6 \mathrm{~m} \mathrm{~s}^{-1}$	$10 \mathrm{~m} \mathrm{~s}^{-1}$	=	$4 \mathrm{~m} \mathrm{~s}^{-1}$
6 N	10 N	$=$	4 N

A. Operations with the \vec{i} and \vec{j} Vectors

(i) Adding and Subtracting: you add (or subtract) the \vec{i} parts and \vec{j} parts separately.
$\vec{a}=3 \vec{i}+4 \vec{j}$ and $\vec{b}=\vec{i}-3 \vec{j}$

(ii) Multiplication by a Scalar
$\vec{a}=3 \vec{i}-2 \vec{j}$ and $\vec{b}=-2 \vec{i}+\vec{j}$
Then $3 \vec{a}=3(3 \vec{i}-2 \vec{j})=9 \vec{i}-6 \vec{j}$
and $-3 \vec{b}=-3(-2 \vec{i}+\vec{j})=6 \vec{i}-3 \vec{j}$
(iii) The Vector
$\overrightarrow{a b}=\vec{b}-\vec{a}$
$\vec{a}=3 \vec{i}-2 \vec{j}$ and $\vec{b}=-2 \vec{i}+\vec{j}$
B. The Modulus of a vector in terms of \vec{i} and \vec{j}

The modulus of the vector $x \vec{i}+y \vec{j}=\sqrt{x^{2}+y^{2}}$
Also written as $|x \vec{i}+y \vec{j}|=\sqrt{x^{2}+y^{2}}$
If $\vec{a}=6 \vec{i}+8 \vec{j}$ and $\vec{b}=2 \vec{i}-3 \vec{j}$ find:
(i) $|\vec{a}|$
(ii) $|\vec{b}|$
(iii) $|\vec{a}+\vec{b}|$

2. When the Vectors are perpendicular to each other ($q=90$)

Notes about Vector Addition

1. Commutative Law of Addition

- The order in which the vectors are added doesn't affect the result
- $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}$

(a)
(b)

30

2- Vector Subtraction

Special case of vector addition

- Add the negative of the vector
$-\vec{A}-\vec{B}=\vec{A}+(-\vec{B})$

but $(\overrightarrow{A D})=\overrightarrow{(A B})+(\overrightarrow{B D})$ and $(\overrightarrow{D C})=b \sin \theta$
So that $c^{2}=[a+b \cos \theta]^{2}+[b \sin \theta]^{2}$
or

$$
c^{2}=a^{2}+b^{2}+2 a b \cos \theta
$$

then

Cosine Law

Sine Law

In $\triangle \mathrm{ACD}, C D=A C \sin \alpha \& \triangle \mathrm{BDC} \quad C D=B C \sin \theta$

$$
c \sin \alpha=b \sin \theta \quad \text { or } \quad \frac{b}{\sin \dot{c}}=\frac{c}{\sin \theta}
$$

Similarly, $B E=a \sin \alpha=b \sin \beta \quad$ or $\quad \frac{b}{\sin \alpha}=\frac{a}{\sin \beta}$

This called Sine law, To find the direction of or $\vec{a}+\vec{b}$

3- Scalar Product (Dot Product)

- The dot product of vectors A and B written A.B and read "A dot B " is defined as the product of the magnitudes of A and B and the cosine of the angle between their tails.

where $0^{\circ} \leq \theta \leq 180^{\circ}$.

8. Laws of Operation

- There are three (3) Laws of Operations:

1. Commutative law:

$$
A \cdot B=B \cdot A
$$

2. Multiplication by a scalar law:

$$
\mathrm{a}(\mathrm{~A} \cdot \mathrm{~B})=(\mathrm{aA}) \cdot \mathrm{B}=\mathrm{A} \cdot(\mathrm{aB})=(\mathrm{A} \cdot \mathrm{~B}) \mathrm{a}
$$

3. Distributive law:

$$
A \cdot(B+D)=(A \cdot B)+(A \cdot D)
$$

9.Cartesian Vector Formulation

- We can now find the dot product for each of the Cartesian unit vectors, i.e.:

$$
\mathbf{i} \bullet \mathbf{i}=(1)(1) \cos 0^{\circ}=1 \quad \text { and } \quad \mathbf{i} \cdot \mathbf{j}=(1)(1) \cos 90^{\circ}=0 .
$$

In similar way, we can see that:

$$
\begin{array}{lll}
\mathbf{i} \cdot \mathbf{i}=1 & j \cdot \mathbf{j}=1 & k \cdot k=1 \\
\mathbf{i} \cdot \mathbf{j}=0 & j \cdot k=0 & k \cdot i=0
\end{array}
$$

$$
\begin{aligned}
A \cdot B= & \left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right)\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right) \\
= & A_{x} B_{x}(\mathbf{i} \cdot \mathbf{i})+A_{x} B_{y}(\mathbf{i} \cdot \mathbf{j})+A_{x} B_{z}(\mathbf{i} \cdot \mathbf{k}) \\
& +A_{v} B_{x}(\mathbf{j} \cdot \mathbf{i})+A_{y} B_{y}(\mathbf{j} \cdot \mathbf{j})+A_{y} B_{z}(\mathbf{j} \cdot \mathbf{k}) \\
& +A_{z} B_{x}(\mathbf{k} \cdot \mathbf{i})+A_{z} B_{z}(\mathbf{k} \cdot \mathbf{j})+A_{z} B_{z}(\mathbf{k} \cdot \mathbf{k}) \\
A \cdot B= & A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

9.Cartesian Vector Formulation (Scalar Product)

$$
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

$$
\vec{a} \cdot \vec{b}=12+(-6)+4=10
$$

Some Applications

- To test whether two vectors are perpendicular.

If the dot product of two non zero vectors is zero, the vectors are perpendicular.

$$
\begin{aligned}
& (3 \hat{i}+2 \hat{j}-1 \hat{k}) \bullet(\hat{i}-2 \hat{j}-1 \hat{k}) \\
& =3-4+1=0
\end{aligned}
$$

Some Applications

- Finding the angle between two vectors.

$$
\begin{aligned}
& \vec{a} \bullet \vec{b}=a b \cos \theta \\
& \cos \theta=\frac{\vec{a} \bullet \vec{b}}{a b} \\
& \theta=\cos ^{-1}\left(\frac{\vec{a} \bullet \vec{b}}{a b}\right)
\end{aligned}
$$

What is the angle between \vec{a} and \vec{b} ?

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}}=2 \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}-\hat{\boldsymbol{k}} \quad \overrightarrow{\boldsymbol{b}}=\mathbf{6} \hat{\boldsymbol{i}}-3 \hat{\boldsymbol{j}}+2 \hat{\boldsymbol{k}} \\
& \boldsymbol{a}=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{9}=3 \\
& \boldsymbol{b}=\sqrt{6^{2}+3^{2}+2^{2}}=\sqrt{49}=7 \\
& \overrightarrow{\boldsymbol{a}} \bullet \overrightarrow{\boldsymbol{b}}=12-6-2=4
\end{aligned}
$$

$$
\cos \theta=\frac{4}{21} \Rightarrow \theta=\cos ^{-1}\left(\frac{4}{21}\right)=79^{\circ}
$$

