Question Banks

Question 1. Consider the following system of linear differential equations

$$\begin{pmatrix} 6 & 5 \\ 2 & -3 \end{pmatrix}.$$

(2 -3)Find the special fundamental matrix $\psi(t)$ which satisfies $\psi(0) = I$.

Question 2. Show that for any matrix B, we have $Be^B = e^B B$.

Question 3. Check whether the following functions satisfy the Lipschitz condition on the respective intervals. If so, find a suitable Lipschitz constant.

1.
$$f(t,x) = 2tx^{-4}, \quad (t,x) \in [0,\infty] \times [1,\infty].$$

2. $f(t,y) = \cos(t) + y^3$, $t \in [0,1] \times [1,\infty]$, $|y| \le \infty$ Question 4. Show that every function of the form $y = \frac{1}{x}e^{cx}$, where c is a constant is a solution of the differential equation $xy' + y - y\ln(xy) = 0$ for all $x \neq 0$.

Question 5. Find the general solution of the system

$$Y' = \begin{pmatrix} 2 & -3 & 3 \\ 0 & 5 & -3 \\ 0 & 6 & -4 \end{pmatrix} Y.$$
1

Question 6. Find a fundamental matrix for the system

$$x' = 4x + 2y,$$
$$y' = 3x - y.$$

Then use it to find the solution that satisfies the initial condition x(0) = 1 and y(0) = -1.

Question 7. Consider the 3×3 matrix

$$Y' = \begin{pmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{pmatrix}.$$

Find a fundamental matrix.

Question 8. Solve the following differential equations:

1) ydx - xdy = xydx. 2) (x + y)(dx - dy) = dx + dy. 3) $x^{2}(1 - y)dx + y^{2}(1 + x)dy = 0$. 4) $3e^{x} \tan ydx + (1 - e^{x})\sec^{2} ydy = 0$. Question 9. Find the general solution of the system

$$Y' = \begin{pmatrix} -6 & -7 & -13 \\ 5 & 6 & 9 \\ 2 & 2 & 5 \end{pmatrix} Y.$$

Question 10. Solve the initial value problem

$$x' = 2x + 5y + e^t$$
, $x(0) = -$
 $y' = x - 2y - 1$, $y(0) = -$

Question 11. Solve the linear system

$$\dot{x} = x + 4y,$$

$$\dot{y} = -x - 3y.$$

Using exponential matrix method.

Question 12. Solve the following differential equation using method of successive approximation

$$\frac{dy}{dx} = 4xy, \quad y(0) = 3$$

Question 13. Discuss the existence and unique solution for the initial value problem

$$y' = \frac{2y}{x}, \quad y(x_0) = y_0.$$

Question 14. Find the eigenvalues and the eigenfunctions of

•

$$\frac{d^y}{dx^2} + \lambda y = 0, \quad 0 < x < 1, \quad y(0) = 0, \ y(1) = 0$$

Λ

Question 15. Express the boundary value problem $y'' + \lambda y = 0$, $0 < x < \pi$ which satisfy the boundary conditions to y(0) = 0, $y'(\pi) = 0$ into a Strum-Liouville problem.