Question Banks

Question 1. How to interpret the differential equation

$$
\frac{d y}{d t}=0.028 y-10 .
$$

Question 2. Give an example of a differential equation for which a degree is not defined.

Question 3. Question: Is it possible for a differential equation to have more than one dependent variable?

Question 4. Show that every function of the form $y=\frac{1}{x} e^{c x}$, where c is a constant is a solution of the differential equation $x y^{\prime}+y-y \ln (x y)=0$ for all $x \neq 0$.

Question 5. Does a given differential equation have always a solution over an interval?

Question 6. Eliminate the constant a from the equation $(x-a)^{2}+y^{2}=$ a^{2}

Question 7. Eliminate α and β from the relation $x=\beta \cos (\omega t+\alpha)$, in which ω is a parameter (not to be eliminate).

Question 8. Solve the following differential equations:

1) $y d x-x d y=x y d x$.
2) $(x+y)(d x-d y)=d x+d y$.
3) $x^{2}(1-y) d x+y^{2}(1+x) d y=0$.
4) $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.

Question 9. Suppose that $\frac{d y}{d x}=g\left(\frac{y}{x}\right)$, derive a formula for solving this type of differential equation.

Question 10. Solve the following differential equations:

1) $x y d x+\left(x^{2}+y^{2}\right) d y=0$.
2) $\left(x^{2}+x y+y^{2}\right) d x-x y d y=0$.
3) $y^{\prime}=\frac{x+y}{x-y}$.
4) $\frac{d y}{d x}=\frac{x e^{y / x}+y}{x}$.
5) $\left(2 x \sinh \left(\frac{y}{x}\right)+3 y \cosh \left(\frac{y}{x}\right)\right) d x-3 x \cosh \left(\frac{y}{x}\right) d y=0$.

Question 11. Solve the following differential equations:

1) $(y-2) d x-(x-y-1) d y=0$.
2) $(x-4 y-9) d x+(4 x+y-2) d y=0$.
3) $(x+y-1) d x+(2 x+2 y+1) d y=0$.

Question 12. Solve the following differential equations:

1) $(\cos x \cos y-\cot x) d x-\sin x \sin y d y=0$.
2) $2 x y d x+\left(x^{2}+1\right) d y=0$.
3) $\frac{d y}{d x}=-\frac{3 x^{2}+4 x y}{2 x^{2}+2 y}$.
4) $y^{\prime}=\left(x y^{2}-1\right) /\left(1-x^{2} y\right)$.

Question 13. Solve the following differential equations (Find the general solution of the following):

1) $y \frac{d x}{d y}+2 x=y^{3}$.
2) $x \frac{d y}{d x}+y=x$.
3) $y^{\prime}+\tan (x) y=\cos ^{2}(x)$, over the interval $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
4) $3 x y^{\prime}-y=\ln (x)+1, x>0$ satisfying $y(1)=-2$.

Question 14. Solve the following differential equations:

1) $y\left(6 y^{2}-x-1\right) d x+2 x d y=0$.
2) $\frac{d y}{d x}+y=(x y)^{2}$.
3) $x y-\frac{d y}{d x}=y^{3} e^{-x^{3}}$.

Question 15. Solve the following differential equations:

1) $\frac{d y}{d x}=-\frac{x^{2}+2 x y+y^{2}}{1+(x+y)^{2}}$.
2) $\frac{d y}{d x}-(3 x-2 y)^{3}=0$.

Question 16. Formulate the following and solve them:

1) The slope at any point (x, y) of a curve is $\frac{y}{x}$ and it passes through the point $(2,3)$. Find the equation of the curve.
2) During a chemical reaction, substance A is converted into substance B at a rate that is proportional to the square of the amount of A. When 60 grams of A are present, and after 1 hour only 10 grams of A remain unconverted. How much of A is present after 2 hours?
3) Suppose that a petri dish initially contains 3000 bacteria and that 12 minutes later there are 3500 bacteria.
a) Find a formula for the bacteria population t hours (not minutes) after the initial measurement.
b) Predict the bacteria population in 4 hours.
4) Let $N(t)$ be the number of people at time t. Assume that the land is intrinsically capable of supporting L people and that the rate of increase is proportional to both N and $L-N$.

Question 17. Solve the following differential equations. 1) $\left(x^{3}+x^{2}+\right.$ $x+1) p^{2}-\left(3 x^{2}+2 x+1\right) y p+2 x y^{2}=0$.
2) $y+x \frac{d y}{d x}-x^{4}\left(\frac{d y}{d x}\right)^{2}=0$.
3) $y=y^{2}\left(y^{\prime}\right)^{3}+2 y^{\prime} x$.

Question 18. Can you give an example that two function are linearly independent even that their Wronskian is zero?

Question 19. Solve the following differential equation:

1) $y^{\prime \prime}+y=0$.
2) $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
3) $y^{\prime \prime}-7 y^{\prime}=0$.
4) $y^{\prime \prime}-2 \sqrt{2} y^{\prime}+2 y=0$.
5) $4 y^{\prime \prime}+4 y^{\prime}+y=0$.

Question 20. Solve the following differential equations:

1) $y^{(6)}-y^{(5)}+2 y^{(4)}-2 y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}=0$.
2) $\left(D^{3}+1\right) y=0$.
3) $\left(D^{3}+2 D^{2}-5 D-6\right) y=0$.
4) $\left(D^{4}+4 D\right) y=0$.
5) $\left(D^{5}-5 D^{4}+12 D^{3}-16 D^{2}+12 D-4\right) y=0$.
6) $y^{(5)}-y^{(4)}+4 y^{\prime}-4 y=0$.

Question 21.

$$
\left(D^{3}+a D^{2}+b D+c\right) y=0,
$$

where a, b and c are constants, has a solution

$$
y=C_{1} e^{-x}+e^{-2 x}\left(C_{2} \sin 4 x+C_{3} \cos 4 x\right)
$$

Determine the values of a, b and c.

Question 22. Solve the following differential equations:

1) $\left(2 D^{2}+2 D+3\right) y=x^{2}+2 x-1$.
2) $\left(D^{3}-2 D+4\right) y=x^{4}+3 x^{2}-5 x+2$.

Question 23. Solve $\left(D^{2}-2 D+2\right) y=e^{x} \sin x$.

Question 24. Solve the following nonhonogeneous equations:

1) $y^{\prime \prime}-3 y^{\prime}+2 y=\frac{e^{3 x}}{e^{x}+1}$.
2) $y^{\prime \prime}+2 y^{\prime}+y=e^{-x} \ln x$.

Question 25. Solve the following differential equations:

1) $\left(x^{2} D^{2}-x D+4\right) y=\cos \ln x+x \sin \ln x$.
2) $\left[(3 x+2)^{2} D^{2}+3(3 x+2) D-36\right] y=3 x^{2}+4 x+1$.

Question 26. Solve the following differential equations:

1) $y^{\prime \prime}-2 x y^{\prime}+\left(x^{2}+2\right) y=e^{\frac{1}{2}\left(x^{2}+2 x\right)}$.
2) $(1+x)^{2} y^{\prime \prime}+(x+1)(x-2) y^{\prime}+(2-x) y=0$.

Question 27. Use Laplace transforms method to solve the following.

1. Solve

$$
y^{\prime \prime}+y=4 t e^{t},
$$

subject to the initial condition $y(0)=-2$ and $y^{\prime}(0)=0$.
2. Solve the initial value problem

$$
x^{\prime \prime}-x^{\prime}-6 x=0 ; \quad x(0)=2, \quad x^{\prime}(0)=-1 .
$$

3. Solve the initial value problem

$$
y^{\prime \prime}+4 y=\sin 3 t ; \quad y(0)=y^{\prime}(0)=0 .
$$

