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Lipschitz condition

In this lecture we are concerned with the first order vector
differential equation

x′ = f (t, x). (1)

We assume throughout this chapter that f : D → Rn is
continuous, where D is an open subset of R× Rn.
We recall some basic definition in order to this chapter be
self-contained.

Definition

We say that x is a solution of (1) on an interval I provided
x : I → Rn is differentiable, (t, x(t)) ∈ D, for t ∈ I and
x′ = f (t, x) for t ∈ I .
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Lipschitz condition

Definition

Let (t0, x0) ∈ D. We say that x is a solution of the initial value
problem

x′ = f (t, x), x(t0) = x0, (2)

on an interval I provided t0 ∈ I , x is a solution of (1) on I and
x(t0) = x0.

Closely related to the initial value problem (2) is the integral
equation

x = x0 +

∫ t

t0

f (s, x(s))ds. (3)
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Definition

We say that x : I → Rn is a solution of the vector integral equation
(3) on an interval I provided t0 ∈ I , x is continuous on I ,
(t, x(t)) ∈ D, for t ∈ I , and (3) is satisfied for t ∈ I .

The relation between the initial value problem (2) and the integral
equation (3) is given by the following lemma. So, of this result, we
say that the initial value problem (2) and the integral equation (3)
are equivalent.
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Lemma

Assume D is an open subset of R× Rn, f : D → Rn is continuous,
and (t0, x0) ∈ D; then x is a solution of the initial value problem
(2) on an interval I iff x is a solution of the integral equation (3)
on an interval I .

Proof. Assume that x is a solution of the initial value problem (2)
on an interval I . Then t0 ∈ I , x is differentiable on I (hence is
continuous on I ), (t, x(t)) ∈ D, for t ∈ I , x(t0) = x0, and

x′(t) = f (t, x(t)),

for t ∈ I . Integrating this last equation and using x(t0) = x0, we
get

x(t) = x0 +

∫ t

t0

f (s, x(s))ds,
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for t ∈ I . Thus we have shown that x is a solution of the integral
equation (3) on the interval I .
Conversely, assume x is a solution of the integral equation (3) on
an interval I . Differentiating (3), using the fundamental theorem
of integral calculus, we see that

x′(t) = f (t, x(t)),

for all t ∈ I . Moreover form (3) it is clear that x(t0) = x0 and thus
x is a solution of the initial value problem (2).
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Lipschitz condition

Here we introduce the notion of Lipschitz condition within the
context of differential equation. Lipschitz conditions have
important applications to the existence, uniqueness and
approximation of solutions to equations, including ordinary
differential equations.

Definition

A vector-valued function F (t, x) is said to satisfy a Lipschitz
condition in a region R in (t, x)-space if, for some constant L
(called the Lipschitz constant), we have

∥F (t, x)− F (t, y)∥ ≤ L ∥x− y∥, (4)

whenever (t, x) ∈ R and (t, y) ∈ R.
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Lemma

If F (t, x) has continuous partial derivatives on a bounded closed
convex domain D, then it satisfies a Lipschitz condition in D.

This Lemma means that there exists some constant K such that

∥∂F (t, x)
∂x

∥ ≤ K .

Proof. By the fundamental theorem of calculus, for all
(t, x), (t, y) ∈ D, we have

F (t, x)− F (t, y) =

∫ x

y

∂F (t, s)

∂s
ds

and so
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∥F (t, x)− F (t, y)∥ = ∥
∫ x

y

∂F (t, s)

∂s
ds∥

≤ ∥
∫ x

y
∥∂F (t, s)

∂s
∥ds∥

≤ ∥
∫ x

y
Kds∥

= K∥x− y∥.
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Remark

1) The constant L is independent of x, y and t. However, it
depends on R. In other words, for a given function F (t, x), its
Lipschitz constant may change if the domain R is different. In
fact, for the same function F (t, x), it can be a Lipschitz function in
some regions, but not a Lipschitz function in some other regions.

2) That F (t, x) =
(
f1(t, x1, . . . , xn), . . . , fn(t, x1, . . . , xn)

)
has

continuous partial derivatives means that ∂fi
∂xj

and ∂fi
∂t are

continuous for all i , j . Sometimes we use F (t, x) ∈ C1 for this.
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An example of a function satisfying a Lipschitz condition is

f (t, x) = t2 + 2x

where D = R2. For each (t, x), (t, y) ∈ D, consider

|f (t, x)− f (t, y)| = |(t2 + 2x)− (t2 + 2y)| = 2|x − y |

and so our f does satisfy a Lipschitz condition on D = R2 with
L = 2.
Another example is

f (x , y) = xy2

on
R : |x | ≤ 1, |y | ≤ 1.

Here

|∂f (x , y)
∂y

| = |2xy | ≤ 2,

for (x , y) ∈ R. This function does not satisfy a Lipschitz condition
on the
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S : |x | ≤ 1, |y | < ∞.

since

| f (x , y1)− f (x , 0)

y1 − 0
| = |x ||y1|,

which tends to infinity as |y1| → ∞, if |x | ≠ 0.
An example of a continuous function not satisfying a Lipschitz
condition is

f (x , y) = y2/3

on
R : |x | ≤ 1, |y | ≤ 1.

Indeed, if y1 > 0,

|f (x , y1)− f (x , 0)|
|y1 − 0|

=
y
2/3
1

y1
=

1

y
1/3
1

,

which is unbounded as y1 → 0.
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Example

Determine whether the function

F (x , t) =
x2 + 1

x
· t

satisfies a Lipschitz condition in the domains:

1 R1 = [1, 2]× [0, 1].

2 R2 = (1, 2)× [0, 1].

3 R3 = [1, 2]× [0,∞).

4 R4 = (0, 1)× [0, 1].

Solution:
1) Since the function F (x , t) is continuously differentiable in the
bounded closed convex domain R1, by Lemma 2, we know that
the function satisfy a Lipschitz in the given region.
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2) Since the function F (x , t) satisfies a Lipschitz condition in R1,
and R2 ⊂ R1, we know that the function satisfies the same
Lipschitz inequality in R2. Hence the function F (x , t) satisfis a
Lipschitz condition in R2.
3) Since R3 = [1, 2]× [0,∞) is not a bounded region, we cannot
apply Lemma 2 in this case. Since

|F (x , t)− F (y , t)|
|x − y |

= |xy − 1

xy
| · |t| > |t| → ∞

as t → ∞, there exists no constant L, independent of x , y and t,
such that

|F (x , t)− F (y , t)| = L|x − y |

Hence, the function F is not a Lipschitz function in R3.
4) Homework.
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