Assignment in Dynamical System I

Wednesday, November 29. Nothing accepted after Thursday, November 30. This is worth 5 points. 100% points off for being late. You must work by yourself. Put your names on each sheet.

Q1/ Consider the following system of linear differential equations

$$
\dot{x}=\left(\begin{array}{cc}
6 & 5 \\
2 & -3
\end{array}\right) x .
$$

Find the special fundamental matrix $\psi(t)$ which satisfies $\psi(0)=I$.

Q2/ Show that for any matrix B, we have $B e^{B}=e^{B} B$.

Q3/ Check whether the following functions satisfy the Lipschitz condition on the respective intervals. If so, find a suitable Lipschitz constant.

1. $f(t, x)=2 t x^{-4},(t, x) \in[0, \infty] \times[1, \infty]$.
2. $f(t, y)=\cos (t)+y^{3}, \quad t \in[0,1],|y| \leq \infty$.
