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Module Describtion

Module Aims

The aim of this module is to introduce the students to the basic theory

of ordinary differential equations and give a competence in solving

ordinary differential equations by using different methods of solution

of differential equations.

General Description of the module

The subject of differential equations is a very important branch of

applied mathematics. Many phenomena from physics, biology and

engineering may be described using ordinary differential equations.

They are also used to model the behaviour of systems in the natu-

ral world, and predict how these systems will behave in the further.

For instance, exponential growth (the rate of change of a population is

proportional to the size of the population) is expressed by the differen-

tial equation dP/dt = kP . Newton’s Law of Gravitation (acceleration

is inversely proportional to the square of distance) translates to the

equation y′′ = −ky2. Many examples are found in the fields of physics,

engineering, biology, chemistry and economics.
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The traditional course in differential equations focused on the small

number of differential equations for which exact solutions exist. How-

ever, the methods used by scientists today have changed dramatically

due to computer (using different type of computational package like

Maple, Mathematica, reduce, Singular, etc). Here we will cover almost

all methods for solving every kind of ordinary differential equations.

Homework

Homework will be given at every lecture. You should start working on

the homework problems for a section as soon as that section is covered

in class. Although you are encouraged to consult with other students

and seek help from tutor and me, homework should ultimately repre-

sent your own work. Answers unsupported by work will not receive

credit. Not all problems may be graded. Homework should be neatly

handwritten or typed, on one side of the page only. Copy the problem

in its original form from the lecture (book) and provide the solution

to the problem.
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prerequisite

One must be familiar with the basic differential and integral calcu-

lus, which are the main contents of college level introductory Calculus

course. Although the course does not require more more details in

linear algebra, it will be very helpful if one has a little bit of knowledge

on Linear Algebra such as the determinant of a square matrix, linear

(in)dependence of vectors, and Cramers rule of solving a determined

system of simultaneous linear algebraic equations.

Learning Objectives

• The student will learn to formulate ordinary differential equa-

tions (ODEs) and seek understanding of their solutions.

• The student will recognise basic types of differential equations

which are solvable, and will understand the features of linear

equations in particular.

• Students will be familiar to derive methods to solve ordinary

differential equations.
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Grades

Grades will be assigned on the basis of 100 points distributed as follows:

30 points midterm test.

10 points discussion.

60 points final examination.

Attendence

Class attendance is mandatory. Although I do not have a rigid policy,

anyone who has missed lots of class and is doing poorly in the course

should not except much sympathy from me. If you do miss a class,

it is your responsibility to make up the material and make sure your

homework is turned in on time.
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Chapter 1

Basic definitions and

elimination of essential

constants

1.1 Introduction: How to read a differen-

tial equation

Welcome to the world of differential equations! We hope you will enjoy

it. Differential equations describe many processes in the world around

you, but of course we shall have to convince you of that. Today we

1
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are going to give an example, and find out what it means to read a

differential equation.

Definition 1. A differential equation is an equation (not identity) that

involves unknown function and any of its derivatives or differentials.

If only one independent variable is assumed, the differential equa-

tion is called ordinary differential equation. The following are examples

of ordinary differential equations:

dy

dx
+ 2xy = ex,

y dy − x x eydx = 0,

y′′ − y′ − 2y = cos(x),

(
dy

dx
)2 − x2ey = 1.

If two or more independent variables appears, the equation is known

as a partial differential equation. For instance:

∂v

∂x
+

∂v

∂t
= 0,

∂2v

∂x2
=

∂v

∂t
,

∂2u

∂x2
+

∂2u

∂y2
= ln u.

Example 1 (The Banker’s equation). Consider the differential equa-

2
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tion

dy

dt
= 0.028y.

It does not look too exciting does it? Really it is, though. It might

for example represent your bank account, where the balance is y at a

time t years after you open the account, and the account is earning

2.8% interest. Regardless of the specific interpretation, let’s see what

the equation says. Since we see the term dy
dt we can tell that y is a

function of t, and that the rate of change is a multiple, namely 0.028,

of the value of y itself. We definitely should always write y(t) instead

of just y, and we will sometimes, but it is traditional to be sloppy. For

example, if y happens to be 2000 at a particular time t, the rate of

change of y is then 0.028(2000) = 56, and the units of this rate in the

bank account case are dollars/year. Thus y is increasing, whenever y

is positive.

Question: How to interpret the differential equation

dy

dt
= 0.028y − 10.

Remark 1. This is not supposed to be a hard question. By the way,

when I ask a question, do not cheat yourself by ignoring it. Think about

it, and future things will be easier. I promise.

3
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1.2 Notation, order and degree

The most general form of an ordinary differential equation is

f(x, y, y′, . . . , y(n)) = 0, (1.1)

where x is independent variable while y is dependent variable.

Definition 2. The order of a differential equation is the order n of the

highest derivative appearing in the equation. Thus

d2y

dx2
+ y = 0

is a second order differential equation, whereas

dy

dx
− xy = sin(x)

is an example of a first order differential equation.

Definition 3. If a differential equation can be rationalised and cleared

of fractions with regard to all derivatives present, then the exponent

of the highest order derivatives is called the degree of the differential

equation.

Remark 2. Not every differential equation has a degree. If the degree

4
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exists, it should be a positive integer.

Example 2. The differential equation (y′′)
2

3 = 1 + y′ can be ratio-

nalised by cubing both sides to obtain (y′′)2 = (1 + y′)3. The exponent

of the highest order derivatives present (namely y′′) is 2. hence, the

differential equation is of degree two. however, note that y′′′ =
√
x + y

is of degree one.

Homework 1. Give an example of a differential equation for which a

degree is not defined.

Question: Is it possible for a differential equation to have more

than one dependent variable?

1.3 Solutions of differential equations

Definition 4. Any function which is free of derivatives and which sat-

isfy identically a differential equation on an interval I, is said to be

a solution of the differential equation. Thus, we say that the func-

tion u = u(x) is a solution of the differential equation (1.1) on the

interval I, provided that the derivatives u′, u′′, . . . , u(n) exists on I and

f(x, u, u′, u′′, . . . , u(n)) = 0 for all x in I. The graph of u is then called

a solution curve of the equation.

5
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Example 3. For any constant k the function y = kex/2 is a solution

to the differential equation dy
dx = 1

2y over the interval −∞ < x < ∞.

Since y = kex/2 =⇒ dy
dx = d

dx(kex/2) = k
2e

x/2 and substitute in the

differential equation gives k
2e

x/2 = 1
2(kex/2) which is true for all real

number x.

Remark 3. A solution to a differential equation MUST be continuous

since the derivative appears in the equation.

Homework 2. Show that every function of the form y = 1
xe

cx, where c

is a constant is a solution of the differential equation xy′+y−y ln(xy) =

0 for all x 6= 0.

Definition 5. The general solution to an n-th order ordinary differ-

ential equation is a solution that contains all possible solutions over

an interval I. This general solution contains n arbitrary essential con-

stants.

Definition 6. If a solution to an n-th order ordinary differential equa-

tions is free of arbitrary constants, then it is called a particular solution

to the differential equation.

Question: Does a given differential equation have always a solu-

tion over an interval?

6
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Example 4. The equation y′ = 2x is defined for all x and has

y(x) = x2 + c (1.2)

as its general solution. To find particular solution that satisfies the

initial condition y(2) = 3, and substitute in (1.2) and solve for c, we

get c = −1 and we conclude that y = x2 − 1.

Definition 7. A singular solution is a solution of differential equation

which can not obtain from the general solution by giving values to the

arbitrary constants. Also its called envelope of solutions.

Example 5. For the differential equation y2 +x2 dydx = 0, we found that

the solution y(x) ≡ 0 was a singular point and this solution can not

be obtain from the general solution y(x) = x
(cx−1) by any choice of the

constant c.

Definition 8. If a relation involving a certain set of constants which

is a general solution of a differential equation, the constants are called

arbitrary constants, and if these constants can not be replaced by a

smaller number of constants, so such constants are called essential ar-

bitrary constants.

7
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1.4 The elimination of essential arbitrary

constants

We now find the differential equation if its general solution is known.

We start with a relation involving essential arbitrary constants, and, by

elimination of these constants, come to a differential equation. Since

each differentiation yields a new relation, the number of derivatives

that need be used is the same as the number of essential constants to

be eliminated.

We shall in each case determine the differential equation that is

1) Of order equal to the number of essential constants in the given

relation.

2) Free from essential constants.

Example 6. Find the differential equation from the relation

y = Ae3x + Be−2x + Ce2x,

where A, B and C are arbitrary constants.

Solution: We have

y = Ae3x + Be−2x + Ce2x, (1.3)

8
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then

y′ = 3Ae3x − 2Be−2x + 2Ce2x. (1.4)

We may eliminate one of arbitrary essential constants, say B, by mul-

tiplying equation (1.3) by 2 and adding the result to equation (1.4),

thus obtaining

2y + y′ = 5Ae3x + 4Ce2x. (1.5)

Now, differentiating (1.5), we get:

2y′ + y′′ = 15Ae3x + 8Ce2x. (1.6)

Multiplying equation (1.5) by 3 and subtracting equation (1.6), we see

6y + y′ − y′′ = 4Ce2x. (1.7)

having one essential constant. Differentiating equation (1.7), yields

6y′ + y′′ − y′′′ = 8Ce2x. (1.8)

Finally, multiplying equation (1.7) by 2 and subtracting equation (1.8),

9
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we eliminate C and find

y′′′ − 3y′′ − 4y′ + 12y = 0,

which is a third order differential equation having solution (1.3).

Example 7. Find the differential equation from the relation

y = A cosαx + B sinαx,

where A and B are arbitrary constants and α being a fixed number.

Solution: We take the derivative

y = A cosαt + B sinαt, (1.9)

with respect to t, we have

y′ = −αA sinαt + αB cosαt.

Again take the derivative of this equation, we get

y′′ = −α2A cosαt− α2B sinαt. (1.10)

10
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Adding equations (1.9) and (1.10), yielding

y′′ + α2y = 0.

which is the desired differential equation.

Homework 3. 1) Find a differential equation for the family of all

circles having radius 1 and centre anywhere in the xy-plane.

2) Eliminate the constant a from the equation (x− a)2 + y2 = a2.

3) Eliminate α and β from the relation x = β cos(ωt + α), in which ω

is a parameter (not to be eliminate).

1.5 Geometrical interpretation of differ-

ential equations

Consider a differential equation

dy

dx
= f(x, y), (1.11)

which is a first order and first degree. Since, from calculus, the deriva-

tive is the slope of the tangent line, we interpret this equation geomet-

rically to mean that at any point (x, y) in the plane, the tangent line

11
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must have slope f(x, y).

Take any point (x1, y1) in xy-plane, equation (1.11) will determine cor-

responding value of dy
dx , say m1. A point that moves, subject to the

restriction imposed by (1.11), on passing through (x1, y1) must go in

the direction m1. Let it moves infinitesimal distance to a point (x2, y2)

and m2 be the value of dy
dx corresponding to (x2, y2) as determined by

(1.11). Thence under the same condition to (x3.y3) and so on through

successive points. In the proceeding thus the point will describe the

coordinate of every point of which and the direction of the tangent

thereat will satisfy the differential equation (1.11).

For instance, the slope field for dy
dx = x + y + 2 is illustrated as

follows:

12
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The solution to a differential equation is a curve that is tangent

to the arrows of the slope field. Since differential equations are solved

by integrating, we call such a curve an integral curve. This picture

illustrates some of the integral curves for dy
dx = x + y + 2. You can

see there are a lot of possible integral curves, infinitely many in fact.

This corresponds to the fact that there are infinitely many solutions to

a typical differential equation. To specify a particular integral curve,

you must specify a point on the curve. Once you specify one specific

point, the rest of the curve is determined by following the arrows. This

corresponds to finding a particular solution by specifying an initial

value.

13
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Chapter 2

Equations of first order

and first degree

2.1 Equations of first order and first de-

gree

We shall study several elementary methods for solving first order or-

dinary differential equations.

y′ =
dy

dx
= f(x, y), (standard, normal or explicit form) (2.1)

15



W
al
ee
d
A
zi
z

or

M(x, y)dx + N(x, y)dy = 0, (differential form) (2.2)

or

F (x, y, y′) = 0, (implicit form) (2.3)

From equation (2.1), we can get equation (2.2) as follows:

If f(x, y) = −M(x,y)
N(x,y) , N(x, y) 6= 0, equation (2.1) can be written equiv-

alently in differential form as:

dy

dx
= −M(x, y)

N(x, y)
=⇒ N(x, y)dy = −M(x, y)dx

=⇒ M(x, y)dx + N(x, y)dy = 0.

Remark 4. We expect that the general solution of (2.1), (2.2) or (2.3)

to have one arbitrary essential constants.

2.2 Separation of variables (Separable dif-

ferential equations)

Consider the differential equation

y′ =
dy

dx
= f(x, y). (2.4)

16
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If we may be able to factor f(x, y) into factors containing only x or y,

but not both, then we say f(x, y) is separable. Thus;

f(x, y) = p(x)q(y) =
p(x)

Q(y)

where q(y) = 1
Q(y) . When the variables are separable, differential equa-

tion (2.4) becomes

dy

dx
= p(x)q(y) =⇒ dy

q(y(x))
= p(x)dx. (2.5)

Since

dy

q(y(x))
=

y′(x)

q(y(x))
dx,

and substitute in (2.5), gives

y′(x)

q(y(x))
dx = p(x)dx.

Let u = y(x) and du = y′(x)dx, then integration of both sides, we have

∫

du

q(u)
=

∫

p(x)dx + C

where C is a constant.

Remark 5. It is possibility that either p or q may be constant function.

17
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Example 8. Solve the differential equation y′ = 3x2e−y.

Solution: We have

y′ = 3x2e−y =⇒ dy

dx
= 3x2e−y =⇒ eydy = 3x2dx

=⇒
∫

eydy =

∫

3x2dx =⇒ ey = x3 + C.

By taking the natural logarithm of both sides, we get

y = ln (x3 + C),

which is the general solution where C is an arbitrary essential constant.

Example 9. Solve the differential equation y′ = 2(x + y2x).

Solution:

y′ = 2(x + y2x) =⇒ dy

dx
= 2(x + y2x) =⇒ dy = 2x(1 + y2)dx

=⇒
∫

dy

1 + y2
=

∫

2xdx =⇒ tan−1 y = x2 + C

=⇒ y = tan (x2 + C).

is the general solution where C is an arbitrary essential constant.

Remark 6. If the differential equation (2.4) is of differential for

M(x, y)dx + N(x, y)dy = 0. (2.6)

18
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If M(x, y) and N(x, y) are separable with variables x and y, so (2.6)

takes the form

M1(x)M2(y)dx + N1(x)N2(y)dy = 0. (2.7)

Now, equation (2.7) can be converted into an equation that can be

integrated by multiplying its coefficients by 1
M2(y)N1(x)

. This yields

M1(x)

N1(x)
dx +

N2(y)

M2(y)
dy = 0.

Thus, the general solution of (2.6), is determined by the expression

∫

M1(x)

N1(x)
dx +

∫

N2(y)

M2(y)
dy = C,

where C is arbitrary essential constant.

Example 10. Solve sθds + (s3θ3 − 3s3θ)dθ = 0.

Solution: sθds+(s3θ3−3s3θ)dθ = 0 =⇒ sθds+s3θ(θ2−3)dθ = 0.

multiplying both sides by s−3θ−1 and integrating both sides, we have

∫

s−2ds +

∫

(θ2 − 3)dθ = C =⇒ −s−1 +
1

3
θ3 − 3θ = C

19
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or

s = (
1

3
θ3 − 3θ − C)−1,

where C is arbitrary essential constant.

Homework 4. Solve the following differential equations:

1) ydx− xdy = xydx.

2) (x + y)(dx− dy) = dx + dy.

3) x2(1 − y)dx + y2(1 + x)dy = 0.

4) 3ex tan ydx + (1 − ex) sec2 ydy = 0.

2.3 Homogeneous differential equations

Definition 9. A function f(x, y) is said to be homogeneous function

of degree k in x and y, if, and only if,

f(λx, λy) = λkf(x, y), λ ∈ R.

Note that f(x, y) = x2 + y2 and g(x, y) = xy are homogeneous

functions of degree 2, since

f(λx, λy) = (λx)2 + (λy)2 = λ2x2 + λ2y2 = λ2(x2 + y2) = λ2f(x, y)

20
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and

g(λx, λy) = (λx)(λy) = λ2xy = λ2g(x, y).

Definition 10. A function f(x, y) is said to be homogeneous function

of degree 0, if it can be written in the form F (yx) or F (xy ).

The functions e
y
x and (2x+y)/y are homogeneous function of degree

0 and 1√
x+y

is homogeneous function of degree −1
2 .

Definition 11. A differential equation of the form

M(x, y)dx + N(x, y)dy = 0,

is called homogeneous differential equation, if both M and N are ho-

mogeneous functions of the same degree.

Remark 7. If the right hand side of the equation

dy

dx
= f(x, y),

can be expressed as a function of the ratio y
x or x

y only, then the equation

is said to be homogeneous.

Homework 5. Determine whether the following functions are homo-

geneous:

21
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1) f(x, y) = 2y3 exp (yx) − x4

x+3y .

2) g(x, y) = xey/x − y.

3) h(x, y) = x√
(x2+y2)

.

4) k(x, y) = y
x+

√
xy .

5) ℓ(x, y) = 2xey/x

(x2+y2 sin (x/y)).

Theorem 1. If the coefficients M and N are homogeneous of the same

degree in x and y, then, the differential equation

M(x, y)dx + N(x, y)dy = 0, (2.8)

can be reduced to separable equation by the transformation v = y
x.

Proof: Since M and N are homogeneous functions of the same

degree, say k, we have:

M(x, y) = M(x, xv) = xkM(1, v),

N(x, y) = N(x, xv) = xkN(1, v),

and hence

M(x, y)

N(x, y)
=

M(1, v)

N(1, v)
= f(v). (2.9)
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From v = y
x , we have

dy

dx
= v + x

dv

dx
.

Therefore, equation (2.8) transform into

v + x
dv

dx
= −f(v).

Consequently,

dv

f(v) + v
+

dx

x
= 0

This is a separable equation.

Remark 8. The normal form of equation (2.8) is

y′ =
dy

dx
= −M(x, y)

N(x, y)
,

where the function −M(x,y)
N(x,y) = f(x, y) is homogeneous of degree 0. Thus,

the substitution y = vx will convert y′ = f(x, y) into an equation whose

variables are separable whenever f is homogeneous of degree 0.

Homework 6. Suppose that dy
dx = g(yx), derive a formula for solving

this type of differential equation.
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Example 11. Solve the differential equation

y2dx− x(x + y)dy = 0.

Solution: Clearly, this differential equation is not separable. Since

the coefficients are homogeneous functions of degree 2, so let

v =
y

x
=⇒ y = vx =⇒ dy = vdx + xdv

=⇒ v2x2dx− x(x + vx)(vdx + xdv) = 0

=⇒ v2x2dx− (x2 + vx2)(vdx + xdv) = 0

=⇒ v2x2dx− vx2dx− x3dv − x2v2dx− vx3dv = 0

=⇒ −vx2dx− x3(1 + v)dv = 0

=⇒ dx

x
= −1 + v

v
dv

=⇒ dx

x
= −(

1

v
+ 1)dv

=⇒ ln|x| = − ln|v| − v + c1

=⇒ ln|x| + ln|v| = −v + c1

=⇒ ln|xv| = −v + c1

=⇒ xv = c2e
−v, where c2 = ec1, c2 > 0

Since v = y
x , then y = c2e

− y
x is a general solution where c2 is an

arbitrary essential constant.
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Example 12. Solve the differential equation

2xydy − (x2 + 3y2)dx = 0, x > 0.

Solution: It is obvious this differential equation is not separable.

Now divide its both sides by x2, then we have

2(
y

x
)dx− (1 +

3y2

x2
)dx = 0 =⇒ dy

dx
=

1 + 3(yx)2

2(yx)
.

Since the right hand side of the equation above is a function of y
x ,

then the differential equation is a homogeneous of degree 0.

Let y = vx and dy
dx = v + xdv

dx , then

v + x
dv

dx
=

1 + 3v2

2v
=

1

2v
+

3v

2

Thus,

x
dv

dx
=

1

2v
+

v

2
=

1 + v2

2v
=⇒ 2vdv

1 + v2
=

dx

x

Therefore,

ln(1 + v2) = ln x + C
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Since x > 0, combining logarithms, we get

ln(
1 + v2

x
) = C =⇒ 1 + (

y

x
)2 = C1x

or

y2 = x2(C1x− 1),

is the general solution where C1 = eC is an arbitrary constant.

Homework 7. Solve the following differential equations:

1) xydx + (x2 + y2)dy = 0.

2) (x2 + xy + y2)dx− xydy = 0.

3) y′ = x+y
x−y .

4) dy
dx = xey/x+y

x .

5) (2x sinh(yx) + 3y cosh(yx))dx− 3x cosh(yx)dy = 0.

2.4 Coefficients linear in the two variables

Consider the differential equation

(a1x + b1y + c1)dx + (a2x + b2y + c2)dy = 0, (2.10)
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in which the ai’s, bi’s and ci’s are constants. If c1 = c2 = 0, the (2.10)

is a homogeneous differential equation, can be solved by v = y
x . We

now consider the lines

a1x + b1y + c1 = 0,

a2x + b2y + c2 = 0.
(2.11)

There are two cases. First they may intersect or, second they may

parallel.

1) If the lines (2.11) are intersect (has a solution) (slope1 = −a1
b1

6=

−a2
b2

= slope2), let the point of intersection be (h, k) and let

x = u + h =⇒ dx = du,

y = v + k =⇒ dy = dv.

Substitute theses into equation (2.10), we have

[a1(u + h) + b1(v + k) + c1]du + [a2(u + h) + b2(v + k) + c2]dv = 0 =⇒

[a1u+b1v+(a1h+b1k+c1)]du+[a2u+b2v+(a2h+b2k+c2)]dv = 0. (2.12)
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Since the point (h, k) is the intersection point of lines in (2.11), so,

a1h + b1k + c1 = 0, a2h + b2k + c2 = 0.

Then (2.12) reduces to

(a1u + b1v)du + (a2u + b2v)dv = 0.

which is a homogeneous differential equation and can be solved by

w = u
v .

Example 13. Solve the differential equation

(x + 2y − 4)dx− (2x + y − 5)dy = 0. (2.13)

Solution: This differential equation, clearly, is not separable and

not homogeneous differential equation. It is a differential equation

with coefficients linear.

Let

x + 2y − 4 = 0 =⇒ −2x− 4y + 8 = 0

2x + y − 5 = 0 =⇒ 2x + y − 5 = 0

adding the last two equations, we have: −3y + 3 = 0 =⇒ y = 1.

Substitute the value of y = 1 in x + 2y − 4 = 0, we see x = 2. Thus,
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(2, 1) is the only point of intersection. Put

x = u + 2 =⇒ du = dx

y = v + 1 =⇒ dy = dv

in (2.13), then we obtain

[(u + 2) + 2(v + 1) − 4]du− [2(u + 2) + (v + 1) − 5]dv = 0 =⇒

(u + 2v)du− (2u + v)dv = 0, (2.14)

which is a homogeneous differential equation of degree one in u and v.

Let z = u
v =⇒ u = zv =⇒ du = vdz + zdv.

Substitutes in (2.14), yields

(vz + 2v)(vdz + zdv) − (2vz + v)dv = 0 =⇒

(z + 2)(vdz + zdv) − (2z + 1)dv = 0 =⇒

2vdz + z2dv + 2vdz + 2zdv − 2zdv − dv = 0 =⇒

v(z + 2)dz + (z2 − 1)dv = 0 =⇒ (
z + 2

z2 − 1
)dz +

dv

v
= 0
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By using partial fraction, we see

z + 2

z2 − 1
=

A

z + 1
+

B

z − 1
=

A(z − 1) + B(z + 1)

z2 − 1
=⇒

A + B = 1 and B − A = 2 =⇒ B = 2 + A =⇒ A + A + 2 = 1 =⇒

2a = −1 =⇒ A = −1
2 =⇒ B = 3

2 .

Therefore,

−
1
2

z + 1
dz +

3
2

z − 1
dz +

dv

v
= 0 =⇒ 3

z − 1
dz − 1

z + 1
dz + 2

dv

v
= 0

=⇒ 3 ln|z − 1| − ln|z + 1| + 2 ln|v| = c =⇒ ln[
(z − 1)3v2

z + 1
] = c

=⇒ (z − 1)3v2

z + 1
= c1 where c1 = ec

Thus,

(z − 1)3v2 = c1(z + 1) =⇒ (vz − v)3 = c1(vz + v)

Since u = vz, then (u− v)3 = c1(u+ v). But u = x− 2 and v = y− 1.

So

(x− y − 1)3 = c1(x + y − 3)
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is a general solution where c1 is an arbitrary constant.

2) If the lines (2.11) do not intersect, i.e. they are parallel (they

have no solution), (slope1 = −a1
b1

= −a2
b2

= slope2) then there exists a

constant k such that

a2x + b2y = k(a1x + b1y) (why?)

which implies that

[a1x + b1y + c1]dx + [k(a1x + b1y) + c2]dy = 0,

Let w = a1x + b1y. Then the new equation, in w and x or in w and

y, is one with variables separable, since its coefficients contains only w

and constants.

Example 14. Solve the differential equation

(2x + 3y − 1)dx + (2x + 3y + 2)dy = 0,

with the condition that y(1) = 3, i.e. y = 3 when x = 1
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Solution: The lines

2x + 3y − 1 = 0,

2x + 3y + 2 = 0,

are parallel as they have not got any solution. Let

2x + 3y = w =⇒ 2dx + 3dy = dw =⇒ 2dx = dw − 3dy.

So,

(w − 1)(dw − 3dy) + 2(w + 2)dy = 0 =⇒

(w − 1)dw − 3(w − 1)dy + 2wdy + 4dy = 0 =⇒

(w − 1)dw − 3wdy + 3dy + 2wdy + 4dy = 0 =⇒

(w − 1)dw − (w − 7)dy = 0 =⇒ w − 1

w − 7
dw − dy = 0

w

w − 7
dw − 1

w − 7
dw − dy = 0 =⇒ w − y + c + 6 ln|w − 7| = 0

Pull back the original variables to the last solution we have

2x + 2y + c + 6 ln|2x + 3y − 7| = 0,
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which is the general solution where c is an arbitrary constant.

But y(1) = 3, so c = −8 − 6 ln 4. Hence the particular solution is

x + y − 4 = −3 ln[
1

4
(2x + 3y − 7)].

Homework 8. Solve the following differential equations:

1) (y − 2)dx− (x− y − 1)dy = 0.

2) (x− 4y − 9)dx + (4x + y − 2)dy = 0.

3) (x + y − 1)dx + (2x + 2y + 1)dy = 0.

2.5 Exact differential equations

Definition 12. The total differential of a function φ(x, y) is denoted

by dφ and defined as

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy.

Definition 13. If a function φ(x, y) exists such that ∂φ
∂x = M(x, y) and

∂φ
∂y = N(x, y), then the differential equation

M(x, y)dx + N(x, y)dy = 0,
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is said to be an exact differential equations and the general solution is

of the form φ(x, y) = C, where C is an arbitrary constant.

Test for exactness The differential equation

M(x, y)dx + N(x, y)dy = 0,

is exact iff ∂M
∂y = ∂N

∂x .

Theorem 2. If M , N , ∂M
∂y and ∂N

∂x are continuous functions in x and

y, then a necessary and sufficient condition that

M(x, y)dx + N(x, y)dy = 0,

be exact equation is that ∂M
∂y = ∂N

∂x .

Remark 9. Theorem 2 means that:

1) If M(x, y)dx + N(x, y)dy = dφ = 0, (i.e. the equation is exact),

then ∂M
∂y = ∂N

∂x (necessary).

2) If ∂M
∂y = ∂N

∂x then M(x, y)dx + N(x, y)dy = dφ (i.e. the equation is

exact), or equivalently, φ exists such that ∂M
∂y = ∂N

∂x (sufficient).

Proof. (Theorem 2) If

M(x, y)dx + N(x, y)dy = 0, (2.15)
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is exact, then from definition of exactness, φ exists such that

dφ = M(x, y)dx + N(x, y)dy = 0,

∂φ
∂x = M =⇒ ∂2φ

∂y∂x = ∂M
∂y ,

and ∂φ
∂y = N =⇒ ∂2φ

∂x∂y = ∂N
∂x .

But from Calculus (Theorem: If the function φ(x, y) has continuos

second derivatives, then ∂2φ
∂x∂y = ∂2φ

∂y∂x), we have ∂2φ
∂y∂x = ∂2φ

∂x∂y provided

these partial derivatives are continuous. Therefore, if (2.15) is an exact

equation, then

∂M

∂y
=

∂N

∂x
(2.16)

Thus for (2.15) to be exact, it is necessary that (2.16) be satisfied.

Let us now show that if condition (2.16) is holds, then (2.15) is an

exact equation.

i.e. we have to show that ∃ a function φ(x, y) s.t. ∂φ
∂x = M , ∂φ

∂y = N .

Now ∃ a function φ s.t. ∂φ
∂x = M (is trivial) =⇒ φ =

∫

Mdx + f(y)

where f(y) is an arbitrary function of y. Now we have to show that

∂φ
∂y = N .
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i.e. ∃ a function f(y) s.t.

∂φ

∂y
=

∂

∂y

[

∫

Mdx + f(y)
]

,

or

∂

∂y

[

∫

Mdx + f(y)
]

= N,

or

f ′(y) = N − ∂

∂y

∫

Mdx.

To show this, we only need to prove that

N − ∂

∂y

∫

Mdx (2.17)

is a function of y alone. This will be true indeed, if the partial derivative

w.r.t. x of (2.17) is zero.

∂

∂x

[

N − ∂

∂y

∫

Mdx
]

=
∂

∂x
N − ∂

∂x

∂

∂y

∫

Mdx]

=
∂

∂x
N − ∂

∂y

∂

∂x

∫

Mdx]

=
∂

∂x
N − ∂

∂y
M = 0, (because ∂M

∂y = ∂N
∂x ).

The sufficiency is therefore proved.
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Example 15. Solve the differential equation

2xydx + (x2 + cos y)dy = 0. (2.18)

Solution: Here M(x, y) = 2xy and N(x, y) = x2 + cos y. Now

∂M
∂y = 2x = ∂N

∂x , then the differential equation (2.18) is exact. Thus, ∃

a function φ s.t. ∂φ
∂x = M = 2xy and ∂φ

∂y = N = x2 + cos y. Now,

∂φ

∂x
= 2xy =⇒ φ =

∫

2xy dx + f(y) =⇒ φ = x2y + f(y)

where f(y) is an arbitrary function of y. Since

∂φ

∂y
= x2 + f ′(y) and

∂φ

∂y
= N = x2 + cos y,

then

x2 + f ′(y) = x2 + cos y =⇒ f ′(y) = cos y =⇒ f(y) = sin y.

Hence, φ = x2y + sin y and the general solution is φ = x2y + sin y = C

where C is an arbitrary constant.
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Example 16. Solve

(x + ey)dx + (xey − e2y)dy = 0.

Solution: Let M(x, y) = x + ey and N(x, y) = xey − e2y. Clearly,

∂M

∂y
= ey and

∂N

∂x
= ey =⇒ ∂M

∂y
=

∂N

∂x
.

So the differential equation is exact. Then

∂φ

∂y
= N = xey−e2y =⇒ φ =

∫

(xey−e2y)dy+g(x) = xey−1

2
e2y+g(x).

Since,

∂φ

∂x
= ey + g′(x) = M = x + ey =⇒ g′(x) = x =⇒ g(x) =

x2

2
.

Therefore, φ = xey − 1
2e

2y + x2

2 and the general solution is φ = k where

k is an arbitrary constant.

Homework 9. Solve the following differential equations:

1) (cosx cos y − cot x)dx− sin x sin ydy = 0.

2) 2xydx + (x2 + 1)dy = 0.

3) dy
dx = −3x2+4xy

2x2+2y .
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4) y′ = (xy2 − 1)/(1 − x2y).

Remark 10. Sometimes, exact differential equations can be solve by

another method which is called ”grouping of terms” or by inspec-

tion which can be explain in the examples below.

Example 17. Solve the following differential equations by ”grouping

of terms”:

1) 2xydx + (x2 + cos y)dy = 0.

2) (2x3 − xy2 − 2y + 3)dx− (x2y + 2x)dy = 0.

Remark 11. For inspection method, look for

1) xdy + ydx = d(xy).

2) xdy−ydx
x2 = d(yx).

3) ydx−xdy
y2 = d(xy ).

4) xdy−ydx
x2+y2 = d(tan−1(yx)).

5) d(x+y)
x+y = d ln(x + y).

It may help to group terms of like degrees.

Solution:

1) We have seen that the first equation is exact in Example 8. Thus

we can group term as follows:
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(2xydx + x2dy) + cos ydy = 0 =⇒ d(x2y) + d(sin y) = 0.

because d(x2y) = 2xydx + x2dy and d(sin y) = cos y. Then

d(x2y + sin y) = 0 =⇒ x2y + sin y = C,

is the general solution where C is an arbitrary constant.

2) Put M = 2x3 − xy2 − 2y + 3 and N = −x2y − 2x. Now

∂M

∂y
= −2xy and

∂N

∂x
= −2xy =⇒ ∂M

∂y
=

∂N

∂x
.

So the differential equation is exact. We can group as follows:

(2x3 + 3)dx− (xy2dx + x2ydy) − (2ydx + 2xdy) = 0,

and clearly, this implies that

d(
1

2
x4+3x)−d(

1

2
x2y2)−2d(xy) = 0 =⇒ d(

1

2
x4+3x−1

2
x2y2−2xy) = 0,

So, 1
2x

4 + 3x − 1
2x

2y2 − 2xy = C is a general solution where C is an

arbitrary constant.
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2.6 Non-exact differential equations (In-

tegrating factors)

When the differential equations

M(x, y)dx + N(x, y)dy = 0

is not exact differential equation, one can found a function I(x, y) such

that the differential equation

I(x, y)M(x, y)dx + I(x, y)N(x, y)dy = 0

is exact.The function I(x, y) is called an integrating factor .

Definition 14. A function I(x, y) is said to be an integrating factor for

M(x, y) +N(x, y)y′ = 0, if I Mdx+ I Ndy = 0 is an exact differential

equation.

Now, consider the case

M(x, y)dx + N(x, y)dy = 0, (2.19)

is not exact. We multiply (2.19) by the integrating factor I(x, y). Then
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from definition of an integrating factor, the new differential equation

I Mdx + I Ndy = 0,

is now exact so that

∂IM

∂y
=

∂IN

∂x
=⇒ I

∂M

∂y
+ M

∂I

∂y
= I

∂N

∂x
+ N

∂I

∂x

=⇒ ∂M

∂y
− ∂N

∂x
= N

∂I
∂x

I
−M

∂I
∂y

I

=⇒ ∂M

∂y
− ∂N

∂x
= N

∂

∂x
(ln I) −M

∂

∂y
(ln I)

(2.20)

There are many cases:

1) If I is a function of x alone, i.e. I = I(x) =⇒ ∂
∂y(ln I) = 0 and

substitute in (2.20), we have

∂M

∂y
− ∂N

∂x
= N

∂

∂x
(ln I) =⇒ d

dx
(ln I(x)) =

∂M
∂y − ∂N

∂x

N

=⇒ d(ln I) =

∂M
∂y − ∂N

∂x

N
dx

(2.21)

If the coefficients of dx on the right hand side of (2.21) is a function
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of x alone (say f(x)), then we have

ln I =

∫

f(x)dx =⇒ I = e
∫

f(x)dx.

2) I is a function of y alone, i.e. I = I(y) =⇒ ∂
∂x(ln I) = 0

∂M

∂y
− ∂N

∂x
= −M

∂

∂y
(ln I) =⇒ d

dy
(ln I(y)) =

∂N
∂x − ∂M

∂y

M

=⇒ d(ln I) =

∂N
∂x − ∂M

∂y

M
dy

=⇒ I = e
∫

g(y)dy,

where g(y) =
∂N
∂x −∂M

∂y

M .
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Example 18. Solve the differential equation

ydx + (3 + 3x− y)dy = 0. (2.22)

Solution: Here M = y and N = 3 + 3x − y. Then ∂M
∂y = 1 and

∂N
∂x = 3. Since ∂M

∂y = 1 6= 3 = ∂N
∂x , then (2.22) is not exact differential

equation.

Now, we compute

1

N
(
∂M

∂y
− ∂N

∂x
) =

1 − 3

3 + 3x− y
= − 2

3 + 3x− y
,

which is not a function of x a lone. But

1

M
(
∂N

∂x
− ∂M

∂y
) =

3 − 1

y
=

2

y
,

is a function of y alone. Thus, the integrating factor is

I = e
∫

2

ydy = e2 ln y = eln y
2

= y2 = g(y).

Multiplying both sides of (2.22) by y2, we have

y3dy + y2(3 + 3x− y)dy = 0. (2.23)
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Now, let M1 = y3 and N1 = y2(3 + 3x − y). Compute ∂M1

∂y = 3y2

and ∂N1

∂x = 3y2. Since ∂M1

∂y = 3y2 = ∂N1

∂x , hence equation (2.23) is an

exact differential equation. Therefore, φ exists such that ∂φ
∂x = M1 and

∂φ
∂y = N1. Since

∂φ

∂x
= M1 = y3 =⇒ φ = xy3 + f(y)

where f(y) is an arbitrary function in y. Now, since

∂φ

∂y
= 3xy2+f ′(y) = N1 = 3y2+3xy2−y3 =⇒ f ′(y) = 3y2−y3 =⇒ f(y) = y3−y4

4

Thus,

φ = xy3 + y3 − y4

4
= C =⇒ xy3 + y3 − y4

4
= C,

is a general solution of (2.22) where C is an arbitrary constant.

Example 19. Solve the differential equation

(4xy + 3y2 − x)dx + x(x + 2y)dy = 0. (2.24)

Let M = 4xy + 3y2 − x and N = x(x + 2y). So, ∂M
∂y = 4x + 6y

and ∂N
∂x = 2x+ 2y. Since ∂M

∂y 6= ∂N
∂x , then (2.24) is not exact differential
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equation.

We compute

1

N
(
∂M

∂y
− ∂N

∂x
) =

2x + 4y

x(x + 2y)
=

2

x
= f(x),

which is a function of x alone. Then, an integrating factor for equation

(2.24) is

I = exp(

∫

f(x)dx) = e2
∫

dx
x = e2 ln |x| = x2.

Multiplying (2.24) by integrating factor x2, we have

(4x3y + 3x2y2 − x3)dx + x3(x + 2y)dy = 0, (2.25)

which is now an exact differential equation because

∂M1

∂y
= 4x3 + 6x2y =

∂N1

∂x
.

Therefore, ∃ a function φ such that ∂φ
∂x = M1 and ∂φ

∂y = N1. As we have

∂φ

∂x
= M1 = 4x3y + 3x2y2 − x3 =⇒ φ = x4y + x3y2 − x4

4
+ f(y),
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where f(y) is an arbitrary function in y. Now, since

∂φ

∂y
= x4+2x3y+f ′(y) = N1 = x4+2x3y =⇒ f ′(y) = 0 =⇒ f(y) = C1,

where C1 is an arbitrary constant. Hence

φ = x4y + x3y2 − x4

4
+ C1 = C =⇒ x3(4xy + 4y2 − x) = K,

is a general solution where K = 4(C − C1) is an arbitrary constant.

Homework 10. Solve the following differential equation:

1) (2y − 3x)dx + xdy = 0.

2) (x2 + y3 + 1)dx + x(x− 2y)dy = 0.

3) y(2xy4ey + 2xy3 + y)dx + (x2y4ey − x2y2 − 3x)dy = 0.

4) y(2xy + 1)dx + x(1 + 2xy − x3y3)dy = 0.

5) xdx + ydy + 4y3(x2 + y2)dy = 0.

6) (y + x3y + 2x2)dx + (x + 4xy4 + 8y3)dy = 0.
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2.7 Linear Differential equations of first

order

Definition 15. Any differential equation of any order is said to be

linear, if the dependent variable and all its derivatives which appear

in the differential equation are of degree one and not product of each

other.

The general form is

a0(x)y(n) + a1(x)y(n−1) + . . . + an−1(x)y′ + an(x)y = f(x), (2.26)

where a0, a1, . . . , an and f(x) are functions of the independent variable

x.

If f(x) = 0 for all x, the equation (2.26) is called homogeneous linear

differential equation. If f(x) 6= 0, then equation (2.26) is called non-

homogeneous (inhomogeneous) linear differential equation.

If all a0, a1, . . . , an are constants, then (2.26) is called linear differen-

tial equation with constant coefficients. If at least one of a0, a1, . . . , an

is a function of x, then (2.26) is called linear differential equation with

variable coefficients.
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2.7.1 First order linear differential equation

The general first order linear differential equation is

a1(x)
dy

dx
+ a0(x)y = h(x), (2.27)

whenever a1(x) 6= 0 for all x in an interval I. We dividing the co-

efficients of the equation (2.27) by a1(x) and rewrite in the normal

(standard) form as

dy

dx
+ P (x)y = Q(x), (2.28)

where P (x) = a0(x)
a1(x)

and Q(x) = h(x)
a1(x)

.

In the homogeneous case Q(x) = 0 on I, equation (2.28) can be solved

separately, thus,

dy

y
= −P (x)dx =⇒ ln y = −

∫

P (x)dx + C =⇒ yh = Ke−
∫

P (x)dx,

where K = eC is an arbitrary essential constant. The differential form

of (2.28) is

dy + (P (x)y −Q(x))dx = 0.
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Let M(x, y) = P (x)y −Q(x) and N(x, y) = 1. Now

∂M

∂y
= P (x) 6= 0 =

∂N

∂x
.

Compute

1

N
(
∂M

∂y
− ∂N

∂x
) =

P (x) − 0

1
= f(x),

which is a function of x alone. Thus there exists an integrating factor

I = I(x).

If such an I exists, we must have

∂

∂x
I(x) =

∂

∂y
[I(x)P (x)y − I(x)Q(x)].

Since I = I(x) is a function only of variable x, so ∂
∂xI(x) = d

dxI(x).

So

∂

∂y
[I(x)P (x)y − I(x)Q(x)] = I(x)P (x)

and I must satisfy the differential equation

dI

dx
= I(x)P (x).

Therefore,

dI

I
= P (x)dx =⇒ I = e

∫

P (x)dx,
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is an integrating factor of (2.28) When both sides of (2.28) multiply

by I, we obtain

e
∫

P (x)dx
(dy

dx
+ P (x)y = Q(x)

)

=⇒ e
∫

P (x)dxdy

dx
+ e

∫

P (x)dxP (x)y = e
∫

P (x)dx Q(x)

=⇒ d

dx

(

e
∫

P (x)dxy
)

= e
∫

P (x)dx Q(x)

=⇒ ye
∫

P (x)dx =

∫

e
∫

P (x)dx Q(x)dx

=⇒ yp =

∫

e
∫

P (x)dx Q(x)dx

e
∫

P (x)dx

is a particular solution of (2.28).

Since the general solution of (4.30) is obtained by summing yh and yp,

so, we have

y =

∫

e
∫

P (x)dx Q(x)dx + K

e
∫

P (x)dx
.

Example 20. Solve the differential equation

y′ + xy = 2x.
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Solution: This is a first order linear differential equation with

P (x) = x and Q(x) = 2x, then the general solution is given by

y =

∫

e
∫

P (x)dx Q(x)dx + K

e
∫

P (x)dx
=⇒ y =

∫

e
∫

xdx 2xdx + K

e
∫

xdx

=⇒ y =

∫

ex
2/2 2xdx + K

ex2/2

y = e−x2/2(2ex
2/2 + K)

=⇒ y = 2 + Ke−x2/2,

where K is an arbitrary constant.

Example 21. Solve the differential equation

2(y − 4x2)dx + xdy = 0.

Solution: In standard (normal) form is

dy

dx
+

2

x
y = 8x,

where x 6= 0. The integrating factor is

I = e
∫

P (x)dx = e
∫

2

xdx = e2 ln |x| = elnx
2

= x2.
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Multiply equation above by x2, we have

x2
dy

dx
+ 2xy = 8x3 =⇒ d

dx
(x2y) = 8x3

=⇒ x2y = 2x4 + C

y = 2x2 +
C

x2

is a general solution where C is an arbitrary constant.

Remark 12. The differential equation of the form

dx

dy
+ P (y)x = Q(y),

is a linear differential equation of the first order and its general solution

is

x =

∫

e
∫

P (y)dy Q(y)dy + K

e
∫

P (y)dy
.

Homework 11. Solve the following differential equations (Find the

general solution of the following):

1) y dx
dy + 2x = y3.

2) xdy
dx + y = x.

3) y′ + tan(x) y = cos2(x), over the interval −π
2 < x < π

2 .

4) 3xy′ − y = ln(x) + 1, x > 0 satisfying y(1) = −2.
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2.8 Equations reducible to linear Differ-

ential equations of first order

Sometimes equations which are not linear can be reduced to the linear

form by suitable transformations. One such equations is

dy

dx
+ P (x)y = Q(x)yn,

which is known as Bernoulli equation.

2.8.1 Bernoulli equations

An equation of the form

dy

dx
+ P (x)y = Q(x)yn, (2.29)

is called a Bernoulli differential equation.

If n = 1, the Bernoulli equation is separable; while n = 0, it is a linear

differential equation of first order.

When n 6= 0 and n 6= 1, the substitution v = y1−n reduces equation
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(2.29) to a first order linear differential equation. Since v = y1−n, then

dv

dx
= (1 − n)y−ndy

dx
.

From equation (2.29), we have

y−n dy

dx
+ P (x)y1−n = Q(x).

Finally,

dv

dx
+ (1 − n)P (x)v = (1 − n)Q(x),

which is a first order linear differential equation in the variables v, x

and the general solution can be given by

v = y1−n =

∫

e
∫

(1−n)P (x)dx (1 − n)Q(x)dx + K

e
∫

(1−n)P (x)dx
.

where K is an arbitrary constant.

Example 22. Solve

dy

dx
− y = e−xy2. (2.30)
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Solution: This differential equation is a Bernoulli differential

equation with P (x) = −1, Q(x) = e−x and n = 2. Let

v = y1−n = y1−2 = y−1 =⇒ dv

dx
= −y−2 dy

dx
,

but from equation (2.30), we have dy
dx = e−xy2 + y, so

dv

dx
= −y−2(e−xy2 + y) = −e−x − y−1 =⇒ dv

dx
+ v = −e−x,

which is a linear differential equation of order one. Here for this linear

differential equation P (x) = 1 and Q(x) = −e−x. The general solution

is then given by

v = y−1 =

∫

e
∫

P (x)dx Q(x)dx + K

e
∫

P (x)dx
=

∫

e
∫

dx (−e−x)dx + K

e
∫

dx

=

∫

ex (−e−x)dx + K

ex
=

−
∫

dx + K

ex

=
−x + K

ex
=⇒ y =

ex

K − x

where K is an arbitrary essential constant.

Homework 12. Solve the following differential equations:

1) y(6y2 − x− 1)dx + 2xdy = 0.

2) dy
dx + y = (xy)2.

3) xy − dy
dx = y3e−x3

.
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2.8.2 Riccati equations

The nonlinear equation

dy

dx
+ P (x)y = Q(x)y2 + R(x), (2.31)

is known as a Riccati equation. If R(x) ≡ 0, then the Riccati equation

becomes a special case of the Bernoulli equation; if Q(x) ≡ 0, then

equation (2.31) is a linear first order differential equation.

If y1 is a known function that satisfies (2.31), then the substitution

y = y1 +
1

u
, (2.32)

transform (2.31) into a first order linear differential equation that is

linear in u. Here u = u(x) is an unknown function to be determined.

Differentiating equation (2.32), we have

y′ = y′1 −
1

u2
u′,
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and substitute in (2.31), we get

y′1 − (
1

u2
)u′ + P (x)(y1 +

1

u
) = Q(y21 +

2y1
u

+
1

u2
) + R.

Since y1 is a solution, then it satisfies equation (2.31), so

y′1 + Py1 = Qy21 + R.

Now,

y′1 − (
1

u2
)u′ + Py1 + P

1

u
= Qy21 + Q

2y1
u

+ Q
1

u2
+ R,

=⇒ −(
1

u2
)u′ + (y′1 + Py1) + P

1

u
= Qy21 + Q

2y1
u

+ Q
1

u2
+ R′

=⇒ −(
1

u2
)u′ + (Qy21 + R) + P

1

u
= Qy21 + Q

2y1
u

+ Q
1

u2
+ R,

=⇒ −(
1

u2
)u′ + P

1

u
= −Qy21 −R + Qy21 + Q

2y1
u

+ Q
1

u2
+ R,

=⇒ −(
1

u2
)u′ = (2y1Q− P )

1

u
+ Q

1

u2
,

=⇒ du

dx
+ (2y1(x)Q(x) − P (x))u = −Q(x),

and this is a first order linear differential equation in variables x and

u. After solving this linear equation, use u−1 = y − y1(y = y1 + 1
u).
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Example 23. Solve

y′ − (
1

x
)y = 1 − (

1

x2
)y2, x > 0. (2.33)

Solution: It is a Riccati equation in which P (x) = − 1
x , Q(x) = − 1

x2

and R(x) = 1. It is easy to see that y1 = x is a solution of (2.33). Let

y = y1 +
1

u
= x +

1

u
=⇒ du

dx
+ (2x(− 1

x2
) − (−1

x
))u = −(− 1

x2
)

=⇒ du

dx
− (

1

x
)u =

1

x2
, (2.34)

which is a first order linear differential equation and clearly the inte-

grateing factor is

I = e
∫

−dx
x = e− lnx = x−1.

Multiplying both sides of (2.34) by integrating factor I = x−1, we have

x−1du

dx
− x−1(

1

x
)u = x−1 1

x2
=⇒ d

dx
(
u

x
) =

1

x3

=⇒ u

x
=

∫

1

x3
dx = − 1

2x2
+ C =

2x2C − 1

2x2

=⇒ 1

u
=

2x

2x2C − 1
.
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Since

y = x +
1

u
=⇒ 1

u
= y − x =⇒ y = x +

2x

2x2C − 1
,

is the general solution where C is an arbitrary constant.

Homework 13. Solve the Riccati equation

dy

dx
= x3(y − x)2 +

y

x
,

if y1(x) = x is a particular solution of it.

2.9 Substitution suggested by the equa-

tion

The basic idea is always to look at the form of the equation. See if it

suggests anything. Do not be afraid to play around with the equation

and see if you can make it simpler.

Example 24. Solve (x + 2y − 1)dx + 3(x + 2y)dy = 0.
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Solution: Let v = x+ 2y =⇒ dv = dx+ 2dy =⇒ dx = dv− 2dy,

so equation above becomes

(v − 1)(dv − 2dy) + (3v)dy = 0 =⇒ (v − 1)dv + (v + 2)dy = 0,

which is a separable equation, then

(
v − 1

v + 2
)dv+dy = 0 =⇒ (1− 3

v + 2
)dv+dy = 0 =⇒ v−3 ln |v+2|+y+c = 0.

Since v = x + 2y, then

x + 3y + c = 3 ln |x + 2y + 2|,

is the general solution where c is an arbitrary constant.

Example 25. Solve (1 + 3x sin y)dx− x2 cos ydy = 0.

Solution: Let u = sin y, then du = cos y dy and substitute in

equation above, we have

(1 + 3x u)dx− x2du = 0 =⇒ du

dx
− 3

x
u =

1

x2
,
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which is a first order linear differential equation in variables u and x

with P (x) = − 3
x and Q(x) = 1

x2 . The general solution is given by

u = sin y =

∫

e−
∫

3

xdx( 1
x2 )dx + K

e−
∫

3

xdx

Evaluate the integrals and simplify, you should see that

4x sin y = cx4 − 1,

where c is an arbitrary constant.

Homework 14. Solve the following differential equations:

1) dy
dx = −x2+2xy+y2

1+(x+y)2 .

2) dy
dx − (3x− 2y)3 = 0.

2.10 Simultaneous first order differential

equations

We study differential equations containing one independent variable,

but with two or more dependent variable.

A system of ordinary differential equations which contain one indepen-
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dent variable and the number of dependent variables equal the number

of differential equations is called simultaneous differential equations.

The general form of simultaneous equations of two dependent variables

x, y is
dy

dt
= f(x, y, t),

dx

dt
= g(x, y, t).

Example 26. Solve the simultaneous differential equations

dy

dt
=

t

x
, (2.35)

t
dx

dt
+ 2x = x2t. (2.36)

Solution: First we solve (2.36), because it is contains only two

variables x, t, so

dx

dt
+

2

t
x = x2 (2.37)

is a bernoulli equation with P (t) = 2
t , Q(t) = 1 and n = 2. Let

z = x1−n = x1−2 = x−1, then dz
dt = − 1

x2

dx
dt . But from (2.37) we have

dx
dt = x2 − 2

tx, so

dz

dt
= − 1

x2
(x2 − 2

t
x) = −1 +

2

x t
= −1 +

2

t
z =⇒ dz

dt
− 2

t
z = −1.

63



W
al
ee
d
A
zi
z

is a linear first order differential equation with P (t) = −2
t and Q(t) = −

1, so

z =

∫

e
∫

P (t)dt Q(t)dt + C1

e
∫

P (t)dt
=

∫

e
∫

− 2

t dt (−1)dt + C1

e
∫

− 2

t dt

=⇒ z = t2(

∫

− 1

t2
dt + C1) = t2(

1

t
+ C1) = t + C1t

2.

Since x = 1
z , then x = 1

t+C1t2
and substitute in (2.35), we have

dy

dt
=

t
1

t+C1t2

= (t2 + C1t
3) =⇒ y =

t3

3
+

C1

4
t4 + C2

which is a general solution where C1 and C2 are arbitrary essential

equations.

Example 27. Solve the simultaneous differential equations

dx

dt
+ t

dy

dt
= t, (2.38)

dx

dt
− dy

dt
= t− 1. (2.39)

Solution: Multiplying equation (2.39) by t and adding with equa-

tion (2.38), yields
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dx

dt
+ t

dy

dt
= t,

t
dx

dt
− t

dy

dt
= t2 − t.

(t + 1)
dx

dt
= t2

(t + 1)
dx

dt
= t2 =⇒ dx

dt
=

t2

t + 1
=⇒ x =

∫

t2

t + 1
dt

=⇒ x =

∫

(t− 1 +
1

t + 1
)dt =

t2

2
− t + ln(t + 1) + C1,

and substitute in (2.39), we have

t− 1 +
1

t + 1
+ t

dy

dt
= t =⇒ t

dy

dt
= 1 − 1

t + 1
=

t

t + 1

=⇒ dy

dt
=

1

t + 1
=⇒ y = ln |t + 1| + C2.

Note that C1 and C2 are arbitrary constants.

Homework 15. Solve the following differential equations simultane-

ously:

1) dx
yz = dy

xz = dz
xy .
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2) dx
dt = x + y, dy

dt = x− y.

2.11 Applications of First Order Equa-

tions

In this section we discuss applications of first order differential equa-

tions to problems of mathematics, economy, chemistry and others.

Example 28. The slope of a curve at any point is the reciprocal of

twice the ordinate at the point and it passes through the point (4, 3).

Formulate the differential equation and hence find the equation of the

curve.

Solution: Slope of the curve at any point P (x, y) is the slope of

the tangent at P (x, y), so

dy

dx
=

1

2y

which is a separable differential equation and we have

2ydy = dx =⇒ y2 = x + c
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where c is a constant. Since the curve passes through (4, 3), we have

9 = 4 + c =⇒ c = 5

Therefore, the equation of the curve is y2 = x + 5.

2.11.1 Exponential Growth and Decay

There are many situations where the rate of change of some quantity

x is proportional to the amount of that quantity, that is, dx
dt = kx

for some constant k. The general solution is then x = Aekt, for some

constant A.

Example 29. The half-life of radium is 1600 years, that means, it

takes 1600 years for half of any quantity to decay. If a sample initially

contains 50 g, how long will it be until it contains 45 g?

Solution: Let r(t) be the amount of radium present at time t in

years. Then

dr

dt
∝ r =⇒ dr

dt
= kr.

clearly is a separable differential equation and easily can seen that

r(t) = r0e
kt.
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At t = 0, r = 50, so quickly have

r(t) = 50ekt.

Solving for t gives t =
ln( r

50
)

k . With r(1600) = 25, we have 25 = 50e1600k.

Therefore,

1600k = ln(
1

2
) = − ln(2).

This gives k = − ln(2)
1600 . When r = 45, we have

t =
ln(r/50)

k
=

ln(45/50)

− ln(2)/1600
≈ 1600 × 0.152 = 243.2

Example 30. Suppose the population of a certain country was 23 mil-

lion in 1990 and 27 million in 1995. Estimate the population in 2000.

Solution: Consider P (t) represents the size of the population, in

millions, t years. So

dP

dt
∝ P =⇒ dP

dt
= kP.

Obviously this equation is a separable equation and can easily seen its

solution is of the form

P (t) = c ekt,
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where k is a parameter and c is an arbitrary constant. Since initially

(i.e. t = 0) the population was 23 million, so

23 = c ek(0) =⇒ c = 23.

Now we have

P (t) = 23 ekt.

To find k, we note that

27 = P (5) = 23 e5k =⇒ k =
1

5
ln(

27

23
) = 0.0321,

where we have rounded to four decimal places. Hence

P (t) = 23 e0.0321t.

The model would predict a population in 2000

P (10) = 23 e0.0321(10) ≈ 31.7 million.

Homework 16. Formulate the following and solve them:
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1) The slope at any point (x, y) of a curve is y
x and it passes through

the point (2, 3). Find the equation of the curve.

2) During a chemical reaction, substance A is converted into sub-

stance B at a rate that is proportional to the square of the amount of

A. When 60 grams of A are present, and after 1 hour only 10 grams

of A remain unconverted. How much of A is present after 2 hours?

3) Suppose that a petri dish initially contains 3000 bacteria and

that 12 minutes later there are 3500 bacteria.

a) Find a formula for the bacteria population t hours (not minutes)

after the initial measurement.

b) Predict the bacteria population in 4 hours.

4) Let N(t) be the number of people at time t. Assume that the

land is intrinsically capable of supporting L people and that the rate of

increase is proportional to both N and L−N .

2.11.2 Water Tanks

Example 31. A tank contains a salt water solution consisting initially

of 20 kg of salt dissolved into 10 ℓ of water. Fresh water is being poured
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into the tank at a rate of 3 ℓ/min and the solution (kept uniform by

stirring) is flowing out at 2 ℓ/min. Figure below shows this setup. Find

the amount of salt in the tank after 5 minutes.

Solution: Let Q(t) denotes the amount of salt (in kilogram) in the

tank at a time t (in minutes). The volume of water at time t is

10 + 3t− 2t = 10 + t.

The concentration at time t is given by

amount of salt

volume
=

Q

10 + t
, kg per litre.

Hence,

dQ

dt
= −(rate at which salt is leaving) = − Q

10 + t
· 2 = − 2Q

10 + t
.
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Now the solution of the problem is the solution of

dQ

dt
= − 2Q

10 + t
.

evaluated at t = 5. We see that it is simply a separable equation. Then

dQ

Q
= − 2dt

10 + t
=⇒

∫

dQ

Q
= −2

∫

dt

10 + t
=⇒ ln(|Q|) = −2 ln(|10+t|)+C.

It is easy to see that

|Q(t)| = A|10 + t|−2,

where A = eC is a constant. But Q ≥ 0 (we cannot have a negative

amount of salt) and t ≥ 0 (we do not visit the past), so we remove

absolute value signs, giving us

Q(t) = A(10 + t)−2.

Initially, i.e., at t = 0, we know that the tank contains 20 kg of salt.

Thus, the initial condition is Q(0) = 20, and we have

Q(t) = 2000(10 + t)−2 =
2000

(10 + t)2
. How?
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Finally, Evaluating at t = 5 gives Q(5) = 2000
(15)2 = 2000

225 = 80
9 ≈ 8.89.

Therefore, after 5 minutes, the tank will contain approximately 8.89

kg of salt.
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Table 2.1: Given: M(x, y)dx + N(x, y)dy = 0

When An integrating factor is

1
N (∂M∂y − ∂N

∂x ) = f(x) I = e
∫

f(x)dx

1
M (∂M∂y − ∂N

∂x ) = −g(y) I = e
∫

g(y)dy

M and N are homogeneous function
of the same degree I = 1

M x+N y

M = yf(xy), N = xg(xy), f(xy) 6= g(xy) I = 1
xy(f(xy)−g(xy))

∂M
∂y −∂N

∂x

N−M = h(z) is a function of x + y I = e
∫

h(z)dz

∂M
∂y −∂N

∂x

2xN−2yM = k(w) is a function of w = x2 + y2 I = e
∫

k(w)dw

∂M
∂y −∂N

∂x

xN−yM = F (xy) is a function of u = xy I = e
∫

F (u)du
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The equation is of first

order and of second or

higher degree

The general form is

f(x, y, p, p2, . . . , pn) = 0, (3.1)
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where we use the symbol p, in place dy
dx or y′ and n is the degree of

equation (3.1). That is, equation (3.1) may has the form

pn+a1(x, y)pn−1+a2(x, y)pn−2+ . . .+an−1(x, y)p+an(x, y) = 0. (3.2)

It may be possible, sometimes, to solve such equations by one of

the procedures outlines below. In each case the problem is reduced to

that of solving one or more equations of the first order and first degree.

3.1 Equations solvable for p

If equation (3.1) can be solved for p and can be written as

[p− q1(x, y)][p− q2(x, y)] . . . [p− qn(x, y)] = 0.

Set each factor equal to zero and solve the resulting n differential equa-

tions of first order and first degree

dy

dx
= q1(x, y),

dy

dx
= q2(x, y), . . . ,

dy

dx
= qn(x, y),
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to obtain

f1(x, y, c) = 0, f2(x, y, c) = 0, . . . , fn(x, y, c) = 0,

where c is an arbitrary constant. Hence the general solution of (3.1)

is the product

f1(x, y, c) · f2(x, y, c) · · · · · fn(x, y, c) = 0.

Example 32. Solve

xy(
dy

dx
)2 + (x2 + y2)

dy

dx
+ xy = 0. (3.3)

Solution: It is obvious that equation (3.3) is a first order differen-

tial equation and its degree is two. Let p = dy
dx , so

xyp2 + (x2 + y2)p + xy = 0 =⇒ (xp + y)(yp + x) = 0

=⇒ (xp + y) = 0 or (yp + x) = 0

If xp+y = 0 =⇒ xdy
dt+y = 0 =⇒ dy

y +dx
x = 0 =⇒ ln |y|+ ln |x| = ln |c| =⇒

xy = c. Now, if yp + x = 0 =⇒ y dy
dx + x = 0 =⇒ ydy + xdx = 0 =⇒

1
2(x2 + y2) = c.
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The general is

(xy − c)
(1

2
(x2 + y2) − c

)

= 0,

where c is an arbitrary constant.

3.2 Equations solvable for y

If equation (3.1) is solved for y. Then y can be expressed as a function

of x and p. i.e. y = g(x, p). Now differentiating it w.r.t. x, we have

dy

dx
=

dg

dx
+

dg

dp

dp

dx
=⇒ p =

dg

dx
+

dg

dp

dp

dx
= G(x, p,

dp

dx
),

which is a first order and first degree differential equation of variables

x and p and its solution, say, φ(x, p, c) = 0. The general solution is

then given by eliminating p between y = g(x, p) and φ(x, p, c) = 0 or

express x and y separately as function of the parameter p when the

elimination of p is not practicable.

Example 33. Solve

16x2 + 2p2y − p3x = 0. (3.4)
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Solution: Clearly, equation (3.4) is a first order and third degree

differential equation and is solvable for y. We have

16x2 + 2p2y − p3x = 0 =⇒ 2p2y = p3x− 16x2 =⇒ y =
p

2
x− 8

x2

p2
.

Differentiating with respect to x, we get

dy

dx
= p =

p

2
+

x

2

dp

dx
− 16x

p2
+

16x2

p3
dp

dx

=⇒ p− p

2
− x

2

dp

dx
+

16x

p2
− 16x2

p3
dp

dx
= 0

=⇒ (
p

2
+ 16

x

p2
) − x

2
(1 + 32

x

p3
)
dp

dx
= 0

=⇒ p

2
(1 + 32

x

p3
) − x

2
(1 + 32

x

p3
)
dp

dx
= 0

=⇒ (1 + 32
x

p3
)(
p

2
− x

2

dp

dx
) = 0

=⇒ (1 + 32
x

p3
) = 0 or (

p

2
− x

2

dp

dx
) = 0

First, if

p

2
− x

2

dp

dx
= 0 =⇒ dp

p
− dx

x
= 0 =⇒ ln(p) − ln(x) = c =⇒ p = kx.

Substitute in (3.4), we obtain

16x2 + 2k2x2y − 6k3x4 = 0,
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is a general solution where k = ec is an arbitrary essential constants.

Second, if

1 + 32
x

p3
= 0 =⇒ p3 = −32x =⇒ p = 3

√
−32x.

Substitute in (3.4), we get the singular solution

16x2 + 2( 3
√
−32x)2y + 32x2 = 0.

3.3 Equations soluble for x

Equations that can be solved for x, i.e. such that they may be written

in the form

x = h(y, p), (3.5)

can be reduced to first degree equations in p by differentiating both

sides with respect to y, so that

dx

dy
=

1

p
=

∂h

∂y
+

∂h

∂p

∂p

∂y
= H(y, p,

dp

dy
),
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is a first order and first degree differential equation of variables y and

p and its solution, say, φ(y, p, c) = 0. Obtain the general solution by

eliminating p between x = h(y, p) and φ(y, p, c) = 0.

Example 34. Solve

3px− y2p2 − y = 0. (3.6)

Solution: We have 3px− y2p2 − y = 0 then 3x = y
p + y2p. Differ-

entiating with respect to y, we get

3
dx

dy
=

3

p
=

p− y dp
dy

p2
+ 2yp + y2

dp

dy

=⇒ 3

p
− 1

p
+

y

p2
dp

dy
− 2yp− y2

dp

dy
= 0

=⇒ (
2

p
− 2yp) + (

y

p2
− y2)

dp

dy
= 0

=⇒ 2(
1

p
− yp) +

y

p
(
1

p
− yp)

dp

dy
= 0

=⇒ (
1

p
− yp)(2 +

y

p

dp

dy
) = 0

=⇒ 1

p
− yp = 0 or 2 +

y

p

dp

dy
= 0.

If

2 +
y

p

dp

dy
= 0 =⇒ py2 = c =⇒ p =

c

y2
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and substitute in (3.6) we get the general solution

3(
c

y2
)x− y2(

c

y2
)2 − y = 0 =⇒ y3 = c(3x− c),

where c is an arbitrary essential constant.

If

1

p
− yp = 0 =⇒ 1

p
= yp =⇒ p2 =

1

y
=⇒ p = ∓

√

1

y

and substitute in (3.6) we get the singular solutuio solution

3(

√

1

y
)x− y2(

√

1

y
)2 − y = 0 =⇒ y

3

2 = 3x.

Homework 17. 1) (x3 + x2 + x+ 1)p2 − (3x2 + 2x+ 1)yp+ 2xy2 = 0.

2) y + xdy
dx − x4(dydx)2 = 0.

3) y = y2(y′)3 + 2y′x.
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Chapter 4

Linear differential

equations with constant

coefficients

4.1 Linear differential equations

The general n-th order linear differential equations

Definition 16. A linear differential equation of order n has the form

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · · + an−1(x)

dy

dx
+ an(x)y = F (x), (4.1)
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where a0(x), a1(x), . . . , an(x) and F (x) depending only on x and

not y.

Remark 13. 1. An n-th order differential equation which is not of

the form (4.1) is called nonlinear.

2. If n = 1, equation (4.1) is called a linear first order equation.

3. If n = 2, equation (4.1) becomes a second order linear differential

equation.

4. If the coefficients a0, a1, . . . , an are constants, we call the equation

(4.1), a linear differential equation with constant coefficients.

5. If at least one of the coefficients a0(x), a1(x), . . . , an(x) is a func-

tion of x, equation (4.1) is called a linear differential equation

with variable coefficients.

6. We use the symbols D,D2, . . . to indicate the operator of taking

the first, second, . . . derivatives. Thus, Dy = dy
dx

7. If F (x) = 0, equation (4.1) is called a linear homogeneous differ-

ential equation. Otherwise, it is called non homogeneous (inho-

mogeneous, the complementary or reduced) equation.
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Examples

1) y′′ + y = x2, is a linear inhomogeneous differential equation with

constant coefficients and it is of second order and first degree.

2) d5y
dx5 + d3y

dx3 + dy
dx = 0, is a linear homogeneous differential equation of

fifth order and first degree.

3) 3xd3y
dx3−2d2y

dx2−3y dy
dx+x2y = ex, in a nonlinear non-homogeneous third

order and first degree differential equation with variable coefficients.

4) 5y′′− 2(y′)3− 8y = 0, in a nonlinear homogeneous second order and

first degree differential equation.

Remark 14. We now prove that if y1 and y2 are solutions of the ho-

mogeneous equation (4.1), and if c1 and c2 are constants, then

y = c1y1 + c2y2 (4.2)

is also a solution of homogeneous equation (4.1).

Since y1 and y2 are solutions of the homogeneous equation (4.1), then

a0(x)
dny1
dxn

+ a1(x)
dn−1y1
dxn−1

+ · · · + an−1(x)
dy1
dx

+ an(x)y1 = 0 (4.3)

a0(x)
dny2
dxn

+ a1(x)
dn−1y2
dxn−1

+ · · · + an−1(x)
dy2
dx

+ an(x)y2 = 0. (4.4)

Multiplying equation (4.3) by c1 and equation (4.4) by c2 and
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adding the result, we have

a0(x)(c1y
(n)
1 +c2y

(n)
2 )+ · · ·+an−1(x)(c1y

′
1+c2y

′
2)+an(x)(c1y1+c2y2) = 0

(4.5)

Since

y = c1y1 + c2y2 =⇒ y′ = c1y
′
1 + c2y

′
2, . . . , y

n = c1y
n
1 + c2y

n
2 .

So equation (4.5) becomes

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = 0.

Thus y is also a solution for homogeneous equation (4.1).

Remark 15. The expression in equation (4.2) is called a linear com-

bination of the functions y1 and y2.

Theorem 3. Any linear combination of solutions of a linear homoge-

neous differential equation is also a solution.
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4.2 Linear dependence

Given the functions f1, f2, . . . , fn, and if constants c1, c2, . . . , cn, not all

zero, exists such that

c1f1 + c2f2 + · · · + cnfn = 0 (4.6)

identically in some interval a ≤ x ≤ b, then the functions are said to

be linearly dependent. If no such relations exists, the functions are

said to be linearly independent. That is, the functions f1, f2, . . . , fn

are linearly independent when equation (4.6) implies that c1 = c2 =

· · · = cn = 0.

Remark 16. If the function are linearly dependent, then at least one

of them is a linear combination of the others.

Example 35. Show that ex and e2x are linearly independent.

solution: Suppose that there exists c1, c2 such that

c1e
x + c2e

2x = 0. (4.7)

Differentiating equation (4.7) w.r.t. x, we get

c1e
x + 2c2e

2x = 0. (4.8)

87



W
al
ee
d
A
ziz

Now subtract equation (4.7) from equation (4.8), we have c2e
2x = 0.

Since e2x > 0 for all x, then c2 = 0 and substitute in equation (4.13),

obtaining c1e
x = 0 =⇒ c1 = 0. Hence, c1 = c2 = 0 which implies that

ex and e2x are linearly independent.

The Wronskian:

Definition 17. The Wronskian of the functions f1(x), f2(x), . . . , fn(x)

is denoted by W [f1, f2, . . . , fn] and defined as the determinant

W [f1, f2, . . . , fn] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 . . . fn

f ′
1 f ′

2 . . . f ′
n

...
... . . . ...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Example 36. Show that the solutions sin x and cos x of d2y
dx2 + y = 0

are linearly independent.

Solution: We calculate the Wronskian

W [sin x, cos x] =

∣

∣

∣

∣

∣

∣

sin x cosx

cosx − sin x

∣

∣

∣

∣

∣

∣

= − sin2 x− cos2 x = −1 6= 0.
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Remark 17. Two functions are linearly dependent on an interval I

if and only if one of the functions is a constant multiple of the other

function.

Theorem 4. If, on the interval a ≤ x ≤ b a0(x) 6= 0, a0, a1, . . . , an are

continuous, and y1, y2, . . . , yn are solutions of the equation

a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = 0,

then a necessary and sufficient condition that y1, . . . , yn be linearly in-

dependent is the nanvanishing of the Wronskian of y1, . . . , yn on the

interval a ≤ x ≤ b.

Remark 18. Note that the nonvanishing of the Wronskian is a suffi-

cient condition that the functions be linearly independent.

The non vanishing of the Wronskian on an interval is not a necessary

condition for linear independence. The Wronskian may vanish even

when the functions are linearly independent.

Proof: [Theorem 4] Suppose that W [y1, . . . , yn] 6= 0 for all

a ≤ x ≤ b. We have to prove that solutions y1, . . . , yn are linearly

independent on a ≤ x ≤ b. We prove by contradiction.

Let y1, . . . , yn be linearly dependent on a ≤ x ≤ b. So by definition
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of liner dependence there exist constants b1, . . . , bn, not all zero, such

that b1y1(x) + · · · + bnyn(x) = 0. Then for every a ≤ x ≤ b, we have

b1y1(x) + · · · + bnyn(x) = 0

b1y
′
1(x) + · · · + bny

′
n(x) = 0

...

b1y
(n−1)
1 (x) + · · · + bny

(n−1)
n (x) = 0

(4.9)

We rewrite the system (4.9) in the matrix notation at x = x0



















y1(x0) y2(x0) . . . yn(x0)

y′1(x0) y′2(x0) . . . y′n(x0)

...
... . . . ...

y
(n−1)
1 (x0) y

(n−1)
2 (x0) . . . y

(n−1)
n (x0)





































b1

b2

...

bn



















=



















0

0

...

0



















(4.10)

Since b1, . . . , bn, not all zero, then system (4.10) has nontrivial solution

iff

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 . . . yn

y′1 y′2 . . . y′n
...

... . . . ...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 =⇒ W [y1, . . . , yn] = 0,
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which is a contradiction of our assumption that W [y1, . . . , yn] 6= 0.

Thus, y1, . . . , yn are linearly independent on a ≤ x ≤ b.

Suppose now that y1, . . . , yn are linearly independent on a ≤ x ≤ b.

We have to prove that W [y1, . . . , yn] 6= 0 for all a ≤ x ≤ b. Now from

the definition of linearly independent we have

c1y1(x) + · · · + cnyn(x) = 0 iff c1 = c2 = · · · = cn = 0

We differentiate equation above (n − 1) times. So we get a system of

equations

c1y1(x) + · · · + cnyn(x) = 0

c1y
′
1(x) + · · · + cny

′
n(x) = 0

...

c1y
(n−1)
1 (x) + · · · + cny

(n−1)
n (x) = 0

(4.11)

=⇒



















y1(x) y2(x) . . . yn(x)

y′1(x) y′2(x) . . . y′n(x)

...
... . . . ...

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)





































c1

c2

...

cn



















=



















0

0

...

0



















(4.12)
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Since the system (4.12) has only zero (trivial) solution c1 = c2 =

· · · = cn = 0, then we must have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 . . . yn

y′1 y′2 . . . y′n
...

... . . . ...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 =⇒ W [y1, . . . , yn] 6= 0,

for all a ≤ x ≤ b.

Homework 18. Can you give an example that two function are lin-

early independent even that their Wronskian is zero?

Theorem 5. Let y1, . . . , yn be solutions to the n-th order homogeneous

linear differential equation

any
(n) + a(n−1)y

(n−1) + · · · + a1y
′ + a0y = 0,

on an interval I, and suppose that W [y1, . . . , yn] = 0 is identically zero

on I. Then y1, . . . , yn are linearly dependent on I.
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Proof: Let x0 be any point in I, and consider the system of linear

equations

c1y1(x0) + · · · + cnyn(x0) = 0

c1y
′
1(x0) + · · · + cny

′
n(x0) = 0

...

c1y
(n−1)
1 (x0) + · · · + cny

(n−1)
n (x0) = 0

(4.13)

in the unknowns c1, . . . , cn. Since the Wronskian y1, . . . , yn vanishes

identically on I, then the determinant of (4.13) is zero and the sys-

tem has nontrivial solutions c1, . . . , cn. Thus, y1, . . . , yn are linearly

dependent.

Homework 19. Prove that the set of solutions y1 and y2 is linearly

depend if and only if the Wronskian W [y1, y2] = 0. Hint: Use Re-

mark 17.

Remark 19. There are very interesting and important relationships

between the Wronskian for a linear differential equation and the coef-

ficients in the equation.

Consider the second order differential equation of the form

a0(x)y′′ + a1(x)y′ + a2(x)y = 0. (4.14)
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Let y1 and y2 be solutions of (4.14), then these solutions satisfy (4.14)

a0(x)y′′1 + a1(x)y′1 + a2(x)y1 = 0, (4.15)

and

a0(x)y′′2 + a1(x)y′2 + a2(x)y2 = 0. (4.16)

Multiplying equation (4.15) by (−y2) and equation (4.16) by (y1), and

adding the result, we have

a0(x)
(

y1y
′′
2 − y2y

′′
1

)

+ a1(x)
(

y1y
′
2 − y2y

′
1

)

= 0. (4.17)

Since W [y1, y2] = y1y
′
2 − y2y

′
1, then

dW

dx
=

d(y1y
′
2 − y2y

′
1)

dx
= y1y

′′
2 − y2y

′′
1 .

Substitutes W [y1, y2] and dW
dx in (4.17), we obtain

a0
dW

dx
+ a1W = 0 =⇒ W = Ce−

∫ a1
a0

dx.
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4.3 Differential operators

Let dy
dx = Dy. The symbol D is said to be a differentiation operator

as it transform a differentiable function into another function. So,

D = d
dx denotes differentiation with respect to independent variable,

say x, D2 = d2

dx2 differentiation twice with respect to x and containing

this process, we have Dn = dn

dxn and Dny = dny
dxn , for n is positive integer.

We define an n-th order differential operator to be

L = a0(x)Dn + a1(x)Dn−1 + · · · + an−1(x)D + an(x).

Note that L{αf(x) + βg(x)} = αL{f(x)} + βL{g(x)}.
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Homogeneous linear differential equations with constant

coefficients

The general form of homogeneous linear differential equations with

constant coefficients is

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ · · · + an−1

dy

dx
+ any = 0, (4.18)

where ai’s are constants for i = 0, . . . , n. So, equation (4.18) can be

written in the operator notation

(a0D
n + a1D

n−1 + · · · + an−1D + an)y = 0 =⇒ F (D)y = 0

where

F (D) = a0D
n + a1D

n−1 + · · · + an−1D + an,

which is called characteristic polynomial. If F (D) = 0, then it is called

characteristic equation.

Properties of operator D:

1. Dn + Dm = Dm + Dn.

2. DnDm = DmDn = Dn+m.
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3. (Dn + Dm)f(x) = Dnf(x) + Dmf(x).

4. Dn(f(x) + g(x)) = Dnf(x) + Dng(x).

5. (D − a)(D − b) = (D − b)(D − a), a, b are constants.

We now describe and illustrate how one can solve second order differ-

ential equation via an example and then in general.

Example 37. Solve y′′ + y′ − 6y = 0.

Solution: Let D = d
dx and D2 = d2

dx2 , then

(D2 + D − 6)y = 0 =⇒ (D − 2)(D + 3)y = 0.

Let

(D + 3)y = u (4.19)

then

(D−2)u = 0 =⇒ du

dx
−2u = 0 =⇒ du

dx
= 2u =⇒ du

u
= 2dx

=⇒ ln |u| = 2x + c =⇒ u = ke2x, k = ec

Substitutes in (4.19), we have

(D + 3)y = u = ke2x =⇒ dy

dx
+ 3y = ke2x
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which is a linear differential equation of first order with P (x) = 3 and

Q(x) = ke2x. The general solution is given by

y =

∫

e
∫

3dx k e2xdx + C1

e
∫

3dx
=

k
∫

e5xdx + C1

e3x
=

k

5
e2x+C1e

−3x = Ae2x+Be−3x.

where A = k
5 and B = C1 are arbitrary constants.

Homework 20. 1) y′′ − 1
2y

′ − 1
2y = 0.

2) y′′ + y′ − 2y = 0.

Homogeneous linear differential equations of second order

with constant coefficients

The general is

y′′ + ay′ + by = 0, (4.20)

where a, b are constants. Then using The operator D, equation (4.20)

can be written

(D2 + aD + b)y = 0 =⇒ (D − α1)(D − α2)y = 0,

where −(α1 + α2) = a and α1α2 = b.

Let

(D − α2)y = u (4.21)
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and then substitute in equation (4.20), we have

(D−α1)u = 0 =⇒ du

dx
−α1u = 0 =⇒ du

dx
= α1u =⇒ ln |u| = α1x+C1

=⇒ u = K1e
α1x, where K1 = eC1.

Substitute in (4.21), we get

(D − α2)y = u = K1e
α1x =⇒ dy

dx
− α2y = K1e

α1x,

is a first order linear differential equation with P (x) = −α2 and

Q(x) = K1e
α1x. So,

y =

∫

e
∫

−α2dx (K1 e
α1x) dx + K2

e
∫

−α2dx
=

K1

∫

e(α1−α2)x dx + K2

e−α2x
.

There are three cases which depends on the nature of α1 and α2.

Case 1: If the roots α1 and α2 are real distinct (unequal), i.e. α1 6=

α2 ∈ R (if a2 − 4b > 0), then

y =

K1

α1−α2
e(α1−α2)x + K2

e−α2x
= eα2x

( K1

α1 − α2
e(α1−α2)x

)

+ K2 e
α2x

=⇒ y = Aeα1x + B eα2x, where A =
K1

α1 − α2
and B = K2.
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Case 2: If the roots α1 and α2 are real equal (repeated). i.e.

α1 = α2 = α (if a2 − 4b = 0), then

y =
K1

∫

e(0) dx + K2

e−αx
= K2 e

αx + K1 x e
αx = Aeαx + B x eαx,

where A = K2 and B = K1.

Case 3: If the roots α1 and α2 are complex. Let α1 = a + ib and

α2 = a − ib where a, b ∈ R, b 6= 0 and i2 = −1 (when a2 − 4b < 0).

From Case 1, we have

y = Aeα1x + B eα2x

So,

y = Ae(a+ib)x + B e(a−ib)x = eax(A eibx + B e−ibx).

By Euler’s formula, we have

eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ.
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Hence,

y = eax
(

A(cos bx + i sin bx) + B(cos bx− i sin bx)
)

= eax
(

(A + B cos bx + i(A− B) sin bx)

= eax
(

C1 cos bx + C2 sin bx)

is a general solution where C1 = A + B and C2 = i(A− B).

Example 38. Solve the following differential equation:

1) y′′ − y′ − 2y = 0, 2) y′′ − 2y′ + y = 0, 3) y′′ + 2y′ + 2y = 0.

Solution

1) Clearly, the differential equation is a homogeneous second order

linear differential equation with constant coefficients. In the operator

notation, this equations becomes (D2 −D − 2)y = 0. So, the charac-

teristic (auxiliary) equation is

α2−α−2 = 0 =⇒ (α−2)(α+1) = 0 =⇒ α1 = 2 and α2 = −1.

Since the roots are real and distinct (unequal), the the general solution

is

y = Aeα1x + Beα2x = Ae2x + Be−x,

where A and B are arbitrary constants.
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2) The characteristic equation is

α2 − 2α + 1 = 0 =⇒ (α− 1)(α− 1) = 0 =⇒ α = 1

which is a double root and the general solution is given by

y = Aeαx + Bxeαx = Aex + Bxex,

where A and B are arbitrary constants.

3) In this example, the characteristic equation is given by

α2 + 2α + 2 = 0 =⇒ α1,2 =
−2 ∓

√
4 − 8

2
= −1 ∓ i

=⇒ α1 = −1 + i and α2 = −1 − i.

The roots are complex and clearly a = −1 and b = 1, so the general

solution is

y = e−x(C1 cosx + C2 sin x),

where C1 and C2 are arbitrary constants.

Remark 20. The general solution of a homogeneous linear differential
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equation with constant coefficients, is also known as a complementary

function (solution).

Homework 21. Solve the following differential equation:

1) y′′ + y = 0.

2) y′′ − 4y′ + 4y = 0.

3) y′′ − 7y′ = 0.

4) y′′ − 2
√

2y′ + 2y = 0.

5) 4y′′ + 4y′ + y = 0.

Homogeneous linear differential equations with constant

coefficients of arbitrary order

Theorem 6. Let

y(n) + a(n−1)y
(n−1) + · · · + a1y

′ + a0y = 0, (4.22)

be an n-th order homogeneous linear differential equation with constant

real coefficients. Let α1, α2, . . . , αn be the roots of its characteristic

polynomial, and suppose that

f(D) = Dn + an−1D
n−1 + · · · + a0 = (D − α1)(D − α2) · · · (D − αn)

103



W
al
ee
d
A
ziz

1) If α1, α2, . . . , αn are real distinct (unequal) numbers (α1 6= α2 6=

. . . 6= αn and αi ∈ R, for i=1,. . . ,n), then the functions

eα1x, eα2x, . . . , eαnx

are linearly independent and the general solution of equation (4.22) is

y = C1e
α1x + C2e

α2x + . . . + Cne
αnx,

where Ci are arbitrary constants.

2) If α1, α2, . . . , αn are real equal numbers (repeated) (α1 = α2 = . . . =

αn = α and αi = α ∈ R, for i=1,. . . ,n), then the functions

eαx, xeαx, . . . , xn−1eαx

are linearly independent and the general solution of equation (4.22) is

y = C1e
α1x + C2xe

α2x + . . . + Cnx
n−1eαnx,

where Ci are arbitrary constants.
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3) If the roots are complex. Let α = a ∓ ib (k times), where n=2k,

a, b ∈ R, b 6= 0, then the functions

eax sin(bx), xeax sin(bx), . . . , xn−1eax sin(bx)

eax cos(bx), xeax cos(bx), . . . , xn−1eax cos(bx)

are linearly independent and the general solution of equation (4.22) is

y = eax
(

C1 cos(bx) + C2 sin(bx)
)

+ xeax
(

C3 cos(bx) + C4 sin(bx)
)

+ · · ·

+eaxxn−1
(

Cn−1 cos(bx) + Cn sin(bx)
)

where Ci are arbitrary constants.

Example 39. Solve the differential equation

y′′′ − 6y′′ + 11y′ − 6y = 0.

Solution:

y′′′ − 6y′′ + 11y′ − 6y = 0 =⇒ (D3 − 6D2 + 11D − 6)y = 0,
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then the characteristic equation is

α3 − 6α2 + 11α− 6 = 0 =⇒ (α− 1)(α2 − 5α + 6) = 0

=⇒ (α− 1))(α− 2))(α− 3)) = 0 =⇒ α1 = 1, α2 = 2, α3 = 3.

Since all roots are real and distinct, so the general solution is given by

y = C1e
α1x + C2e

α2x + C3e
α3x = C1e

x + C2e
2x + C3e

3x,

where C1, C2 and C3 are arbitrary constants.

Example 40. Find the general solution of the differential equation

y(4) + 2y′′ + y = 0. (4.23)

Solution: Equation (4.23) has auxiliary equation

α4 + 2α2 + 1 = 0 =⇒ (α2 + 1)(α2 + 1) = 0 =⇒ (α2 + 1)2 = 0

=⇒ α = ∓i,∓i =⇒ a = 0, b = 1.

The roots are repeated complex numbers and clearly it is purely imag-
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inary. So the general solution is

y = eax
(

C1 cos(bx) + C2 sin(bx)
)

+ xeax
(

C3 cos(bx) + C4 sin(bx)
)

=⇒ y = C1 cos(x) + C2 sin(x) + x
(

C3 cos(x) + C4 sin(x)
)

,

where Ci, for i = 1, 2, 3, 4 are arbitrary constants.

Example 41. Solve the equation

y(7) − 2y(5) + y(3) = 0.

Solution: In operator notation this equation becomes

(D7 − 2D5 + D3)y = 0,

then the characteristic equation is

α7−2α5+α3 = 0 =⇒ α3(α4−2α2+1) = 0 =⇒ α3(α2−1)(α2−1) = 0

=⇒ α3(α + 1)2(α− 1)2 = 0 =⇒ α = 0, 0, 0, 1, 1,−1,−1.
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In this case, the general form is given by

y = C1 + C2x + C3x
2 + C4e

x + C5xe
x + C6e

−x + C7xe
−x,

where Ci, for i = 1, . . . , 7 are arbitrary constants.

Example 42. Solve the equation

y(5) + 3y(4) + 4y(3) − 4y′ − 4y = 0.

Solution: The characteristic equation is

α5 + 3α4 + 4α3 − 4α− 4 = (α− 1)(α2 + 2α + 2)2 = 0.

Clearly, the roots are α1 = 1, α2,3 = −1 + i and α4,5 = −1− i (a = −

1, b = 1). The general solution, in this case, is

y = C1e
x + e−x(C2 cos x + C3 sin x) + xe−x(C4 cos x + C5 sin x),

where Ci, for i = 1, . . . , 5 are arbitrary constants.

Homework 22. Solve the following differential equations:

1) y(6) − y(5) + 2y(4) − 2y′′′ + y′′ − y′ = 0.

2) (D3 + 1)y = 0.
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3) (D3 + 2D2 − 5D − 6)y = 0.

4) (D4 + 4D)y = 0.

5) (D5 − 5D4 + 12D3 − 16D2 + 12D − 4)y = 0.

6) y(5) − y(4) + 4y′ − 4y = 0.

Example 43. Find a linear differential equation that has e2x and xe−3x

among its solutions.

Solution: Clearly, the roots are α1 = 2 and α2 = −3. Note that

α2 = −3 is repeated root, so the characteristic polynomial is given be

f(D) = (D − 2)(D + 3)2 =⇒ (D − 2)(D + 3)2y = 0.

Thus, the linear differential equation is

y′′′ + 4y′′ − 3y′ − 18y = 0.

Homework 23. The equation

(D3 + aD2 + bD + c)y = 0,

where a, b and c are constants, has a solution

y = C1e
−x + e−2x(C2 sin 4x + C3 cos 4x).
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Determine the values of a, b and c.

Properties of the operator D

We know that the characteristic polynomial is

f(D) = anD
n + an−1D

n−1 + · · · + a1D + a0

where ai are constants for i = 1, . . . , n.

1) If b is a constant, then f(D){ebx} = f(b)ebx.

Proof: Since

D{ebx} =
d

dx
(ebx) = bebx,

D2{ebx} = b2ebx,

...

Dn{ebx} = bnebx.
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So,

f(D){ebx} =(anD
n + an−1D

n−1 + · · · + a1D + a0){ebx},

=anD
n{ebx} + an−1D

n−1{ebx} + · · · + a1D{ebx} + a0{ebx},

=anb
n ebx + an−1b

n−1 ebx + · · · + a1b e
bx + a0 e

bx,

=(anb
n + an−1b

n−1 + · · · + a1b + a0)e
bx,

=f(b)ebx.

Example 44. Evaluate

(D2 + 3D + 2)e3x.

Solution: f(D) = D2+3D+2 and b = 3, so, f(3) = 9+9+2 = 20.

Hence,

(D2 + 3D + 2)e3x = 20 e3x.

2) f(D2){cos(bx)} = f(−b2) cos(bx), where b is a constant.

Proof: We have

f(D) = anD
n + an−1D

n−1 + · · · + a1D + a0,
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then

f(D2) = anD
2n + an−1D

2(n−1) + · · · + a1D
2 + a0.

Since

D(cos bx) =
d

dx
(cos bx) = −b sin bx,

D2(cos bx) = D(D(cos bx)) = D(−b sin bx) = −b2 cos bx,

D3(cos bx) = b3 sin bx

D4(cos bx) = b4 cos bx = (−b2)2 cos bx.

By mathematical induction, let

D2k(cos bx) = (−b2)k cos bx, k ∈ Z
+.

Now,

D2(k+1)(cos bx) =D2D2k(cos bx) = D2((−b2)k cos bx)

=(−b2)kD2(cos bx) = (−b2)k(−b2) cos bx

=(−b2)k+1 cos bx.

D2n(cos bx) = (−b2)n cos bx, n = 1, 2, . . . .
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f(D2){cos(bx)} =(anD
2n + · · · + a1D

2 + a0){cos(bx)}

=an(−b2)n cos bx + · · · + a1(−b2) cos bx + a0 cos bx

=f(−b2) cos bx.

3) f(D2){sin(bx)} = f(−b2) sin(bx), where b is a constant.

Proof: H.W.

Theorem 7. If g is a function of x, then

f(D){ebxg(x)} = ebxf(D + b){g(x)}.

Proof: Since

f(D) = anD
n + an−1D

n−1 + · · · + a1D + a0,
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so,

f(D){ebxg(x)} = (anD
n + an−1D

n−1 + · · · + a1D + a0){ebxg(x)}

= anD
n{ebxg(x)} + an−1D

n−1{ebxg(x)} + · · ·

+ a1D{ebxg(x)} + a0{ebxg(x)}

Now,

D{ebxg(x)} =
d

dx
{ebxg(x)} = ebx

d

dx
(g(x)) + bebxg(x) = ebxD{g(x)} + bebxg(x)

= ebx[D{g(x)} + bg(x)] = ebx(D + b)g(x).

and

D2{ebxg(x)} = D[D{ebxg(x)}] =
d

dx
[ebx

d

dx
(g(x)) + bebxg(x)]

= ebx
d2

dx2
(g(x)) + bebx

d

dx
(g(x)) + bebx

d

dx
(g(x)) + b2ebxg(x)

= ebx[D2(g(x) + 2bD(g(x)) + b2g(x))]

= ebx(D + b)2g(x).

and so on

Dn{ebxg(x)} = ebx(D + b)ng(x).
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Hence,

f(D){ebxg(x)} = ane
bx(D + b)ng(x) + an−1e

bx(D + b)n−1g(x) + · · ·

+ a1e
bx(D + b)g(x) + a0e

bxg(x)

= ebx[an(D + b)n + an−1(D + b)n−1 + · · · + a1(D + b) + a0]g(x)

= ebxf(D + b){g(x)}.

4.4 General solution of a non-homogeneous

differential equations

Let yp be any particular solution of the differential equation

b0y
(n) + b1y

(n−1) + · · · + bn−1y
′ + bny = R(x), (4.24)

and let yc be a solution of the corresponding homogeneous equation

(4.24)

b0y
(n) + b1y

(n−1) + · · · + bn−1y
′ + bny = 0. (4.25)
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Then, y = yc + yp is a general solution of (4.24). Now,

b0y
(n) + b1y

(n−1) + · · · + bn−1y
′ + bny = (b0y

(n)
c + b1y

(n−1)
c + · · · + bn−1y

′
c + bnyc)

+ (b0y
(n)
p + b1y

(n−1)
p + · · · + bn−1y

′
p + bnyp)

= 0 + R(x) = R(x).

If y1, y2, . . . , yn are linearly independent solutions of (4.25), then

yc = C1y1 + C2y2 + · · · + Cnyn

in which Ci’s are arbitrary constants, is a general solution of (4.25) and

it is called the complementary function (solution) for equation (4.24).

The general solution of (4.24), is the sum of the complementary func-

tion and any particular solution.

The Operator 1
f(D) (Inverse of f(D)): To find a particular so-

lution of

f(D)y = R(x),

it is natural to right

yp =
1

f(D)
{R(x)}.
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Remark 21. Note that f(D) · 1
f(D){R(x)} = R(x).

There are several cases to find the particular solution of

f(D)y = R(x).

Case 1: If R(x) = eax, a is a constant and we have f(D){eax} =

f(a)eax.

Case i: When f(a) 6= 0 and

f(D){ eax

f(a)
} =

f(a)

f(a)
eax = eax,

then

1

f(D)
{eax} =

1

f(a)
eax.

Now,

f(D)y = eax, (4.26)

then

yp =
1

f(D)
{eax} =

1

f(a)
eax,

which is a particular solution of the equation (4.26).

Example 45. Solve the equation (D2 + 1)y = e2x.

Solution: First we should find a complementary solution, i.e. a
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general solution of the corresponding homogeneous equation. Here,

the roots of the characteristic equation is

α2 + 1 = 0 =⇒ α = ∓i.

Then the complementary function is

yc = C1 cos x + C2 sin x.

Now to find the particular solution, we have f(D) = D2 +1 and a = 2,

then f(a) = a2 + 1 = 4 + 1 = 5 6= 0, so,

yp =
1

D2 + 1
e2x =

e2x

5
.

Thus, the general solution is

y = yc + yp = C1 cosx + C2 sin x +
e2x

5
,

where C1 and C2 are arbitrary constants.

Case ii: When f(a) = 0, then f(D) contains the factor (D − a).

Suppose that this factor occurs precisely k times in f(D), that is,
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f(D) = φ(D)(D − a)k; φ(a) 6= 0, k = 1, 2, . . . , n (n is the order of the

differential equation). Now

f(D)y = eax =⇒ y =
1

f(D)
{eax} =

1

(D − a)kφ(D)
{eax},

Then by Theorem 7, we have

f(D){ebxg(x)} = ebxf(D + b){g(x)}.

So,

y = eax
1

(D + a− a)kφ(D + a)
{1} = eax

1

(D)kφ(D + a)
{1} (Note, g(x)=1).

Since,

φ(D + a){1} = φ(a) ⇐⇒ 1

φ(D + a)
{1} =

1

φ(a)
,

then,

y = eax
1

Dkφ(a)
{1} =

eax

φ(a)

1

Dk
{1} =

eax

φ(a)

xk

k!
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Case 2 If R(x) = sin ax or R(x) = cos ax, where a is a constant.

To find the particular solution for f(D)y = R(x), there exists two

types:

case i : If ai is not a root of the characteristic equation f(D) = 0,

i =
√
−1, we use the following properties:

1) f(D2){sin ax} = f(−a2){sin ax}.

2) f(D2){cos ax} = f(−a2){cos ax}.

Example 46. Solve (D2 + 3D + 2)y = cos 2x.

Solution: The characterise equation is

α2 + 3α + 2 = 0 =⇒ (α + 2)(α + 1) = 0 =⇒ α1 = −1, α2 = −2

then the complementary function (solution) is

yc = C1e
−x + C2e

−2x.

To find the particular solution yp, we can see that

yp =
1

D2 + 3D + 2
{cos 2x} =

1

−(2)2 + 3D + 2
{cos 2x} =

1

3D − 2
{cos 2x}

=
3D + 2

(3D − 2)(3D + 2)
{cos 2x} =

3D + 2

9D2 − 4
{cos 2x} =

3D + 2

−36 − 4
{cos 2x}
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=
3D + 2

−40
{cos 2x} =

3

20
{sin 2x} − 1

20
{cos 2x}.

Finally, the general solution of the non-homogeneous system is

y = yc + yp = C1e
−x + C2e

−2x +
3

20
{sin 2x} − 1

20
{cos 2x}.

where C1 and C2 are arbitrary essential constants.

case ii : If ai is a root of the characteristic equation f(D) = 0, then

by Euler formula

eiθ = cos θ + i sin θ,

we can find the particular solution from

f(D) = eiax. (4.27)

Since,

eiax = cos ax + i sin ax,

then the particular solution of f(D) = cos ax is the real part of the

particular solution of equation (4.27), and the particular solution of

f(D) = sin ax is the imaginary part of the particular solution of equa-

tion (4.27).
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Example 47. Solve

(D2 + 9)y = sin 3x. (4.28)

Solution: In this example, the characterise equation is

α2 + 9 = 0 =⇒ α = ∓3i =⇒ a = 0, b = 3,

then the complementary function (solution) is

yc = C1 cos 3x + C2 sin 3x.

To find the particular solution yp, we can see that

yp =
1

D2 + 9
{sin 3x} =

1

D2 + 9
{e3ix}.

But note that f(3i) = 0. Therefore,

yp =
1

(D − 3i)(D + 3i)
{e3ix} =

1

6i
xe3ix =

1(−i)

6i(−i)
xe3ix =

−i

6
xe3ix.

=⇒ yp =
1(−i)

6i(−i)
x(cos 3x + i sin 3x) =

x

6
sin 3x− x

6
i cos 3x.

Hence the particular solution pf equation (4.28) is then

yp = −x

6
cos 3x.
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Therefore, the general solution is

y = yc + yp = C1 cos 3x + C2 sin 3x− x

6
cos 3x,

where C1 and C2 are arbitrary essential constants.

Case 3: IF R(x) = anx
n+an−1x

n−1+· · ·+a1x+a0, an 6= 0, n ∈ Z
+,

is a polynomial of degree n in x, then to find a particular solution of

f(D)y = R(x) =⇒ yp =
1

f(D)
{R(x)},

we use the ordinary long division. Since

1

1 −D
= 1 + D + D2 + · · · + Dn + · · ·

then

1

1 − f(D)
= 1 + f(D) + (f(D))2 + · · · .

Example 48. Find the particular solution of

(D2 − 3D + 5)y = x2 − 1.
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Solutions: Since

(D2 − 3D + 5)y = x2 − 1 =⇒ yp =
1

D2 − 3D + 5
{x2 − 1}

=⇒ yp =
1

5[1 − (35D − D2

5 )]
{x2 − 1}

=⇒ yp =
1

5
(1 + (

3

5
D − D2

5
) + (

3

5
D − D2

5
)2 + · · · ){x2 − 1}

=⇒ yp =
1

5
(1 +

3

5
D − D2

5
+

9

25
D2 − 6

50
D3 + · · · ){x2 − 1}

=⇒ yp =
1

5
(x2 − 1 +

3

5
(2x) − 2

5
+

9

25
(2) + 0 · · · ) =

x2

5
+

6x

5
− 7

25
.

is a particular solution.

Homework 24. Solve the following differential equations:

1) (2D2 + 2D + 3)y = x2 + 2x− 1.

2) (D3 − 2D + 4)y = x4 + 3x2 − 5x + 2.

Remark 22. If R(x) is a polynomial of degree n ∈ Z
+ in x, then to find

a particular solution of f(D)y = R(x), we suppose that the particular

solution is a polynomial of the same degree as R(x) and we must find

its coefficients.

Example 49. Solve y′′ − 2y′ − 3y = 1 − x2.
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Solution: Since

y′′ − 2y′ − 3y = 1 − x2 =⇒ (D2 − 2D − 3)y = 1 − x2

α2 − 2α− 3 = 0 =⇒ (α− 3)(α + 1) = 0 =⇒ α1 = 3 and α2 = −1.

So,

yc = C1e
3x + C2e

−x.

To find the particular solution yp, let the yp = Ax2 + Bx + C, so

y′p = 2Ax + B and y′′p = 2A. Substitutes in the original differential

equation, we have

2A− 2(2Ax + B) − 3(Ax2 + Bx + C) = 1 − x2

=⇒ 2A− 4Ax− 2B − 3Ax2 − 3Bx− 3C = 1 − x2

=⇒ (2A− 2B − 3C) − (4A + 3B)x− 3Ax2 = 1 − x2

It is easy to see that A = 1
3 B = −4

9 and C = 5
27 . So the particular

solution is

yp =
1

3
x2 − 4

9
x +

5

27
.

Case 4: If R(x) = eaxQ(x), where Q(x) = sin(bx), Q(x) = cos(bx)

or Q(x) is a polynomial in x and a, b are constants. To find yp, we use
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the theorem

f(D){eaxQ(x)} = eaxf(D + a)Q(x),

so,

1

f(D)
{eaxQ(x)} = eax

1

f(D + a)
{Q(x)},

then this case transform to the second case or third case.

Example 50. Solve (D2 − 2D)y = ex sin x.

Solutions: The characteristic equation is

α2 − 2α = 0 =⇒ α(α− 2) = 0 =⇒ α1 = 0 and α2 = 2.

So, yc = C1 + C2e
2x.

To find the particular solution yp,

yp =
1

D2 − 2D
{ex sin x} = ex

1

(D + 1)2 − 2(D + 1)
{sin x}

=⇒ yp = ex
1

D2 − 1
{sin x} = ex

sin x

−(1)2 − 1
= ex

sin x

−2
= −ex

sin x

2
.

Homework 25. Solve (D2 − 2D + 2)y = ex sin x.

Example 51. Solve (D2 + D − 2)y = x ex.
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Solutions: The characteristic equation is

α2 + α− 2 = 0 =⇒ (α + 2)(α− 1) = 0 =⇒ α1 = 1 and α2 = −2.

So, yc = C1e
x + C2e

−2x.

To find the particular solution yp,

yp =
1

D2 + D − 2
{x ex} = ex

1

(D + 1)2 + (D + 1) − 2
{x}

=⇒ yp =
ex

D2 + 3D
{x} =

ex

3D(1 − (−D
3 ))

=
ex

3D
(1−D

3
+

D2

9
+ · · · ){x}

=⇒ yp =
ex

3D
(x− 1

3
) =

ex

3
(
x2

2
− 1

3
x).
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Case 5): If R(x) = sin ax p(x) or R(x) = cos ax p(x) , where p(x)

is a polynomial in x. We use Euler’s formula:

eiθ = cos θ + i sin θ.

To find the particular solution for

f(D)y = R(x),

first we find the particular solution for

f(D)y = eiaxp(x), (4.29)

which is a forth case. Then the particular solution of

f(D)y = sin ax p(x)

is the imaginary part of the particular solution of (4.29) and the par-

ticular solution of

f(D)y = cos ax p(x)

is the real part of the particular solution of (4.29).

Example 52. Solve y′′ − 3y = (x2 − 1) sin 2x.
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Solution: Clearly, the characteristic equation is

α2 − 3 =⇒ α = ∓
√

3,

so the complementary function is

yc = C1e
√
3x + C2e

−
√
3x.

We will now find the particular solution.

(D2 − 3)y = (x2 − 1) sin 2x =⇒ (D2 − 3)y = (x2 − 1)e2ix

=⇒ yp =
1

D2 − 3
{(x2 − 1)e2ix} =⇒ yp = e2ix

1

(D + 2i)2 − 3
{x2 − 1}

=⇒ yp = e2ix
1

D2 + 4iD − 7
{x2 − 1} = −e2ix

7

1

[1 − (D
2+4iD
7 )]

{x2 − 1}

=⇒ = −e2ix

7
[1 + (

D2 + 4iD

7
) + (

D2 + 4iD

7
)2 + · · · ]{x2 − 1}

=⇒ = −e2ix

7
[1 +

4i

7
D +

D2

7
− 16

49
D2 + · · · ]{x2 − 1}

=⇒ = −e2ix

7
[x2 − 1 +

4i

7
(2x) +

2

7
− 32

49
+ 0]

=⇒ = −e2ix

7
[x2 +

8i

7
(x) − 32 + 49 − 14

49
]

129



W
al
ee
d
A
zi
z

=⇒ = −1

7
(cos 2x + i sin 2x)(x2 +

8i

7
x− 67

49
)

=⇒ = −1

7
cos 2x(x2 − 67

49
) +

8

49
x sin 2x− i

7
sin 2x(x2 − 67

49
).

So, yp for the original equation is

−1

7
sin 2x(x2 − 67

49
).

The general solution is

y = yc + yp = C1e
√
3x + C2e

−
√
3x − 1

7
sin 2x(x2 − 67

49
),

where C1 and C − 2 are arbitrary constants.

4.5 Variation of parameters

Suppose we have a constant coefficient second order equation

y′′ + ay′ + by = g(x), (4.30)
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where g(x) is a continuous function. Let

yc = C1y1(x) + C2y2(x),

where y1 and y2 are linearly independent solutions, denotes the com-

plementary solution to the corresponding homogeneous equation.

We now vary the parameters C1 and C2 and replace them by functions

v1(x) and v2(x). We propose that the particular solution is of the form

yp = v1(x)y1(x) + v2(x)y2(x).

To solve the nonhomogeneous (4.30), we must determine the functions

v1(x) and v2(x). Now,

y′p = v′1y1 + v1y
′
1 + v′2y2 + v2y

′
2,

and let

v′1y1 + v′2y2 = 0, (4.31)

for prevent any second derivatives of v1 and v2 from arising. Thus,

y′p = v1y
′
1 + v2y

′
2 =⇒ y′′p = v′1y

′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 .
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Substitute the expression for yp and its derivatives into equation (4.30),

we have

v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 + a(v1y

′
1 + v2y

′
2) + b(v1y1 + v2y2) = g(x)

=⇒ v1(y
′′
1 + ay′1 + by1) + v2(y

′′
2 + ay′2 + by2) + v′1y

′
1 + v′2y

′
2 = g(x).

Since y1 and y2 are solutions of the corresponding homogeneous equa-

tion (4.30), then we have

y′′1 + ay′1 + by1 = 0 and y′′2 + ay′2 + by2 = 0.

So,

v′1y
′
1 + v′2y

′
2 = g(x) (4.32)

Now, from (4.31) and (4.32), we can find v′1 and v′2 by Cramer’s rule:

v′1 =

∣

∣

∣

∣

∣

∣

0 y2

g(x) y′2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

∣

∣

, v′2 =

∣

∣

∣

∣

∣

∣

y1 0

y′1 g(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

∣

∣

.
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Since

W [y1, y2] =

∣

∣

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

∣

∣

6= 0,

as y1 and y2 are linearly independent solutions, then

v′1 = − y2
W [y1, y2]

g(x) =⇒ v1 = −
∫

y2
W [y1, y2]

g(x)dx

and

v′2 =
y1

W [y1, y2]
g(x) =⇒ v2 =

∫

y1
W [y1, y2]

g(x)dx

Example 53. Find the general solution to the equation

y′′ + y = tan x.

Solution: The solution of the homogeneous equation

y′′ + y = 0,

is given by

yc = C1 cos x + C2 sin x.

We now suppose that the particular solution is of the form

yp = v1(x) cosx + v2(x) sin x,
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where v1(x) and v2(x) are unknown functions of x. So, by variation of

parameters method, we have

v1 = −
∫

y2
W [y1, y2]

g(x)dx and v2 =

∫

y1
W [y1, y2]

g(x)dx.

Clearly,

W [y1, y2] = W [cosx, sin x] =

∣

∣

∣

∣

∣

∣

cos x sin x

− sin x cosx

∣

∣

∣

∣

∣

∣

= cos2 x+sin2 x = 1 6= 0.

Now,

v1 = −
∫

sin x

1
tan dx = −

∫

sin2 x

cos x
dx = −

∫

(sec x− cosx)dx

= − ln | sec x + tan x| + sin x,

and

v2 =

∫

cosx

1
tan dx =

∫

sin xdx = − cosx.

Thus,

yp = (− ln | sec x + tan x| + sin x) cosx− cosx sin x,
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and the general solution is

y = yc+yp = C1 cos x+C2 sin x+(− ln | sec x + tan x| + sin x) cosx−cos x sin x,

where C1 and C2 are arbitrary constants.

Homework 26. Solve the following nonhonogeneous equations:

1) y′′ − 3y′ + 2y = e3x

ex+1.

2) y′′ + 2y′ + y = e−x ln x.

4.6 Reduction of orders

Consider the linear differential equation of order n with constant coef-

ficients of the form

any
(n) + an−1y

(n−1) + · · · + a1y
′ + a0y = H(x), (4.33)

where ai, i = 0, . . . , n are real numbers. Let α1, . . . , αn be n roots of

the characteristic equation, so, equation (4.33), can be written as

(D − α1)(D − α2) · · · (D − αn)y = H(x) (4.34)
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We now assume that

(D − α2) · · · (D − αn)y = u1, (4.35)

therefore equation (4.34) becomes

(D − α1)u1 = H(x) =⇒ du1
dx

− α1u1 = H(x),

which is a first order linear differential equation. So,

u1 =

∫

e−
∫

α1dxH(x)dx + C1

e−
∫

α1dx
= eα1x

(

∫

e−α1x H(x)dx + C1

)

.

Substitutes in equation (4.35), we have

(D − α2) · · · (D − αn)y = eα1x
(

∫

e−α1x H(x)dx + C1

)

.

Let

(D − α3) · · · (D − αn)y = u2,

So,

(D − α2)u2 = eα1x
(

∫

e−α1x H(x)dx + C1

)

=⇒ du2
dx

− α2u2 = eα1x
(

∫

e−α1x H(x)dx + C1

)
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which is a first order linear differential equation and

u2 =

∫

e−
∫

α2dx
[

eα1x
(

∫

e−α1x H(x)dx + C1

]

+ C2

e−
∫

α2dx

= eα2x
[

e(α1−α2)x
(

∫

e−α1x H(x)dx + C1 + C2

)]

Continuing in this way, we get

y = eαn

[

e(αn−α2−1)x · · ·
(

∫

e−α1x H(x)dx + C1

)

+ · · · + Cn

]

is a general solution of (4.33).

4.7 Linear differential equations with vari-

able coefficients

4.7.1 The Cauchy and Legendre linear equations

The linear Cauchy equation is of the form

p0x
nd

ny

dxn
+ p1x

n−1d
n−1y

dxn−1
+ · · · + pn−1x

dy

dx
+ pny = Q(x), (4.36)
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in which p0, p1, · · · , pn are constants, and the Legendre linear equation

is of the form

p0(ax+b)n
dny

dxn
+p1(ax+b)n−1d

n−1y

dxn−1
+· · ·+pn−1(ax+b)

dy

dx
+pny = Q(x),

(4.37)

of which equation (4.36) is a special case of equation (4.37) (a = 1,

b = 0). These equations may be reduced to a linear differential equa-

tion with constant coefficients by properly transformation of the inde-

pendent variable.

4.7.2 Solving the Legendre linear equation

Let ax + b = ez, then z = ln (ax + b) and dz
dx = a

ax+b , so,

Dy =
dy

dx
=

dy

dz

dz

dx
=

a

ax + b

dy

dz

and

(ax + b)
dy

dx
= a

dy

dz
= aD1y.

Similarly,

D2y =
d2y

dx2
=

d

dx
(
dy

dx
) =

d

dx
(

a

ax + b

dy

dz
) = − a2

(ax + b)2
dy

dz
+

a

ax + b

d

dx
(
dy

dz
)
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= − a2

(ax + b)2
dy

dz
+

a

ax + b

d

dz
(
dy

dz
)
dz

dx

= − a2

(ax + b)2
dy

dz
+

a2

(ax + b)2
d2y

dz2

and

(ax + b)2D2y = −a2
dy

dz
+ a2

d2y

dz2
= a2(D2

1 −D1)y = a2D1(D1 − 1)y.

Continuing in this way, we get

(ax + b)nDny = anD1(D1 − 1)(D1 − 2) · · · (D1 − n + 1)y.

After making these replacements, equation (4.37) becomes

[p0a
nD1(D1−1)(D1−2) · · · (D1−n+1)+p1D1(D1−1)(D1−2) · · · (D1−n+2)

+ · · · + pn−1aD1 + pn]y = Q(
ez − b

a
),

is a linear differential equations with constant coefficients.

Example 54. Solve

(x3D3 + 2xD − 2)y = x2 ln x + 3x. (4.38)
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Solution: The transformation x = ez reduces the equation as

follows

xDy = D1y and x3D3y = D1(D1 − 1)(D1 − 2)y.

Substitutes into equation (4.38), we have

[D1(D1 − 1)(D1 − 2) + 2D1 − 2]y = ze2z + 3ez

=⇒ (D3
1 − 3D2

1 + 4D1 − 2)y = ze2z + 3ez,

which is a third order differential equation with constant coefficients.

To find the complementary solution, clearly, the characteristic equation

is

α3 − 3α2 + 4α− 2 = 0 =⇒ (α− 1)(α2 − 2α + 2) = 0,

so, α1 = 1, α2,3 = 1 ∓ i and the complementary function is

yc = C1e
z + ez(C2 cos z + C3 sin z).

The particular solution is

yp =
1

D3
1 − 3D2

1 + 4D1 − 2
{ze2z + 3ez}
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=⇒ yp = e2z
1

(D1 + 2)3 − 3(D1 + 2)2 + 4(D1 + 2) − 2
{z}

+
3

D3
1 − 3D2

1 + 4D1 − 2
{ez}

=⇒ yp = e2z
1

D3
1 + 3D2

1 + 4D1 + 2
{z} +

3

(D1 − 1)(D2
1 − 2D1 + 2)

{ez}

=
e2z

2[1 − (−D3
1

2 − 3
2D

2
1 − 2D1)]

{z} + 3ez
z

1!

=
ze2z

2
+

e2z

2
(−2) + 3zez =

ze2z

2
− e2z + 3zez.

Therefore, the general solution is

y = yc + yp = C1x+ x(C2 cos ln x+C2 sin ln x) +
x2 ln x

2
− x2 + 3x ln x,

where C1 and C2 are arbitrary constants.

Homework 27. Solve the following differential equations:

1) (x2D2 − xD + 4)y = cos ln x + x sin ln x.

2) [(3x + 2)2D2 + 3(3x + 2)D − 36]y = 3x2 + 4x + 1.

Example 55. Find the general solution of

(x + 2)2
d2y

dx2
− (x + 2)

dy

dx
+ y = 3x + 4.
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Solution: Let x+ 2 = ez, so the differential equation above trans-

form to

[D1(D1 − 1) −D1 + 1]y = 3ez − 2 =⇒ (D1 − 1)2y = 3ez − 2,

so the complementary function is

yc = C1e
z + C2ze

z.

In this example,

yp =
1

(D1 − 1)2
{3ez − 2} = 3ez

z2

2!
− 2

1

(D1 − 1)2
{e0} = 3ez

z

2
− 2.

Thus, the general solution is

y = yc + yp.

4.8 Non-linear differential equations with

variable coefficients

In this section various types of higher order differential equations with

variable coefficients will be considered. There is no general procedure
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comparable to that for linear equations. However, for the types treated

here, the procedure consists in obtaining from the given equation an-

other of lower order. We consider the following types.

4.8.1 Dependent variable missing (absent)

If the equation is free of y, the independent variable, that is of the

form

f(y(n), y(n−1), . . . , y′′, y′, x) = 0,

the substitution

dy

dx
= y′ = p,

dy2

dx2
=

dp

dx
, . . .

will reduces the order by one.

Example 56. Solve

y′′ + (y′)2 + 1 = 0. (4.39)

Solution: Clearly equation (4.39) is a non-linear differential equa-

tion such that the dependent variable y is absent. So, let y′ = p and

y′′ = dp
dx and equation (4.39) becomes

dp

dx
+p2+1 = 0 =⇒ dp

p2 + 1
= −dx =⇒ tan−1 p = −x+c1 =⇒ p = tan(c1−x).
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Since p = dy
dx , then

dy

dx
= tan(c1−x) =

sin(c1 − x)

cos(c1 − x)
=⇒ y =

∫

sin(c1 − x)

cos(c1 − x)
dx =⇒ y = ln |cox(c1−x)|+

is a general solution where c1 and c2 are arbitrary essential constants.

4.8.2 Independent variable missing (absent)

Suppose we have the equation

f(y(n), y(n−1), . . . , y′′, y′) = 0,

which the independent variable x is missing. Then the substitution

y′ = p and y′′ =
d2y

dx2
=

dp

dx
=

dp

dy

dy

dx
= p

dp

dy
,

will reduced the order of the differential equation bye one.

Example 57. Solve

yy′′ − (y′)2 = y2 ln(y).
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Solution: The independent variable x is absent, so, let y′ = p and

y′′ = pdp
dy , then the differential equation above takes the form

yp
dp

dy
− p2 = y2 ln y =⇒ dp

dy
− p

y
= y ln y p−1

is a Bernoulli differential equation in variables p and y with n = −1.

Let

z = p1−n = p2 =⇒ dz

dy
= 2p

dp

dy
= 2p(y ln y p−1 +

p

y
)

=⇒ dz

dy
= 2y ln y + 2

p2

y
= 2y ln y + 2

z

y
=⇒ dz

dy
− 2

z

y
= 2y ln y

which is a first order linear differential equation. Hence

z = p2 =

∫

e
∫

−2dy
y (2y ln y)dy + c1

e
∫

−2dy
y

=

∫

e−2 ln y(2y ln y)dy + c1
e−2 ln y

= y2

(

∫

2

(

ln y

y

)

dy + c1

)

= y2
(

(ln y)2 + c1

)

.

Now,

p = ±
√

y2
(

(ln y)2 + c1
)

= y
√

(ln y)2 + c1 =⇒ dy

y
√

(ln y)2 + c1
= dx

=⇒ ln(ln y +
√

(ln y)2 + c1) = x + k =⇒ ln y +
√

(ln y)2 + c1 = c2e
x
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=⇒
√

(ln y)2 + c1 = c2e
x − ln y =⇒ c1 = c22e

2x − 2c2e
x ln y

=⇒ ln y = Aex + Be−x,

where A and B are constants.

4.9 Second order linear differential equa-

tions with variable coefficients

Consider a second order equation

y′′ + α(x)y′ + β(x)y = γ(x), (4.40)

where α, β and γ are functions of x.

If y = u(x) is a solution of the corresponding homogeneous equation

(4.40), that is,

y′′ + α(x)y′ + β(x)y = 0,

then

u′′(x) + α(x)u′(x) + β(x)u(x) = 0. (4.41)
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Now, let y(x) = u(x)v(x) is a solution of the differential equation

(4.40), where v(x) is a function of x, so

y′ = u′v + uv′ and y′′ = u′′v + 2u′v′ + uv′′,

and substitutes in equation(4.40), we have

u′′v + 2u′v′ + uv′′ + α(x)(u′v + uv′) + β(x)uv = γ(x)

=⇒ (u′′ + α(x)u′ + β(x)u)v + 2u′v′ + uv′′ + α(x)uv′ = γ(x).

So, by equation (4.41), we get

uv′′ + (2u′ + α(x)u)v′ = γ(x) (4.42)

which is a second order differential equation of variable v and x and

since in equation (4.42), the dependent variable is not appeared, so, it

can be solved by letting v′ = p and v′′ = dp
dx = p′, then (4.42) becomes

u
dp

dx
+ (2u′ + α(x)u)p = γ(x),

which is a first order linear differential equation in variable p and x.

Then we have the following theorem.
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Theorem 8. If y = u(x) is a solution of a second order homogeneous

differential equation

y′′ + α(x)y′ + β(x)y = 0,

then, the substitution y(x) = u(x)v(x) reduces the differential equation

y′′ + α(x)y′ + β(x)y = γ(x),

to a linear differential equation of first order.

Example 58. If y = x is a solution of the corresponding homogeneous

equation

y′′ + 3x2y′ − 3xy = 5x3. (4.43)

Solution: Let y = vx be a solution of equation (4.43), then

y′ = v′x + v and y′′ = 2v′ + xv′′.

So, equation (4.43) becomes

2v′ + xv′′ + 3x2(xv′ + v) − 3x2v = 5x3 =⇒ xv′′ + (2 + 3x3)v′ = 5x3.
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Now, let v′ = p and v′′ = p′, so we have

x
dp

dx
+ (2 + 3x3)p = 5x3,

which is a first order linear differential equation in variables p and x.

dp

dx
+

2 + 3x3

x
p = 5x2

∴ p =

∫

e
∫

( 2+3x3

x )dx 5x2dx + C2

e
∫

( 2+3x3

x )dx
.

Since, p = v′, then v =
∫

p dx. Thus, the general solution is

y = C1x + vx,

where C1 and C2 are arbitrary constants.
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4.10 How one can find the particular so-

lution of a homogeneous differential

equation with variable coefficints

Consider a second order differential equation of the form

y′′ + P (x)y′ + Q(x)y = 0. (4.44)

To find a particular solution of equation (4.44), there are several cases:

Case 1: If y = x is a particular solution of the equation (4.44), then

y′ = 1 and y′′ = 0. Substitutes into equation (4.44), we have

P (x) + xQ(x) = 0.

Then, if P (x)+xQ(x) = 0, so y = x is a particular solution of equation

(4.44).

Example 59. Solve

(D2 − 3

x
D +

3

x2
)y = 2x− 1. (4.45)
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Solution: Here, P (x) + xQ(x) = − 3
x + x 3

x2 = 0, so, y = x is a

particular solution of equation (4.45). Thus, the transformation y = xv

reduces the equation (4.45) to a linear first order differential equation.

Now,

Dy = x
dv

dx
+ v and D2y = x

d2v

dx2
+ 2

dv

dx

Substitutes in equation (4.45), we have

x
d2v

dx2
+ 2

dv

dx
− 3

dv

dx
− 3

x
v +

3

x
v = x

d2v

dx2
− dv

dx
= 2x− 1

=⇒ d2v

dx2
− 1

x

dv

dx
=

2x− 1

x
.

Let, dv
dx = p and d2v

dx2 = p′, so

dp

dx
− 1

x
p =

2x− 1

x
,

which is a linear first order differential equation.

∴ p =

∫

e−
∫

1

xdx (2 − 1
x)dx + C1

e−
∫

1

xdx
= x(

∫

(
2

x
− 1

x2
)dx + C1)

=⇒ p = x(2 ln |x| +
1

x
+ C1).
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But,

p =
dv

dx
= 2x ln |x| + 1 + C1x

=⇒ v =
y

x
=

∫

(2x ln |x| + 1 + C1x)dx =
1

2
x2 ln(x)−1

4
x2+x+

C1

2
x2+C2

=⇒ y =
1

2
x3 ln(x) − 1

4
x3 + x2 +

C1

2
x3 + C2x

is a general solution where C1 and C2 are arbitrary constant.

Homework 28. Solve

x2(x + 1
d2y

dx2
) − x(2 + 4x + x2)

dy

dx
+ (2 + 4x + x2)y = −x4 − 2x3.

Case 2: Find a condition that y = ax + b is a particular solution

of equation (4.44).

Case 3: If y = eax is a solution of the differential equation (4.44),

where a is any constant. Then, y′ = aeax and y′′ = a2eax. Substitutes

in equation (4.44), we have

a2eax + P (x)aeax + Q(x)eax = 0 =⇒ eax
(

a2 + aP (x) + Q(x)
)

= 0.
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Since, eax 6= 0, then a2+aP (x)+Q(x) = 0. So, if a2 +aP (x) + Q(x) = 0,

then y = eax is a particular solution of equation (4.44).

Example 60. Solve

(1 + x)y′′ + (4x + 5)y′ + (4x + 6)y = e−2x. (4.46)

Solution: Clearly,

y′′ +
4x + 5

1 + x
y′ +

4x + 6

1 + x
y =

e−2x

1 + x
,

So, P (x) = 4x+5
1+x and Q(x) = 4x+6

1+x . Now,

1) P (x) + xQ(x) = 4x+5
1+x + x(4x+6)

1+x = 4x+5+x(4x+6)
1+x = 4x2+10x+5

1+x 6= 0. So,

y = x is not a particular solution of the corresponding homogeneous

equation (4.46).

2) a2 + aP (x) + Q(x)
)

= a2 + 4ax+5a
1+x + 4x+6

1+x = a2(1+x)+4ax+5a+4x+6
1+x = 0

=⇒ a2+a2x+4ax+5a+4x+6 = 0 =⇒ (a2+4a+4)x+a2+5a+6 = 0

=⇒ (a + 2)2 = 0 and (a + 2)(a + 3) = 0 =⇒ a + 2 = 0 =⇒ a = −2.

Thus, y = e−2x is a particular solution of the corresponding homoge-

neous equation (4.46).
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Let y = e−2xv(x) be a solution of the differential equation (4.46), then

y′ = −2e−2xv + e−2xv′

and

y′′ = 4e−2xv − 4e−2xv′ + e−2xv′′.

Substitutes in (4.46), we have

(1+x)e−2x(4v−4v′+v′′)+e−2x(4x+5)(−2v+v′)+e−2x(4x+6)v = e−2x

(1 + x)v′′ + (−4(1 + x) + (4x + 5))v′ = 1 =⇒ (1 + x)v′′ + v′ = 1.

Note that the dependent variable v is not appear, so, let p = v′ and

dp
dx = v′′, then

(1 + x)
dp

dx
= 1 − p =⇒ dp

1 − p
=

dx

1 + x
=⇒ 1

(1 − p)
= C1(1 + x)

=⇒ p = 1 − 1
C1(1+x) . Since,

p = v′ =
dv

dx
=⇒ v =

∫

[1 − 1

C1(1 + x)
]dx =⇒ v = x− 1

C1
ln (1 + x)+C2.
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Then,

y = e−2x + e−2x(x− 1

C1
ln (1 + x) + C2)

is a general solution where C1 and C2 are arbitrary constants.

Case 4: Let y = u(x)v(x) be a solution of

y′′ + P (x)y′ + Q(x)y = f(x). (4.47)

So,

y′ = uv′ + u′v and y′′ = uv′′ + 2u′v′ + u′′v.

Substitutes in (4.47), we get

uv′′ + 2u′v′ + u′′v + P (x)(uv′ + u′v) + Q(x)uv = f(x)

=⇒ uv′′ + (2u′ + P (x)u)v′ + (u′′ + P (x)u′ + Q(x)u)v = f(x) (4.48)

If u is chosen so that,

2u′ + P (x)u = 0 =⇒ 2
du

dx
+ P (x)u = 0 =⇒ du

u
+

1

2
P (x)dx = 0

=⇒ ln u = −1

2

∫

P (x)dx =⇒ u = e−
1

2

∫

P (x)dx
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=⇒ u′ = −1

2
P (x)e−

1

2

∫

P (x)dx = −1

2
P (x)u

=⇒ u′′ = −1

2
P ′(x)u− 1

2
P (x)u′ = −1

2
P ′(x)u +

1

4
P 2(x)u

Substitute in

u′′ + P (x)u′ + Q(x)u = −1

2
P ′u +

1

4
P 2u− 1

2
P 2 + Qu.

So, equation (4.48), becomes

v′′ + (
u′′ + Pu′ + Qu

u
)v =

f(x)

u
(4.49)

If u′′+Pu′+Qu
u is a constant, then,

−1
2P

′u− 1
4P

2u + Qu

u
= −1

2
P ′ − 1

4
P 2 + Q = C

where C is a constant.

Then, equation (4.49) becomes

v′′ + C v =
f(x)

u
,

which is a second order differential equation with constant coefficients

and u = e−
1

2

∫

P (x)dx.
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Now, if

−1

2
P ′ − 1

4
P 2 + Q =

C

x2
,

where C is a constant, then

v′′ +
C

x2
v =

f(x)

u
=⇒ x2v′′ + Cv =

x2

u
f(x),

which is a Cauchy equation.

Example 61. Solve

y′′ − 4xy′ + 4x2y = xex
2

. (4.50)

Solution: Here, in this example, P (x) = −4x and Q(x) = 4x2.

1) Since, P (x) +xQ(x) = −4x+ 4x3 6= 0, so, y = x, is not a particular

solution of the corresponding homogeneous equation equation (4.50).

2) Since there is no number a such that a2 + a(−4x) + 4x2 = 0.

3) Note P ′(x) = −4, P 2 = 16x2, then

−1

2
P ′ − 1

4
P 2 + Q = −1

2
(−4) − 1

4
16x2 + 4x2 = 2 = constant = C.

So,

u = e−
1

2

∫

P (x)dx = e−
1

2

∫

(−4x)dx = ex
2

.
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Now, let y = ex
2

v is a solution of the differential equation (4.50), so,

y′ = 2xex
2

v + ex
2

v′ and y′′ = 4x2ex
2

v + 4xex
2

v + ex
2

v′′ + 2ex
2

v.

Substitute in equation (4.50), we have

v′′ + C v =
f(x)

u
=

xex
2

ex2
= x

so, we have

v′′ + 2v = x

which is a second order differential equation with constant coefficients.

The characteristic equation is α2 + 2 = 0 =⇒ α1,2 = ∓i
√

2, therefore,

vc = C1 cos
√

2x + C2 sin
√

2x.

To find the particular solution,

(D2 + 2)v = x =⇒ vp =
1

D2 + 2
{x} =

1

2
=

1

[1 − (−D2

2 )]
{x}

=⇒ vp =
1

2
[1 − D2

2
+ (

D2

2
)2 + · · · ]{x} =

1

2
[x + 0] =

1

2
x.

∴ v = vc + vp = C1 cos
√

2x + C2 sin
√

2x +
1

2
x.

158



W
al
ee
d
A
zi
z

Hence,

y = ex
2

+ uv = ex
2

+ ex
2

(C1 cos
√

2x + C2 sin
√

2x +
1

2
x),

is a general solution where C1 and C2 are arbitrary constants.

Homework 29. 1) y′′ − 2xy′ + (x2 + 2)y = e
1

2
(x2+2x).

2) (1 + x)2y′′ + (x + 1)(x− 2)y′ + (2 − x)y = 0.

4.11 Applications of Second Order Differ-

ential Equations
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Chapter 5

The Laplace

transformation

(Laplace’s transform

and its application to

differential equations)

5.1 Laplace Transformation

Pierre Simon de Laplace (1749-1827) was a French Mathematician who

made many discoveries in mathematical physics. His last words were161
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reported to be ”What we know is very slight; what we don’t know is

immense”

Definition 18. The Laplace transform of the function f(t), 0 ≤ t ≤ ∞

(t ≥ 0) is the function F (s) = L{f(t)} defined by

F (s) =

∫ ∞

0

e−stf(t)dt = lim
b→∞

∫ b

0

e−stf(t)dt. (5.1)

Example 62. With f(t) = 1, t ≥ 0, the definition of the Laplace

transform (5.1), gives

L{1} = lim
b→∞

∫ b

0

e−stdt = lim
b→∞

[−1

s
e−st]b0 = lim

b→∞
[−1

s
e−sb+

1

s
] =

1

s
, s > 0.

Remark 23. It is good practice to specify the domain of the Laplace

transform. The limit we computed in the example above, would not

exists if s < 0, for then 1
se

−bs would become unbounded as b → ∞.

Hence, L{1} is defined only for s > 0.

Homework 30. Find the Laplace transform of f(t) = e2t and specify

its domain.

Definition 19 (Sectional or piecewise continuity). A function f(t)

is called sectional continuous or piecewise continuous in an interval

α ≤ t ≤ β, if the interval can be subdivided into a finite number of
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intervals in each of which the function is continuous and has finite

right and left hand limits.

Definition 20 (Functions of exponential order). If real constants M >

0 and λ exists such that for all t > N (N is a number)

|e−λtf(t)| < M or |f(t)| < Meλt.

We say that f(t) is a function of exponential order λ as t → ∞ or,

briefly, is of exponential order.

Theorem 9 (Sufficient condition for existence of the Laplace trans-

form). If f(t) is sectionally continuous in every finite interval 0 ≤ t ≤

N and of exponential order λ for t > N , then its Laplace transform

F (s) exists for all s > λ.

Theorem 10 (Linearity of the Laplace transform). If a and b are

constants, then

L{af(t) + bg(t)} = aL{f(t)} + b L{g(t)},

for all s such that the Laplace transforms of the functions f and g both

exists.
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Proof. The proof of this theorem follows immediately from the

linearity of the operation of taking limits of integration

L{af(t) + bg(t)} =

∫ ∞

0

e−st
(

af(t) + bg(t)
)

dt

= lim
c→∞

∫ c

0

e−st
(

af(t) + bg(t)
)

dt

=a
(

lim
c→∞

∫ c

0

e−stf(t)dt
)

+ b
(

lim
c→∞

∫ c

0

e−stg(t)dt
)

=aL{f(t)} + b L{g(t)}.

5.2 Laplace transforms of some elemen-

tary functions

Theorem 11. (a) L{k} = k
s , s > 0 for any constant k.

(b) L{eat} = 1
s−a, s > a.

(c) L{tn} = n!
sn+1 , s > 0, n = 1, 2, . . ..

(d) L{sin kt} = k
s2+k2 , s > 0.

(e) L{cos kt} = s
s2+k2 , s > 0.

(f) L{sinh kt} = k
s2−k2 , s > k.

(g) L{cosh kt} = s
s2−k2 , s > k.
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Proof.

(a) From definition of the Laplace transform, we have

L{k} =

∫ ∞

0

e−st k dt = lim
b→∞

∫ b

0

e−st k dt = k lim
b→∞

∫ b

0

e−st dt

= −k

s
lim
b→∞

[e−st]b0 = −k

s
(0 − 1) =

k

s
, s > 0.

Therefore,

L{k} =
k

s
, s > 0.

If s < 0, then the integral does not converge and the Laplace transform

is not defined.

Homework 31. Prove (b), . . . , (g).

Homework 32. Prove (c) by using Gamma function Γ(x) such that

Γ(x) =

∫ ∞

0

e−t tx−1 dt and Γ(n + 1) = n! for n is positive integer.

Example 63. 1) L{sin 3t} = 3
s2+9 , s > 0.

2) L{3e2t + 2 sin2 3t} = L{3e2t + 2(1−cos 6t
2 )} = L{3e2t} + L{1} −

L{cos 6t} = 3
s−2 + 1

s − s
s2+36 = 3s2+144s−72

s(s−2)(s2+36) , for s > 0.

Homework 33. Find the following Laplace transforms:

1) L{sin t cos t}.

2) L{t1/2}.
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Theorem 12. If a is any real number, then

L{eatf(t)} = F (s− a),

where F (s) = L{f(t)}.

Proof. The proof follows directly from the definition of the Laplace

transform

L{eatf(t)} =

∫ ∞

0

e−st eatf(t) dt =

∫ ∞

0

e−(s−a)t f(t) dt = F (s− a).

Notation: L{eatf(t)} = L{f(t)}|s→s−a.

This property is known as shifting property.

Example 64. Find L{e−2tt3}.

Solution: By Theorem above, we have

L{e−2tt3} = L{t3}|s→s−(−2) =
3!

s4
|s→s+2 =

3!

(s + 2)4
.

Homework 34. Find L{e2t cos t sin t}.

Theorem 13. If L{f(t)} = F (s), then L{f(kt) = 1
kF ( sk)}, where k is

a constant
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Proof. Since we have

L{f(t)} =

∫ ∞

0

e−st f(t) dt = F (s),

then

L{f(kt)} =

∫ ∞

0

e−st f(kt) dt.

Now, let u = kt, then t = u
k and dt = du

k , so,

L{f(kt)} =

∫ ∞

0

e−st f(kt) dt =

∫ ∞

0

e−
u
k s f(u)

du

k

=
1

k

∫ ∞

0

e−
s
ku f(u) du =

1

k
L{f(

s

k
)} =

1

k
F (

s

k
).

5.3 Laplace transform of a derivation

L{f ′(t)} = sL{f(t)} − f(0).

Proof. From the definition of the Laplace transformation, we have

L{f ′(t)} =

∫ ∞

0

e−stf ′(t)dt.

We now use integration by parts.

Let u = e−st =⇒ du = −se−stdt
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dv = f ′(t)dt =⇒ v = f(t)

So,

L{f ′(t)} = [e−stf(t)]∞0 + s

∫ ∞

0

e−stf(t)dt = sL{f(t)} − f(0).

Because, the integrated term e−stf(t) approached to zero (when s > 0)

as t → ∞, and its value at the lower limit t = 0 contributes −f(0).

An extension of these ideas to equations of order two can easily made

by letting the function g(t) = f ′(t), then

L{f ′′(t)} = L{g′(t)} = sL{g(t)} − g(0)

= sL{f ′(t) − f ′(0)}

= s[sL{f(t)} − f(0)] − f ′(0)

= s2L{f(t)} − sf(0) − f ′(0).

A repetition of this calculation gives

L{f ′′′(t)} = sL{f ′′(t)} − f ′′(0) = s3L{f(t)} − s2f(0) − sf ′(0) − f ′′(0).
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After finitely many such steps, we obtain the following extensionn

L{f (n)(t)} = snL{f(t)} − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0).

5.4 Inverse Laplace Transform

Definition 21. If L{f(t)} = F (s), then f(t) is the inverse Laplace

transform of F (s) and is written f(t) = L−1
(

F (s)
)

.

Example 65. Evaluate the following inverse Laplace transforms:

1) L−1{ 1
s4}. 2) L−1{ 15

s2+4s+13}.

Solution:

1) L−1{ 1
s4} = 3!

3!L
−1{ 1

s4} = 1
3!L

−1{ 3!
s4} = t3

6 .

2) First complete the square in the denominator

L−1{ 15

s2 + 4s + 13
= L−1{ 15

(s + 2)2 + 9
}.

Since, we know that L−1{ k
s2+k2 = sin kt}, we proceed as follows

L−1{ 15

(s + 2)2 + 9
} = L−1{ 5 · 3

(s + 2)2 + 9
} = 5L−1{ 3

(s + 2)2 + 9
}

= 5e−2tL−1{ 3

s2 + 9
} = 5e−2t sin 3t.
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Homework 35.

Theorem 14. If c1 and c2 are constants, then

L−1{c1F1(s) + c2F2(s)} = c1L
−1{F (s)} + c2L

−1{F2(s)}.

Theorem 15. Prove that

L−1{F (s− a)} = eatL−1{F (s)}.,

where a is a constant.

Proof. From

F (s) =

∫ ∞

0

e−stf(t)dt = L{f(t)},

we obtain

F (s− a) =

∫ ∞

0

e−(s−a)tf(t)dt =

∫ ∞

0

e−st
(

eatf(t)
)

dt = L{eatf(t)}

Since, f(t) = L−1
(

F (s)
)

, then

L−1{F (s− a)} = eatf(t) = eatL−1{F (s)}.
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Example 66. Evaluate

L−1{ s + 1

s2 + 6s + 25
}.

Solution:

L−1{ s + 1

s2 + 6s + 25
} = L−1{ s + 1

(s + 3)2 + 16
} = e−3tL−1{ s− 2

s2 + 16
}

= e−3t
[

L−1{ s

s2 + 16
} − L−1{ 2

s2 + 16
}
]

= e−3t
[

cos 4t− 1

2
sin 4t

]

.

Example 67. Evaluate

L−1{ 3s− 1

s(s− 1)
}.

Solution: Using partial fraction decomposition, we have

3s− 1

s(s− 1)
=

A

s
+

B

s− 1
=

A(s− 1) + Bs

s(s− 1)
=

(A + B)s− A

s(s− 1)

=⇒ A = 1 and A + B = 3 =⇒ B = 3 − 1 = 2.
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Thus,

L−1{ 3s− 1

s(s− 1)
} = L−1{1

s
+

2

s− 1
} = L−1{1

s
} +  L−1{ 2

s− 1
} = 1 + 2et.

Homework 36. Evaluate the following Laplace transforms:

1. L−1{ 1
(s+1)(s+3)(2s−1)}.

2. L−1{ s−4
(s+1)(s2+4)}.

Example 68. Evaluate L−1{ 5
(s−1)3}.

Solution:

L−1{ 5

(s− 1)3
} = 5etL−1{ 1

s3
} =

5et

2!
L−1{2!

s3
} =

5et

2!
t2.

5.5 Initial Value Problems

Let y = y(x) be a solution of a differential equation satisfying

y(x0) = y0. (5.2)

Equation (5.2) is called an initial condition of differential equation. A

differential equation together with an initial condition is called initial
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value problem. Therefore,

y′ − x = 1, y(0) = 0,

is an example of initial value problem.

5.6 Transformation of Initial Value Prob-

lems

We now discuss the application of Laplace transform to solve a linear

differential equation with a constant coefficients such as

ay′′(t) + by′(t) + cy(t) = f(t),

with given initial condition y(0) = y0 and y′(0) = y′0.

We must using the following procedure:

1. Take Laplace transform to both sides of the differential equation.

2. Substitute the initial conditions.

3. We take inverse Laplace transform.
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Example 69. Solve the initial value problem

y′′ + y = 1; y(0) = 2, y′(0) = 0. (5.3)

Solution: First, take the Laplace transform to both sides of equa-

tion (5.3) and substitute the initial conditions, we have

L{y′′ + y} = L{1} =⇒ s2L{y} − sy(0) − y′(0) + L{y} = L{1}

=⇒ s2L{y} − 2s + L{y} =
1

s
=⇒ L{y}(s2 + 1) =

1

s
+ 2s =

1 + 2s2

s

=⇒ L{y} =
1 + 2s2

s(s2 + 1)
=⇒ y = L−1{ 1 + 2s2

s(s2 + 1)
}.

Use the partial fraction decomposition to solve this inverse Laplace

transform.

1 + 2s2

s(s2 + 1)
=

A

s
+
Bs + C

s2 + 1
=

As2 + A + Bs2 + Cs

s(s2 + 1)
=

(A + B)s2 + Cs + A

s(s2 + 1)
.

Clearly, A = 1, C = 0 and A + B = 2 =⇒ B = 1. Thus,

y = L−1{1

s
+

s

s2 + 1
} = L−1{1

s
} + L−1{ s

s2 + 1
}

=⇒ y = 1 + cos t.
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Example 70. Solve

y′′ − 5y′ + 6y = 2e−t (5.4)

subject to the initial condition y(0) = 2 and y′(0) = 1.

Solution: Again, take the Laplace transform to both sides of equa-

tion (5.4) and substitute the initial conditions, we have

L{y′′ − 5y′ + 6y} = L{2e−t}

=⇒ s2L{y}−sy(0)−y′(0)−5[sL{y}−y(0)]+6L{y} = L{2e−t} =
2

s + 1

=⇒ s2L{y}−1−5sL{y}+6L{y} =
2

s + 1
=⇒ L{y}(s2−5s+6) =

2

s + 1
+1

=⇒ L{y} =
2

(s + 1)(s− 2)(s− 3)
+

1

(s− 2)(s− 3)

Now,

2

(s + 1)(s− 2)(s− 3)
=

A

s + 1
+

B

s− 2
+

C

s− 3
.

So,

2

(s + 1)(s− 2)(s− 3)
=

A(s− 2)(s− 3) + B(s + 1)(s− 3) + C(s + 1)(s− 2)

(s + 1)(s− 2)(s− 3)

It is easy to see that A = 1
6 , B = 1

2 and C = −2
3 . We also do the same
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procedure for the second fraction. Finally we get,

L{y} =
1
6

s + 1
+

1
2

s− 3
−

2
3

s− 2
+

1

s− 3
− 1

s− 2
=

1
6

s + 1
+

3
2

s− 3
−

5
3

s− 2
.

Therefore,

y = L−1{ 1

6(s + 1)
+

3

2

1

s− 3
− 5

3

1

s− 2
} =

1

6
e−t +

3

2
e3t − 5

3
e2t.

Homework 37. 1. Solve

y′′ + y = 4tet,

subject to the initial condition y(0) = −2 and y′(0) = 0.

2. Solve the initial value problem

x′′ − x′ − 6x = 0; x(0) = 2, x′(0) = −1.

3. Solve the initial value problem

y′′ + 4y = sin 3t; y(0) = y′(0) = 0.
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5.7 Derivative of the Laplace transforms

Theorem 16. If f(t) is a piecewise continuous for t ≥ 0 and of expo-

nential order for some c > 0 and if F (s) = L{f(t)}, then

d

ds
F (s) = −L{t f(t)}.

Example 71. Evaluate L{t eat}.

Solution: From theorem above (Theorem 8), we have

L{t eat} = − d

ds
F (s) = − d

ds
L{eat} =

d

ds
(

1

s− a
) =

1

(s− a)2
.

Homework 38. Evaluate the following:

1. L{t2 eat}.

2. L{t e2t cos 3t}.

3. L{sin t + t cos t}, without using the linearity property.
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Chapter 6

The power series

method

6.1 Power Series Method (Power Series

Solutions)

Definition 22. A function f(x) is said to be analytic at x0, if it can

be represented by a Taylor series

f(x) =
∞
∑

n=0

f (n)(x0)

n!
(x− x0)

n, (6.1)

which converges for all x in some open interval containing x0. If

178



W
al
ee
d
A
zi
z

x0 = 0, then the sees in (6.1) is the Maclaurin series

f(x) =
∞
∑

n=0

f (n)(0)

n!
(x)n.

6.2 Maclaurin series expansion of some

elementary functions

(1) ex =
∑∞

n=0
xn

n! = 1 + x + x2

2! + x3

3! + · · · , −∞ < x < ∞.

(2) cos x =
∑∞

n=0
(−1)nx2n

2n! = 1 − x2

2! + x4

4! − · · · , −∞ < x < ∞.

(3) sin x =
∑∞

n=0
(−1)nx2n+1

(2n+1)! = x− x3

3! + x5

5! − · · · , −∞ < x < ∞.

(4) cosh x =
∑∞

n=0
x2n

2n! , −∞ < x < ∞.

(5) sinh x =
∑∞

n=0
x2n+1

(2n+1)! , −∞ < x < ∞.

(6) ln x =
∑∞

n=1
(−1)n+1xn

n , −1 < x < 1
(

|x| < 1
)

.

(7) 1
1−x =

∑∞
n=0 x

n, −1 < x < 1
(

Geometric series
)

.

(8) (1 + x)α = 1 + αx + α(α−1)
2! x2 + α(α−1)(α−3)

3! x3 + · · · ,
(

Binomial

series
)

. If α is nonnegative integer, then the binomial series is

converges for all x. Otherwise, |x| < 1 converges and |x| > 1

diverges.
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Thus, if the Taylor series of the function f converges to f(x) for all x in

some open interval containing x0, then we say that the function f(x) is

analytic at x0. For example, every polynomial is analytic everywhere

and every rational function is analytic whenever its denominator is

nonzero. For instance, tan x = sinx
cosx is analytic at x0 = 0.

6.3 Solutions around ordinary points

For purpose of discussion, it is useful to place the second order differ-

ential equation

a2(x)y′′ + a1(x)y′ + a0(x)y = 0, (6.2)

in the standard form

y′′ + P (x)y′ + Q(x)y = 0, (6.3)

where P (x) = a1(x)
a2(x)

and Q(x) = a0(x)
a2(x)

, a2(x) 6= 0.

Definition 23. A point x = x0 is an ordinary point of equation (6.3),

if both P (x) and Q(x) are analytic at x0; that is, if both P (x) and

Q(x) has a Taylor series expansion about x = x0. A point that is not

an ordinary point is called a singular point of the equation.
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Example 72. The differentia equation

(1 − x2)y′′ − 6xy′ − 4y = 0,

has an ordinary points at x = 0. The points x = 1 and x = −1 are

singular points of the equation.

Example 73. Singular points need not be real numbers. The equation

(x2 + 4)y′′ + 2xy′ − 12y = 0,

has singular points at x = ∓2i. The point x = 0, is an ordinary point.

Example 74. Solve the equation

y′′ + 4y = 0, (6.4)

near the ordinary point x = 0.

Solution: Since x = 0 is an ordinary point, then the series solution

is

y =
∞
∑

n=0

anx
n =⇒ y′ =

∞
∑

n=1

n anx
n−1 =⇒ y′′ =

∞
∑

n=2

n(n− 1) anx
n−2.
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We now substitute, y, y′ and y′′ in the equation (??), we have

∞
∑

n=2

n(n− 1) anx
n−2 + 4

∞
∑

n=0

anx
n = 0

=⇒
∞
∑

n=2

n(n− 1) anx
n−2 + 4

∞
∑

n=2

an−2x
n−2 = 0

=⇒
∞
∑

n=2

[n(n− 1) an + 4an−2]x
n−2 = 0

=⇒ n(n− 1) an + 4an−2 = 0 =⇒ an = − 4

n(n− 1)
an−2, n ≥ 2

a2 = − 4

2 · 1
a0, a3 = − 4

3 · 2
a1

a4 = − 4

4 · 3
a2, a5 = − 4

5 · 4
a3

...
...

a2n = − 4

2n · (2n− 1)
a2n−2, a2n+1 = − 4

(2n + 1) · 2n
a2n−1

Now,

a2 · a4 · · · · · a2n =
(−1)n4n

(2n)!
a0 · a2 · · · · · a2n−2,

which simplify to

a2n =
(−1)n4n

(2n)!
a0, n ≥ 1.
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Similarly,

a2n+1 =
(−1)n4n

(2n + 1)!
a1, n ≥ 1.

Since,

y =
∞
∑

n=0

anx
n,

so,

y = a0 +
∞
∑

n=1

a2nx
2n + a1x +

∞
∑

n=1

a2n+1x
2n+1

= a0

[

1 +
∞
∑

n=1

(−1)n4n

(2n)!
x2n
]

+ a1

[

x +
∞
∑

n=1

(−1)n4n

(2n + 1)!
x2n+1

]

= a0

[

1 +
∞
∑

n=1

(−1)n(2x)2n

(2n)!

]

+
1

2
a1

[

2x +
∞
∑

n=1

(−1)n(2x)2n+1

(2n + 1)!

]

y = a0 cos 2x +
1

2
a1 sin 2x,

is the general solution where a0 and a1 are arbitrary constants.

Example 75. Find the general solution in powers in x of

(x2 − 4)y′′ + 3xy′ + y = 0. (6.5)

Then find the particular solution with y(0) = 4 and y′(0) = 1.
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Solution: The only singular points of equation (6.5) are ∓2. Since,

x0 = 0 is an ordinary point of (6.5), then

y =
∞
∑

n=0

cnx
n =⇒ y′ =

∞
∑

n=1

n cnx
n−1 =⇒ y′′ =

∞
∑

n=2

n(n− 1) cnx
n−2.

Substitutes in equation (??), yields

(x2 − 4)
∞
∑

n=2

n(n− 1) cnx
n−2 + 3x

∞
∑

n=1

n cnx
n−1 +

∞
∑

n=0

cnx
n = 0

=⇒
∞
∑

n=2

n(n−1) cnx
n−4

∞
∑

n=2

n(n−1) cnx
n−2+3

∞
∑

n=1

n cnx
n+

∞
∑

n=0

cnx
n = 0

=⇒
∞
∑

n=0

n(n−1) cnx
n−4

∞
∑

n=0

(n+2)(n+1) cn+2x
n+3

∞
∑

n=0

n cnx
n+

∞
∑

n=0

cnx
n = 0

=⇒
∞
∑

n=0

[

(n2 + 2n + 1)cn − 4(n + 2)(n + 1)cn+2

]

xn = 0

=⇒ (n + 1)2cn − 4(n + 2)(n + 1)cn+2 = 0

=⇒ cn+2 =
n + 1

4(n + 2)
cn, for n ≥ 0.

For n = 0 =⇒ c2 =
c0

4 · 2

For n = 2 =⇒ c4 =
3 c2
4 · 4

=
1 · 3 c0

42 · 2 · 4

For n = 4 =⇒ c6 =
5 c4
4 · 6

=
1 · 3 · 5 c0

43 · 2 · 4 · 6
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Continuing in this way, we evidently would find that

c2n =
1 · 3 · 5 · · · (2n− 1) c0

4n · 2 · 4 · · · 2n

Since,

(2n + 1)!! = 1 · 3 · 5 · · · (2n + 1) =
(2n + 1)!

2n · n!

and

2 · · · · 2n = (2n)!! = 2n · n!

Thus,

c2n =
(2n− 1)!!

23nn!
c0.

For n = 1 =⇒ c3 =
2 c1
4 · 3

For n = 3 =⇒ c5 =
4 c3
4 · 5

=
2 · 4 c1

42 · 3 · 5

For n = 5 =⇒ c7 =
6 c5
4 · 7

=
2 · 4 · 6 c1

43 · 3 · 5 · 7

So,

c2n+1 =
2 · 4 · 6 · · · 2n

4n · 1 · 3 · 5 · · · (2n + 1)
c1 =

2n n!

22n(2n + 1)!!
c1 =

n!

2n(2n + 1)!!
c1.

y(x) = c0 +
∞
∑

n=1

c2nx
2n + c1x +

∞
∑

n=1

c2n+1x
2n+1
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= c0

[

1 +
∞
∑

n=1

(2n− 1)!!

23nn!
x2n
]

+ c1

[

1 +
∞
∑

n=1

(n)!!

2n(2n + 1)!!
x2n
]

=⇒ y(x) = c0(1 +
1

8
x2 +

3

128
x4 + · · · ) + c1(x +

1

6
x3 +

1

30
x5 + · · · ).

Since, y(0) = 4 and y′(0) = 1, then c0 = 4 and c1 = 1.

Thus,

y(x) = 4 + x +
1

2
x2 +

1

6
x3 +

3

32
x4 + · · · .
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6.4 Frobenius series solution (Solutions near

regular singular points)

Definition 24. A singular point x = x0 of the equation

y′′ + P (x)y′ + Q(x)y = 0,

is said to be a regular singular point, if both terms (x − x0)P (x) and

(x − x0)
2Q(x) are analytic at x0. Otherwise, x = x0 is an irregular

singular point.

Example 76. The point x = 0, is a singular point of the Euler-Cauchy

equation

x2y′′ − xy′ − 3y = 0. (6.6)

In this example, P (x) = − 1
x and Q(x) = − 3

x2 .

Since, xP (x) = x(− 1
x) = −1 and x2Q(x) = x2(− 3

x2 ) = −3 are both

analytic at x = 0, so x = 0 is a regular singular point.

Example 77. The points x = 3 and x = −3 are singular points of the

equation

(x2 − 9)2y′′ + (x− 3)y′ + 2y = 0. (6.7)

Here, P (x) = 1
(x+3)2(x−3) and Q(x) = 2

(x+3)2(x−3)2 .
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Since, (x−3)P (x) = 1
(x+3)2 and (x−3)2Q(x) = 2

(x+3)2 are both analytic

at x = 3, so x = 3 is a regular singular point. But, x = −3 is an

irregular singular point.

Homework 39. Classify the singular points for the following differ-

ential equations:

1) (x2 + 1)y′′ + (x + 1)y′ + 5y = 0.

2) x4(x2 + 1)(x− 1)2y′′ + 4x3(x− 1)y′ + (x + 1)y = 0.

Theorem 17. Assume that x = x0 is a regular singular point of the

differential equation

a2(x)y′′ + a1(x)y′ + a0(x)y = 0.

Then, there is at least one series solution of the form

y = (x− x0)
r

∞
∑

n=0

cn(x− x0)
n =

∞
∑

n=0

cn(x− x0)
n+r, (6.8)

where the number r is some real constant. The series will converge on

some interval 0 < |x − x0| < R. The series in (6.8) is known as a

Frobenius series. We also assume that c0 6= 0

Example 78. Let us solve the Euler-Cauchy equation (6.6) by assum-

ing a Frobenius series solution.
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Thus,

y =
∞
∑

n=0

cn x
n+r =⇒ y′ =

∞
∑

n=0

(n + r)cn x
n+r−1

=⇒ y′′ =
∞
∑

n=0

(n + r)(n + r − 1)cn x
n+r−2.

Substitutes in equation (??), gives

x2
∞
∑

n=0

(n+r)(n+r−1)cn x
n+r−2−x

∞
∑

n=0

(n+r)cn x
n+r−1−3

∞
∑

n=0

cn x
n+r = 0

=⇒
∞
∑

n=0

(n+r)(n+r−1)cn x
n+r−

∞
∑

n=0

(n+r)cn x
n+r−3

∞
∑

n=0

cn x
n+r = 0.

If n = 0, we have

r(r − 1)c0 − rc0 − 3c0 = 0.

Since, c0 6= 0, then

r(r − 1) − r − 3 = 0 (6.9)

=⇒ r2 − 2r− 3 = 0 =⇒ (r− 3)(r + 1) = 0 =⇒ r = 3 or r = −1.

Now,
∞
∑

n=0

[

(n + r)(n + r − 1) − (n + r) − 3
]

cn x
n+r = 0
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=⇒
[

(n + r)(n + r − 1) − (n + r) − 3
]

cn = 0

=⇒
[

n2 + nr − n + nr + r2 − r − n− r − 3
]

cn = 0

=⇒
[

(n + r)2 − 2(n + r) − 3
]

cn = 0

=⇒ (n + r − 3)(n + r + 1)cn = 0.

When r = −1, we have (n − 4)ncn = 0, so cn = 0 if n 6= 0 or n 6= 4,

where c0 and c4 are arbitrary. Substituting into the Frobenius series

yields

y1 =
∞
∑

n=0

cn x
n+r =

∞
∑

n=0

cn x
n−1 = c0x

−1 + c4x
3.

If r = 3, then n(n + 4)cn = 0, so cn = 0 if n 6= 0. Thus,

y2 =
∞
∑

n=0

cn x
n+r =

∞
∑

n=0

cn x
n+3 = c0x

3.

Therefore, the general solution is

y = C1x
−1 + C2x

3,

where C1 and C2 are arbitrary constants.

Remark 24. Equation (6.9) is called the indicate equation associate

with Frobenius series solution.
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Theorem 18. Assume that x = 0 is a regular singular point of the

second order differential equation

a2(x)y′′ + a1(x)y′ + a0(x)y = 0. (6.10)

Suppose that r1 ≥ r2 are two real roots to the indicated equation p(r) =

0.

1) If r1 6= r2 and r1−r2 is not an integer, then there exists two linearly

independent solutions to equation (4.4) of the form

y1 =
∞
∑

n=0

cn x
n+r1, c0 6= 0

and

y2 =
∞
∑

n=0

cn x
n+r2, c0 6= 0.

2) If r1 − r2 is a positive integer, then there exists two linearly inde-

pendent solutions to equation (4.4) of the form

y1 =
∞
∑

n=0

cn x
n+r1, c0 6= 0

and

y2 = Cy1(x) ln(x) +
∞
∑

n=1

bn x
n+r2, b0 6= 0,
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where C is a constant that could be zero.

3) If r1 = r2, then there exists two linearly independent solutions to

equation (4.4) of the form

y1 =
∞
∑

n=0

cn x
n+r1, c0 6= 0

and

y2 = y1(x) ln(x) +
∞
∑

n=1

bn x
n+r1, b0 6= 0.
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