Question Banks

Question 1. Consider the following system of linear differential equations

$$
\left(\begin{array}{cc}
6 & 5 \\
2 & -3
\end{array}\right)
$$

Find the special fundamental matrix $\psi(t)$ which satisfies $\psi(0)=I$.
Question 2. Show that for any matrix B, we have $B e^{B}=e^{B} B$.
Question 3. Check whether the following functions satisfy the Lipschitz condition on the respective intervals. If so, find a suitable Lipschitz constant.

1. $f(t, x)=2 t x^{-4}, \quad(t, x) \in[0, \infty] \times[1, \infty]$.
2. $f(t, y)=\cos (t)+y^{3}, \quad t \in[0,1] \times[1, \infty],|y| \leq \infty$

Question 4. Show that every function of the form $y=\frac{1}{x} e^{c x}$, where c is a constant is a solution of the differential equation $x y^{\prime}+y-y \ln (x y)=0$ for all $x \neq 0$.

Question 5. Find the general solution of the system

$$
Y^{\prime}=\left(\begin{array}{ccc}
2 & -3 & 3 \\
0 & 5 & -3 \\
0 & 6 & -4
\end{array}\right) Y
$$

Question 6. Find a fundamental matrix for the system

$$
\begin{array}{r}
x^{\prime}=4 x+2 y \\
y^{\prime}=3 x-y
\end{array}
$$

Then use it to find the solution that satisfies the initial condition $x(0)=$ 1 and $y(0)=-1$.

Question 7. Consider the 3×3 matrix

$$
Y^{\prime}=\left(\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right) .
$$

Find a fundamental matrix.

Question 8. Solve the following differential equations:

1) $y d x-x d y=x y d x$.
2) $(x+y)(d x-d y)=d x+d y$.
3) $x^{2}(1-y) d x+y^{2}(1+x) d y=0$.
4) $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.

Question 9. Find the general solution of the system

$$
Y^{\prime}=\left(\begin{array}{ccc}
-6 & -7 & -13 \\
5 & 6 & 9 \\
2 & 2 & 5
\end{array}\right) Y
$$

Question 10. Solve the initial value problem

$$
\begin{aligned}
& x^{\prime}=2 x+5 y+e^{t}, \quad x(0)=1 \\
& y^{\prime}=x-2 y-1, \quad y(0)=-1
\end{aligned}
$$

Question 11. Solve the linear system

$$
\begin{aligned}
& \dot{x}=x+4 y, \\
& \dot{y}=-x-3 y .
\end{aligned}
$$

Using exponential matrix method.

Question 12. Solve the following differential equation using method of successive approximation

$$
\frac{d y}{d x}=4 x y, \quad y(0)=3
$$

Question 13. Discuss the existence and unique solution for the initial value problem

$$
y^{\prime}=\frac{2 y}{x}, \quad y\left(x_{0}\right)=y_{0}
$$

Question 14. Find the eigenvalues and the eigenfunctions of

$$
\frac{d^{y}}{d x^{2}}+\lambda y=0, \quad 0<x<1, \quad y(0)=0, y(1)=0
$$

Question 15. Express the boundary value problem $y^{\prime \prime}+\lambda y=0,0<$ $x<\pi$ which satisfy the boundary conditions to $y(0)=0, y^{\prime}(\pi)=0$ into a Strum-Liouville problem.

