Ministry of Higher Education and Scientific research

Department of General Science

College of Basic education

University of Salahaddin

Subject: Semiconductrior

Course Book second (Year 2)

Lecturer's name: Dr Abbas Hussein Rostam

Academic Year: 2023/2024

16. Course Reading List and References:

- 1- Key references:
- 2- introduction to solid state physics (Charles kittel)
- 3- Elementary solid state physics principle and application (M.A Omer)
- 4- Solid state physics
- 5- Electronic circuit analysis and design (Donald A-Neamens)

Ministry of Higher Education and Scientific research

- 6- Semiconductor of devices fundamentals (Robert F.pierrel)
- 7- Principle of semiconductor Devices (B Van zeghloroeck
- 1- Useful references:
- 2- Electronic circuit analysis and design (Donald A-Neamens
- 3- Electronic Devices (Thomas L-Floyed
- 4- Principle of semiconductor Devices (B Van zeghloroeck)
- Magazines and review (internet): some web side in internet

17. The Topics:

17. The Topics:	
Chapter one	
	r
$(1^{st}, 2^{nd}, 3^{rd})$ <u>Weeks</u>	e
introduction :review on semiconductor historical and development industrial	
1-1 Classification of solid by electrical conduction	
1-2 Types of material	
1-3 (solid, Liquid, gas and plasma)	
1-4 Types of solid state by electrical conduction	
1-5 Properties of these four types	
1-6 Bonds of materials	
1-7 Primary bonds (covalent bond, ionic bond and metallic bomnd)	
1-8 Secondary bond	
1-9 Atomic hydrogen	
1-10 Electron in atom	
1-11-Radius, wavelength, orbital velocity and energy of electron in atoms	
1-12 Electronic shells and orbital	
Chapter two	
$(4^{th}, 5^{th} and 6^{th})$ <u>Weeks</u>	
2-1 Development of semiconductor field Semiconductor	
2 - 2 - Type of Semiconductors according to their structure	
2-3 Formation of bands in solid	
2-4- Band theory and Formation allowed and forbidden band	
2-5 - Band theory and Formation allowed and forbidden band	

2-6- Two Types of Current Carrier in Semiconductors

- 2-7 Semiconductor energy bands at room temperature
- 2-8 Temperature dependence of the energy bandgap
- 2-9 resistivity verse temperature and conductivity
- 2-10 –Semiconductors and its properties
- 2—11- insulators and conductors with their properties

<u>Chapter</u> three

- $(7^{th}, 8^{th} and 9^{th})$ Weeks
- 3-1: Distribution function of Distribution of Carries among band energy
- 3-2: Pauli Exclusion Principle
- 3-3: Bose_Einstein distribution function
- **3-4: Fermi-Dirac distribution function**
- 3-5: Fermions and boson
- 3-6: Fermi energy
- 3-7: The Fermi probability function versus energy for different temperatures
- 3-8 : Applications of Fermi Energy
- **3-9:** Type of semiconductor
- 3-10: Equilibrium distribution of electrons and holes
- 3-11: Extrinsic Semiconductors (N-Type and P-Type semiconductors
- 3-12: Carrier transport phenomena
- 3-13: Carrier drift
- **3-14:** Drift current density
- **3-15:** Conductivity and resisti
- **3-16: Diffusion current densit**

<u>Chapter four</u>

 $(10^{th}, and 11^{th})$ Weeks

Ministry of Higher Education and Scientific research 4 -1 OPTICAL PROPERTIES: ABSORPTION PROC	CESSES
4-2-The fundamental absorption process	
4-3 The absorption process (direct-gap semicond	luctors
4-4 Direct and Indirect Semiconductors	
4-5 -Exciton absorption	
4-5 Free-carrier absorption	
4-6 Absorption processes involving impurities	
Chapter Five (12^h and $13 6^{th}$) Weeks	
5-1: Types of defects in solid state	e
5-2: Imperfections in crystal structures	
5-3: There are some types of crystal defect	
5-4: point defects	
5-5: A Frenkel defect and Schottky defect	
5-6: Line defect	
5-7: surface defect	
18. Practical Topics (If there is any)	
Semiconductor physics don't have practice	
Kurdistan Regional Government Iraq	Module : Semiconductor
Ministry of Higher Education & Scientific Resea	rch Stage : second
Salahaddin University –Erbil College of Basic Education	Round: first Time : 2 hours
Department : General Science	

Exams (2023-2024)

second semester

Q4	A- Draw Native point defects		(6+6+6) Marks		
	. B- Explain each addition of energy	create	a change in state of matter.		
	CCalculate the energy of electron atom is 33.92 A^0 .	n when th	ne orbital radius of electron in hydrogen		
	Best wishes	Lecture	Instructor : Dr Abbas H Rostam		
	Signature				
	Date: 4-5-2024				
21. Pee	r review		پێداچوونەوەى ھاوەڵ		
This course book has to be reviewed and signed by a peer.					
The peer approves the contents of your course book by writing					
few sentences in this section.					
(A peer is person who has enough knowledge about the subject					
you are teaching, he/she has to be a professor, assistant professor,					
a lecturer or an expert in the field of your subject)					
you are teaching, he/she has to be a professor, assistant professor, a lecturer or an expert in the field of your subject).					