
University of Salahaddin  /  Collage of Basic Education                                                    

Department of General Science:  

Second:  stage   

Experiments: Electric and magnetism  

Second Course: 2023-2024  

                   Prepared by Dr Abbas H  Rostam 

 



 

 Verification of Ohm’s law for a constantan wire and a brass wire.

 Verification of Ohm’s law for constantan wires of various lengths.

 Verification of Ohm’s law for constantan wires of various thickness.

Fig. 1: Experiment set-up 

BASIC PRINCIPLES 

Georg Simon Ohm was the first in 1825 to show that the 
current flowing through a simple conductor is propor-
tional to the voltage applied. 

This means that Ohm’s law applies: 

(1) U R I 

The constant of proportionality R is the resistance of the con-
ductor. For a metal wire of length x and cross-sectional area 
A, the resistance R is given by the following formula: 

(2) 
x

R
A

   . 

The specific resistivity ρ depends on the material of which the 
wire is made. 

In order to verify this fundamental relationship, an experiment 
is to be carried out to investigate the proportionality between 

current and voltage for metal wires of varying thickness, 
length and material. The resistivity will also be determined 
and compared with values quoted in literature. 

LIST OF EQUIPMENT 

1 Resistance Apparatus 1009949 (U8492030) 

1 DC Power Supply 0-20 V, 0-5 A 
@230 V 1003312 (U33020-230) 

or 
DC Power Supply0-20 V, 0-5 A1
@115 V 1003311 (U33020-115) 

2 Analogue Multimeter AM50 1003073 (U17450) 

Set of 15 Safety Experiment1
Leads, 75 cm 1002843 (U138021)

Ohm’s Law (1)

VERIFICATION OF OHM’S LAW.

(1)



SET-UP AND PROCEDURE 

 Set up the equipment as shown in Fig. 1. Connect the
“+/–” sockets of the power supply to the sockets at the
ends of the wires to be measured. Connect a multimeter
between them to measure the current. The other multime-
ter should be connected in parallel with the sockets at the
ends of the wire being measured in order to measure the
voltage.

All the wires are of length x = 1 m. 

 For measurements using wires made of various materi-
als, connect the fourth wire from the top (constantan,
d = 0.5 mm) or the sixth wire from the top (brass,
d = 0.5 mm) as described above.

 For measurements with wires of length x = 1 m, connect
the second (or third) wire from the top (constantan,
d = 0.7 mm) as described above. For measurements with
wires of length x = 2 m, first connect the “–” socket of the
power supply to the left-hand end of the second wire from
the top. Then connect the socket at the right-hand end of
the second wire from the top to the socket at the left hand
end of the third wire from the top. Finally, connect the
socket at the right-hand end of the third wire from the top
(via the ammeter) to the “+” socket of the power supply.
This series connection of the two constantan wires of the
same thickness d = 0.7 mm and length x = 1 m is equiva-
lent to a single wire of thickness d = 0.7 mm which is
double the length, x = 2 m.

 For measurements on wires of different thickness, con-
nect the first, second (or third), fourth and fifth wires from
the top (constantan with d = 1, 0.7, 0.5, 0.35 mm) as de-
scribed above.

 For all three sets of measurements, set the voltage in
suitable steps and measure the current until the maxi-
mum permissible current level is reached (2 A for con-
stantan with d = 1 mm or 0.7 mm, 1.5 A for constantan
with d = 0.,5 mm, 1 A for constantan with d = 0.35 mm
and 2.5 A for brass with d = 0.5 mm). Make a note of all
the values (Tables 1 – 3).

SAMPLE MEASUREMENT 

Wires of differing materials 

Table 1: Measurements for a constantan wire and a brass 
wire of length x = 1 m and thickness d = 0.5 mm. 

Constantan Brass 

U / V I / A U / V I / A 

Wires of differing length 

Table 2: Measurements for constantan wires of differing 
lengths x but constant thickness d = 0.7 mm. 

x = 1 m x = 2 m 

U / V I / A U / V I / A 

Wires of differing thickness 

The cross-sectional area A is calculated from the thickness of 
the wire d as follows: 

(3) 2

4
A d


 

Table 3: Measurements for constantan wires of differing 
thickness d and cross-sectional area A, all of length 
x = 1 m. 

d = 1 mm 

A =  0.79 mm² 

d = 0.7 mm 

A =  0.38 mm² 

d = 0.5 mm 

A =  0.2 mm² 

d = 0.35 mm 

A =  0.1 mm² 

U / V I / A U / V I / A U / V I / A U / V I / A 

EVALUATION 

 For each of the various parameters, ρ, x and d, plot the
measurements in a graph of U against I (Figs. 2, 3, 5).

 In each case, match straight lines to the measured values
U(I). The ohmic resistance R can then be found in each
case by using Equation (1) (Tables 4, 6, 7).

 In the case of measuring wires made of different materi-

als (2), calculate the resistivity  from the known values of
length x and thickness d (Table 5).

 In the case of measuring wires of different lengths and
thicknesses/cross-sections, plot the values of the re-
sistance against the lengths x or the inverse of the cross-
sectional area A, draw a straight line through the points
(Figs. 4, 6). The gradient of the line can be used to calcu-

late the resistivity  from the known values of thickness d
and length x, as shown in Equation (2).

(2)



Wires of differing materials 
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Fig. 2: Graph of U against I for constantan wire (blue) and 
brass wire (red), length x = 1 m and thickness 
d = 0.5 mm. 

Table 4: Ohmic resistance of a constantan wire and a brass 
wire of length x = 1 m and thickness d = 0.5 mm de-
termined from the gradient of the straight lines 
through the points in Fig. 2. 

Material R /  

Constantan 

Brass 

From (2) the following is true: 

(4) 
x A

R R
A x

      . 

Table 5: Resistivity  of constantan and brass as determined 
from (4) and compared with values quoted in litera-
ture. 

Material 
 / (·mm2·m-1)

Measurement Literature 

Constantan 

Brass 

The values determined by measurement are well in agree-
ment with those quoted in literature. 

Wires of differing length 
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Fig. 3: Graph of U against I for constantan wires of various 
lengths x and thickness d = 0.7 mm. 

Table 6: Ohmic resistance of constantan wires of differing 
length x but constant thickness d = 0.7 mm deter-
mined from the gradient of the straight lines through 
the points in Fig. 3. 

x / m R /  
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Fig. 4: Resistance R as a function of length x. 

(3)



 Determine the resistivity  from the gradient a of a
straight line through the measurement points R(x):

(5) 
x

R x a x
A A


      where a

A




(6) 
2

2

a
A

a A


 



The value determined by measurement is well in agreement 
with the value for constantan quoted in tables, 

 = 0.49 ·mm2·m-1.

Wires of differing thickness 

0 1 2
0

1

2

3

4

5

I / A

U / V

Fig. 5: Graph of U against I for constantan wires of various 
thickness d and length x = 1 m 

Table 7: Ohmic resistance of constantan wires of various 
thicknesses d and cross section A but the same 
length x = 1 m, as determined from the gradient of 
the straight lines through the points in Fig. 5. 

d / mm A / mm² R /  
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Fig. 6: Resistance R as a function of the inverse of the cross-
sectional area A 

 Determine the resistivity  from the gradient b of a
straight line through the measurement points R(1/A):

(7) 
1 1x

R x b
A A A

        where b x 

(8) 
2 2b

b x
x

     

The value determined by measurement is well in agreement 
with the value for constantan quoted in tables, 

 = 0.49 ·mm2·m-1.

http://www.3bscientific.com/


› OBJECTIVE
Determine the electrical conductivity of copper and aluminum

EXPERIMENT PROCEDURE

• �Measure voltage drop U as a function 
of distance d between contact points 
at a constant current I.

• �Measure voltage drop U as a function 
of current I for a fixed distance d 
between contact points.

• �Determine the electrical conductivity 
of copper and aluminum and make 
a comparison with values quoted in 
literature.

SUMMARY
Electrical conductivity of a material is highly dependent on the nature of the material. It is 
defined as the constant of proportionality between the current density and the electric field in 
the material under investigation. In this experiment, four-terminal sensing is used to measure 
current and voltage in metal bars of known cross section and length.

Quantity Description Item Number

1 Heat Conducting Rod Al 1017331

1 Heat Conducting Rod Cu 1017330

1 DC Power Supply 1 - 32 V, 0-20 A (230 V, 50/60 Hz) 1012857 or

DC Power Supply 0 - 40 V, 0-40 A (115 V, 50/60 Hz) 1022289

1 Measurement Amplifier U (230 V, 50/60 Hz) 1020742 or

Measurement Amplifier U (115 V, 50/60 Hz) 1020744

2 Digital Multimeter E 1018832

1 Set of 15 Experiment Leads, 75 cm, 2.5 mm² 1002841

REQUIRED APPARATUS

  ELECTRICAL CONDUCTORS (2)



 

 Measure voltage drop U as a function of distance d between contact points at a constant current I.

 Measure voltage drop U as a function of current I for a fixed distance d between contact points.

 Determine the electrical conductivity of copper and aluminium and make a comparison with values quoted in litera-
ture.

Fig. 1: Experiment set-up 

GENERAL PRINCIPLES

Electrical conductivity of a material is highly dependent 
on the nature of the material. It is defined as the constant 
of proportionality between the current density and the 
electric field in the respective material. In metals it is 
determined by the number density and mobility of elec-
trons in the conduction band and is also dependent on 
temperature. 

For a long metal conductor of cross-sectional area A and 
length d, a relationship between current I through the conduc-
tor and the voltage U which drops over a distance d along it 
can be deduced from the following formula: 

(1) j E

j: current density, E: electric field 

That relationship is as follows: 

(2) 
U

I j A A
d

   

In the experiment, this relationship is used to determine the 
conductivity of metal bars using four-terminal sensing (Fig. 2). 
This involves feeding in a current I through two wires and 
measuring the drop in voltage U between two contact loca-

tions separated by a distance d. Since the area of the cross 
section A is known, it is possible to calculate the conductivity 

. 

Fig. 2: Schematic of four-terminal sensing measurement 

I

U

d
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Electrical Conductors (2)

DETERMINE THE ELECTRICAL CONDUCTIVITY OF COPPER AND ALUMINIUM

(6)



LIST OF EQUIPMENT 

1017331 (U8498292)1 Heat Conducting Rod Al

1017330 (U8498291)1 Heat Conducting Rod Cu

1 DC Power Supply 
1 - 32 V, 0 – 1012857 (U11827-20 A @230V 230) 

or 
1 DC Power Supply 

1 – 32 V, 0 – 1012858 (U11827-20 A @115V 115) 

1001016 (U8530501-230)1 Microvoltmeter @230V
or 

1001015 (U8530501-115)1 Microvoltmeter @115V

1006809 (U8531050)1 Digital Multimeter E

1 Set of 15 Experiment Leads 
2.5 mm² 1002841 (U13801) 

SET-UP 

 Put the copper or aluminium heat conducting rod on an
insulated surface.

 Connect the “” output socket on the back of the power
supply to the hole in the side of the conducting rod level
with the second measuring point (Fig. 2). Connect the “+”
output socket on the back of the power supply to the hole
in the side of the conducting rod level with the twelfth
measuring point. Connect the digital multimeter in series
between them for the purpose of measuring voltage.

 Short the input to the microvoltmeter and calibrate the
display to 0 with the help of the DC offset knob. Check
the zero calibration regularly in the course of your meas-
urements.

 Connect two measuring probes to the 4-mm safety sock-
ets of the microvoltmeter.

 Set the upper limit of the frequency on the microvoltmeter
to “OFF” by means of the “Filter Hz“ knob and select a

measuring of up to 200 V DC.

EXPERIMENT PROCEDURE 

Notes: 

Take care not to exceed the maximum current capacity of the 
power supply, 20 A. 

Thermo-electric voltages at the measurement points could 
restrict the accuracy of the measurements. 

The relative distance between adjacent measurement points 
is dN+1 – dN = 4 cm, i.e. dN+k – dN = k · 4 cm. 

Dependence on distance 

 Set up the power supply such that a current I of about
10 A flows through the conduction rod. Read off the value
from the multimeter and write it down.

 Make contact between the measuring probe connected to
the ground socket of the microvoltmeter and the second
measurement point (N = 2).

 Use the other probe to make contact with the third to
twelfth measurement points in sequence, read off the
voltage U for each one and enter the results into Table 1.

Dependence on current 

 Use the power supply to increase the current from 1 A to
10 A in steps of 1 A. Read off the current values for each
step from the multimeter and enter them into Table 2.

 At each step, measure the voltage between the 2nd and
12th measurement points (d = 40 cm) with the measuring
probes (take care with the polarity). Read off the values
from the microvoltmeter and enter them into Table 2.

SAMPLE MEASUREMENT 

Table 1: Voltages measured as a function of the distance 
between measurement points, I = 9.92 A (copper) 
and 9.90 A (aluminium). 

N d = dN – d2 U / V 

Copper Aluminium 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Table 2: Voltage measured as a function of current, 
d = 40 cm. 

Copper Aluminium 

I / A U / V I / A U / V 

9,91 

(7)



Fig. 3: Plot of U against d for copper and aluminium 

EVALUATION 

Dependence on distance 

 Plot the voltages U measured as a function of distance d

(Tab. 1) for the copper and aluminium rods on one graph
(Fig. 3) and fit a straight line through the origin to each
set of points.

NOTE: 

Contact voltages between the measurement probes and the 
metal bar may become apparent by causing the straight lines 
to be shifted away from the origin.  

According to equation (2), the following is true 

(3) 
I

A
 


. 

Since I and A are known, it is possible to calculate the con-
ductivity: 

(4) 

2

2

(Cu)

(Al)

I

A

 
 

 
 

    
  

 
 
 

Dependence on current 

 Plot the voltages U (Tab. 2) measured as a function of
current I for the copper and aluminium rods on one graph
(Fig. 4) and fit a straight line through the origin to each
set of points.

NOTE: 

Contact voltages between the measurement probes and the 
metal bar may become apparent by causing the straight lines 
to be shifted away from the origin. 

Fig. 4: Plot of U against I for copper and aluminium 

According to equation (2), the following is true 

(5) 
d

A
 



Since d and A are known, it is possible to calculate the con-

ductivity:

(6) 

2

2

(Cu)

(Al)

d

A

 
 

 
 

    
  

 
 



The result for copper is in good agreement with the value 

stated in literature for pure copper  = 58·106 S/m. Compari-

son of the measured value for aluminium with that quoted in 

literature for pure aluminium  = 37·106 S/m indicates that the 

heat conduction rod used here is not made of pure aluminium 
but is an alloy of it. 

NOTE: 

The experiment uses the same metal bars investigated in the 
experiment on heat conduction, UE2020100. Two measure-
ment probes are used to measure the voltage drop between 
the contact points, which can also be used to measure tem-
perature along the bars. 

By comparing the measurements with the heat conductivity 
values obtained in experiment UE2020100 it is possible to 
verify the Wiedemann-Franz law. This states that thermal 

conductivity  is proportional to electrical conductivity in 
metals and the factor is a universal value temperature-
dependent coefficient L (Lorenz coefficient): 

(7)  L T T

 


. 

T: temperature 
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› OBJECTIVE
Measure the induced voltage in a conductor made into a loop as it moves through a 
magnetic field

SUMMARY
The change in magnetic flux that is needed to induce a voltage in a conductor loop can be 
caused by a movement of the loop. Such a situation results, for example, when a conductor 
loop orientated with its plane perpendicular to a homogeneous magnetic field is moved into 
the magnetic field or withdrawn from it at a constant velocity. In the first case the magnetic 
flux increases at a rate determined by the relevant parameters, whereas in the second case it 
decreases in a similar way. Therefore the induced voltages are of opposite signs.

EXPERIMENT PROCEDURE

• �Measure the induced voltage as a 
function of the velocity of the conduc-
tor loop.

• �Measure the induced voltage as a 
function of the number of turns in the 
conductor loop.

• �Compare the sign of the induced 
voltage when moving the conductor 
loop into the field or out of it.

• �Compare the sign of the induced 
voltage when the direction of motion 
is changed.

• �Measure the induced voltage in a 
conductor loop with a single turn of 
variable area.

Quantity Description Item Number

1 Induction Apparatus 1000968

1 DC Power Supply 0 – 20 V, 0 – 5 A (230 V, 50/60 Hz) 1003312 or

DC Power Supply 0 – 20 V, 0 – 5 A (115 V, 50/60 Hz) 1003311

1 Analogue Multimeter ESCOLA 100 1013527

1 Set of 15 Safety Experiment Leads, 75 cm 1002843

1 Mechanical Cumulative Stopwatch 1002810

Additionally recommended 

1 Measurement Amplifier U (230 V, 50/60 Hz) 1020742 or

Measurement Amplifier U (115 V, 50/60 Hz) 1020744
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REQUIRED APPARATUS

INDUCTION IN A MOVING CONDUCTOR LOOP (3)



REQUIRED APPARATUS

baB ⋅⋅=Φ

vaB
t

⋅⋅=
Φ

d

d

vaBU ⋅⋅− =

vaNB
t

⋅⋅⋅=
Φ

d

d 1

vaNBU ⋅⋅⋅−=1

EVALUATION
Calculate the velocity from the time t required for the conduc-
tor loop to move completely through the magnetic field and 
the corresponding distance L

Then draw a graph of the induced voltage U as a function of 
the velocity v. The data will be found to lie on a straight line 
through the origin (see Fig. 2).

t
L

v =

Fig. 1: The change of the magnetic flux through the conducting loop 
when its area is altered

Fig. 2: Induced voltage as a function of the velocity of the conducting 
loop

BASIC PRINCIPLES
The term electromagnetic induction refers to the process whereby 
an electric voltage is generated around a conductor loop when the 
magnetic flux passing through the loop is changed. Such a change 
in flux can result from a change in the magnetic field strength or 
from movement of the conductor loop.

To describe the relationships involved, a U-shaped conductor loop 
with a moveable crossbar is often considered. The plane of this loop 
is aligned perpendicular to a homogeneous magnetic field of flux 
density B (see Fig. 1). The magnetic flux through the area limited by 
the cross-bar is

(1)

a: Width, b: Length of the loop.
If the cross-bar is moved with a velocity v, the flux changes, since the 
length of the loop is changed. The rate of change of the flux is

(2)

and in the experiment it is observed as a voltage

(3)

which is in the order of microvolts but can be measured using the 
amplifier that is recommended as additional equipment.
A much greater induced voltage is obtained if a conducting loop with 
multiple turns on a rigid frame is moved through the magnetic field. 
When the frame is only partly projecting into the magnetic field, the 
situation is as shown schematically in Figure 1. The movement of the 
loop into the magnetic field results in a change of flux at the following 
rate

(4)

N: Number of turns,
and this can be measured as an induced voltage.

(5)

As soon as the conductor loop is completely in the magnetic field, the  
induced voltage returns to zero. No further change occurs until the 
loop begins to move out of the magnetic field. Now the magnetic flux 
is decreasing and the induced voltage is of opposite sign compared 
to the initial situation. A change of sign also occurs if the direction of 
motion of the loop is reversed.
In this experiment, the voltage driving an electric motor used to pull 
the conductor loop along is varied. This provides a range of different 
constant velocities. The direction of rotation of the motor can also be 
reversed. The coil provided also has an intermediate tapping point, so 
that the induced voltage can be measured for three different values 
of N, the number of turns.



 

 Measure the angle of rotation of a compass needle initially aligned parallel with the horizontal component of earth’s magnetic
field when a second horizontal magnetic field is superimposed with the help of a pair of Helmholtz coils.

 Determine the horizontal component of the earth’s magnetic field.

 Measure the inclination and vertical component and calculate the overall magnitude of the earth’s magnetic field.

Fig. 1: Measurement set-up. 

GENERAL PRINCIPLES 

The earth is surrounded by a magnetic field generated by 
a so-called geo-dynamo effect. Close to the surface of the 
earth, this field resembles that of a magnetic dipole with 
field lines emerging from the South Pole of the planet and 
circling back towards the North Pole. The angle between 
the actual magnetic field of the earth and the horizontal at 
a given point on the surface is called the inclination. The 
horizontal component of the Earth’s field roughly follows 
a line running between geographical north and south. 

Because the earth’s crust exhibits magnetism itself, there 
are localised differences which are characterised by the 
term declination. 

Magnetic Field of the Earth (4)

DETERMINE THE HORIZONTAL AND VERTICAL COMPONENTS OF THE EARTH’S MAG-
NETIC FIELD.

(11)



BHH

Bv

Bh

B




Fig. 2: Diagram of components of the magnetic fields ob-
served in the experiment and definition of the corre-
sponding angles. 

This experiment involves measuring the inclination and the 
absolute magnitude of the Earth’s magnetic field along with 
the horizontal and vertical components of it at the point where 
the measurement is made.  

The following relationships apply (Fig. 2): 

(1) v h tanB B  

: inclination 
Bh: horizontal component 
Bv: vertical component 

and 

(2) 2 2

h vB B B  . 

It is therefore sufficient to determine the values Bh and , 
since the other values can simply be calculated. 

The inclination  is determined with the aid of an dip needle. 
In order to obtain the horizontal component Bh, the dip needle 
is aligned in horizontal plane in such a way that its needle 
points to 0° when parallel to the horizontal component 0°. An 
additional horizontal magnetic field BHH, which is perpendicu-
lar to Bh, is generated by a pair of Helmholtz coils and this 

field causes the compass needle to turn by an angle  Ac-
cording to Fig. 2 the following is then true: 

(3) HH

h

tan
B

B
 

In order to improve the accuracy, this measurement is carried 

out for a variety of angles . 

LIST OF EQUIPMENT 

1 Helmholtz Coils 300 mm 1000906 (U8481500) 

1 DC Power Supply 0-20 V, 0-5 A 
@230V 1003312 (U33020-230) 

or 
DC Power Supply 0-20 V, 0-5 A1
@115V 1003311 (U33020-115) 

1 Digital Multimeter P1035 1002781 (U11806) 

1 Inclination Instrument E 1006799 (U8495258) 

1 Rheostat 100 Ω 1003066 (U17354) 

1 Set of 15 Safety Experiment 
Leads, 75 cm 1002843 (U138021) 

SET-UP AND PROCEDURE 

Note: 
Set up the experiment on a flat, horizontal surface at a loca-
tion which is not affected by any interfering magnetic fields 
from the environment.  

Determining the horizontal component Bh 

 Turn the hand wheel on the inclination instrument such
that the plane of the ring scale and the compass needle
are situated parallel to the work surface.

This ensures the compass needle is always aligned along the 
horizontal component of the Earth’s magnetic field.  

 Turn the inclination instrument at its base until the 0°-
marking of the ring scale aligns with the direction of the
compass needle.

 Shift the Helmholtz coils using the inclination instrument
such that it is positioned in the middle between the two
coils (Fig. 1) and the axis of the Helmholtz coils is orient-
ed perpendicular to the direction of the compass needle.

 Connect the Helmholtz coils, the digital multimeter and
the rheostat in series to the power supply unit (Fig. 1).

 Set the rheostat to 100 .

 Switch on the DC power supply and increase the current
by raising the voltage with the fine adjustment controller
of the DC voltage until the direction pointed to by the
compass needle aligns with the 5° marking of the ring

scale. Enter the deflection angle  = 5° into Tab. 1. Take
the current reading on the multimeter and enter this value
into Tab. 1 as well.

 Gradually increase the current incrementally until the

deflection angle goes up to  = 75° in 5° steps. Enter
each deflection angle and current value into Table 1. If fi-
ne adjustment controller for DC voltage reaches limit
stop, continue to increase the current by reducing the re-
sistance on the rheostat.

Determining inclination  

 Turn the hand wheel on the inclination instrument such
that the plane of the ring scale and the compass needle
are parallel to the work surface.

This ensures the compass needle is always aligned along the 
horizontal component of the Earth’s magnetic field.  

 Turn the inclination instrument at its base until the 0°-
marking of the ring scale aligns with the direction of the
compass needle.

 Turn the hand wheel on the inclination instrument so that
the plane of the ring scale and the compass needle are
perpendicular to the work surface.

 Wait unit the compass needle is steady.

 Take a reading of the inclination angle 1 on the ring
scale of the inclination instrument and enter the value into
Tab. 2.

 Turn the inclination instrument by 180 ° by turning the
hand wheel.

 Wait until the compass needle is steady.

 Take a reading of the inclination angle 2 on the ring
scale of the inclination instrument and enter it into Tab. 2.

(12)



SAMPLE MEASUREMENT AND EVALUA-
TION 

Tab. 1: Deflection angle , set currents I and calculated mag-
netic fields BHH of the Helmholtz coils in accordance 
with Equation (5). 

 I / mA BHH / T 

5° 

10° 

15° 

20° 

25° 

30° 

35° 

40° 

45° 

50° 

55° 

60° 

65° 

70° 

75° 

Tab. 2: Determine the inclination based on the average 

value of the two measured values 1 and 2. 

1 2 
1 2

2

 
 

Determining the horizontal component Bh 

From equation (3) the following can be deduced: 

(4) HH h tanB B  

The horizontal component Bh is therefore equivalent to the 
gradient of a line through points plotted on a graph of BHH 

against tan. 

The magnetic field of the Helmholtz coils BHH can be deter-
mined easily. Inside the pair of coils it is highly uniform and is 
proportional to the current I through either of the coils: 

(5) HHB k I  where 

3

2
74 Vs

4 10
5 Am

N
k

R

 
    
 

N = 124: number of windings 
R = 147.5 mm: radius 

 Compute the magnetic field BHH of the Helmholtz coil
pairs for all set currents I (Tab. 1) in accordance with
Equation (5) and enter the results in Tab. 1.

0 1 2 3 4 5

0

50

100

tan 

BHH / T

Fig. 3: BHH – tan - Graph to determine the horizontal compo-
nent of the earth’s magnetic field. 

 Plot the magnetic filed BHH versus tan in a graph and fit
a straight line (Fig. 2).

 Deduce the horizontal component Bh directly from the
slope of the line.

(6) h 23 TB  

Determining the vertical component Bv from the inclina-

tion  

 Determine the inclination  from the average value of the

two measured values 1 and 2 (Tab. 2) and enter the re-
sults into Tab. 2.

 Use Equation (1) to determine the vertical component.

(7) v h=B B  ⋅tan  =

Determine the overall magnetic field 

 Determine the overall magnitude of the Earth’s magnetic
field B with the aid of Equation (2).

(8)  B   

The values for the horizontal and vertical components deter-
mined from the measurement are in very good agreement 
with the values found in the literature for Central Europe 

Bh = 20 T and Bv = 44 T. 

http://www.3bscientific.com/


 Measure the open-circuit voltage as a function of the primary voltage for fixed numbers of windings.

 Measure the open-circuit voltage as a function of the primary voltage for fixed numbers of windings.

Fig. 1: Set-up for measuring open-circuit voltage as a function of primary voltage. 

BASIC PRINCIPLES

Transformers are devices based on Faraday's law of in-
duction which are used for converting voltages. One 
major use is for the transmission of electrical power over 
large distances, whereby power losses can be minimised 
by converting the voltage up to the highest possible lev-
els thus reducing the current to a minimum. 

The simplest form of transformer consists of two coils coupled 
together, a primary coil with N1 winding turns and a secondary 
coil with N2 winding turns, both of which are wound around a 
common iron core. The following treatment considers an ide-
al, i.e. loss-free, transformer. 

As long as there is no load on the transformer, no current can 
flow in the secondary circuit, i.e. I2 = 0. If an alternating volt-
age U1 is applied to the primary coil, it will act purely as an 

inductive resistance because, in the case of an ideal coil, the 
normal, ohmic resistance can be neglected. Then a current of 
I will flow in the primary circuit and will generate a magnetic 

flux  Fig. 2), thereby inducing a voltage of Uind. This induced 
voltage is equal and opposite to U1 due to Kirchhoff's second 
(voltage) law, U1 + Uind = 0: 

(1) ind 1 1 1

d d

d d

I
U L N U

t t


        . 

L1: inductance of primary coil  

: magnetic flux generated by I 

Transformers (5)

MAKE MEASUREMENTS ON A TRANSFORMER WITH AND WITHOUT LOAD

(14)



Fig. 2: Schematic of ideal transformer under no load with 
primary and secondary coils wound in the same direc-
tion. 

The current I corresponds to a purely reactive current since 
the voltage and current across an inductive resistance are 

phase-shifted by  = 90° with respect to one another (current 
lags the voltage by 90°). 

Since the magnetic flux  would have a full effect on the sec-
ondary coil under ideal conditions, the following voltage would 
be induced in it: 

(2) 2 2

d

d
U N

t


   . 

From equations (1) and (2) the following relationship between 
the voltage and winding ratios can be deduced: 

(3) 2 2

1 1

U N

U N
  . 

The negative sign indicates that U1 and U2 would be phase-

shifted by 180° if the windings are wound in the same direc-
tion (Fig. 2). If they were wound in opposing directions, U1 and 
U2 would be in phase.  

When there is a load on the transformer, the current flowing in 
the secondary coil will be I2 = U2 / RL, where RL is the ohmic 

resistance, e.g. of a consumer or appliance (Fig. 3). This 
secondary current is purely active since, in the case of an 
ohmic resistance, the voltage and current will be in phase 

(2 = 0°). In this situation, a magnetic flux is generated which, 
in the ideal case, takes full effect on the primary coil and, as 

predicted by Lenz's law, opposes the magnetic flux  gener-
ated in the primary coil by the current I. The magnitude of this 
secondary flux is as follows  

(4) 2 0 r 2 2

A
N I      

l
, 

0: Magnetic permeability of free space 

r: Relative permeability 

ACross-sectional area of coil  

: Length of coil

Fig. 3: Schematic of ideal transformer under load with primary 
and secondary coils wound in the same direction. 

Thus the primary reactive current I has an active current I1 

superimposed on it which is in phase with the primary voltage 

(1 = 0°) and which generates the following additional mag-
netic flux  

(5) 1 0 r 1 1

A
N I      

l

Since the magnetic flux  remains the same, the magnetic 

fluxes 1 and 2 must cancel out, i.e. 1 + 2 = 0. Thus, from 
equations (4) and (5) we may deduce the following: 

(6) 2 1

1 2

I N

I N
  . 

This is because r, A and  are the same for both coils. From 

equations (3) and (6) it may be concluded that the active 
power generated in the primary and secondary coils must be 
equal: 

(7) 1 1 1 2 2 2P U I U I P     . 

Equation (3) also applies in the case of ideal transformers 
under load. By looking at the impedance values, we may 
conclude that the voltage ratio in the case of an ideal trans-
former is independent of the resistance value of the ohmic 
load.  

For a transformer under load, though, two limiting conditions 

emerge. In the limiting case where RL   (I2 = 0) the sec-

ondary side of the transformer is effectively open. Equation 
(3) is then applicable for determining the open-circuit voltage
U20. In the other limiting case where RL = 0 (U2 = 0), the sec-
ondary side of the transformer is shorted out and equation (6)
applies for the short-circuit current I2C.

In this experiment, measurements are to be made of the 
open-circuit voltage U20 as a function of the primary current U1 
and of the short-circuit current I2C as a function of the primary 
current I1 when there is a fixed ratio between the number of 
windings N2 / N1 = 2.  

N1

L1

N2

L2

U1

I

U2



N1

L1

1 = - 2

N2

L2

U1

I2I1

U2RL

I


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