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Chapter Two Oscillatory Motion

Oscillations and Mechanical Wave



Periodic Motion
any kinds of motion repeat themselves over and over: the vibration of a quartz crystal in a watch, and the back-and-forth

motion of the pistons in a car engine. This kind of motion, called periodic motion or oscillation,

amplitude, Period, Frequency, and angular Frequency
The amplitude of the motion, denoted by A, is the maximum magnitude of displacement from equilibrium—that is, the maximum

value of 𝒙 . It is always positive.

The period, T, is the time to complete one cycle. It is always positive. The SI unit is the second, but it is sometimes expressed as

“seconds per cycle.”

The frequency, f, is the number of cycles in a unit of time. It is always positive. The SI unit of frequency is the hert:

The angular frequency, 𝝎 𝒊𝒔 𝟐𝝅 times the frequency:

By definition, period and frequency are reciprocals of each other:

Example :1



Simple Harmonic motion

The simplest kind of oscillation occurs when the restoring force 𝑭𝑿 is directly proportional to the displacement

from equilibrium x. This happens if the spring in this figure is an ideal one that obeys Hooke’s law. The

constant of proportionality between 𝑭𝑿 and 𝑿 is the force constant k. On either side of the equilibrium

position, 𝑭𝑿 and 𝑿 is always have opposite signs. The force acting on a stretched ideal spring as 𝑭𝑿 = −𝒌𝑿 .

The x-component of force the spring exerts on the body is the negative of this, so

When the restoring force is directly proportional to the displacement from equilibrium, Applying newton’s second law of motion

𝑭𝒙 = 𝒎𝒂𝒙 ⇛ 𝒂𝒙 =
𝑭𝒙

𝒎
the oscillation is called simple harmonic motion (SHM). The acceleration 𝒂𝒙 =

𝒅𝟐𝒙

𝒅𝒕𝟐
=

𝑭𝒙

𝒎
,

of a body in SHM is

This equation gives the correct magnitude and sign of the force, whether x is positive, negative, or zero. The force

constant k is always positive and has units of
𝑵

𝒎
(a u. We are assuming that there is no friction.

𝒂𝒙 =
𝑭𝒙
𝒎

=
𝒌𝒙

𝒎

The minus sign means that, in SHM, the acceleration and displacement always have opposite signs. This acceleration is not constant,

Why is simple harmonic motion important? Not all periodic motions are simple harmonic; in periodic motion in general



Displacement, velocity, and acceleration in SHM

We still need to find the displacement x as a function of time for a harmonic Oscillator. Equation

Velocity of SHM  𝑣 =
𝑑𝑥

𝑑𝑡

Acceleration  of SHM 

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2
t

if 𝝎 = 𝟐𝝅𝒇 =
𝟐𝝅

𝑻
Substitute the value of angular frequency in the equation displacement , velocity and acceleration of SHM we get

𝑣 = 𝜆𝑓 =
𝜆

𝑇
=
𝜆

𝑇

2𝜋

2𝜋
=
2𝜋

𝑇

𝜆

2𝜋
=
𝜔

Κ
Where 𝜥 =

𝟐𝝅

𝝀

1

𝜥
=

𝜆

2𝜋
𝒗 = 𝝀𝒇 =

𝝎

𝜥

𝝎 =
𝟐𝝅

𝑻

Displacement of SHM      𝑥 = 𝐴𝑐𝑜𝑠 𝜔𝑡 + ∅ = 𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡 + ∅

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑆𝐻𝑀 𝑣 = −𝐴𝜔𝑠𝑖𝑛 𝜔𝑡 + ∅ = −𝐴𝜔𝑠𝑖𝑛
2𝜋

𝑇
𝑡 + ∅ Acceleration 𝑜𝑓 𝑆𝐻𝑀 𝑎 = −𝐴𝜔2 𝜔𝑡 + ∅ = −𝐴𝜔2𝑐𝑜𝑠

2𝜋

𝑇
𝑡 + ∅

Example determine : Displacement , 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 and Acceleration of SHM  at  𝑡 = 0

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑥 = 𝐴𝑐𝑜𝑠𝜔𝑡 = 𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇
0 = 𝐴𝑐𝑜𝑠 0 = 𝐴 × 1 = 𝐴

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑆𝐻𝑀 𝑣 = −𝐴𝜔𝑠𝑖𝑛
2𝜋

𝑇
𝑡 = −𝐴𝜔𝑠𝑖𝑛

2𝜋

𝑇
0 = 𝐴𝜔𝑠𝑖𝑛 0 = 𝐴𝜔 × 0 = 0

Acceleration 𝑜𝑓 𝑆𝐻𝑀 𝑎 = −𝐴𝜔2𝑐𝑜𝑠
2𝜋

𝑇
𝑡 = 𝑎 = −𝐴𝜔2𝑐𝑜𝑠

2𝜋

𝑇
0 = −𝐴𝜔2𝑐𝑜𝑠 0 = −𝐴𝜔2𝑐𝑜𝑠 0 = −𝐴𝜔2 × 1 = −𝐴𝜔2



Graphic diagram for displacement, velocity, and acceleration in SHM in periodic cycle.

𝑣 =
𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
𝐴cos 𝜔𝑡 + 𝜙 = −𝜔𝐴𝑠𝑖𝑛 𝜔𝑡 + 𝜙

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡
−𝜔𝐴𝑠𝑖𝑛 𝜔𝑡 + 𝜙 = −𝜔2𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜙

𝑎 = −𝜔2𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜙

𝑣 = −𝜔𝐴𝑠𝑖𝑛 𝜔𝑡 + 𝜙

D𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑖𝑚𝑝𝑙𝑒 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑜𝑡𝑖𝑜𝑛 𝑖𝑛 𝑜𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑖 𝑐𝑦𝑐𝑙𝑒

𝑇 = 2𝜋 = 3600 𝜋 =
𝑇

2

One period cycle  is from 𝑡 = 0 sec 𝑡𝑜 𝑡 = 2𝜋 = 𝑇

Displacement in SHM 𝜙 = 0
𝑥 = 𝐴𝑐𝑜𝑠𝜔𝑡 = 𝐴𝑐𝑜𝑠2𝜋𝑓𝑡 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑡

𝑥 = 𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡

Displacement in SHM t = 0 𝑥 = 𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇
0 = 𝐴𝑐𝑜𝑠 0 = 𝐴 × 1 = 𝐴 𝒙 = 𝑨

Displacement in SHM t =
𝜋

2
=

1

2

𝑇

2
=

𝑇

4 𝑥 = 𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇

𝑇

4
= 𝐴𝑐𝑜𝑠

𝜋

2
= 𝐴 × 0 = 0 𝑥 = 0

Displacement in SHM   t = 𝜋 =
𝑇

2 𝑥 = 𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇

𝑇

2
= 𝐴𝑐𝑜𝑠𝜋 = 𝐴 × − = −𝐴 𝒙 = −𝑨

Displacement in SHM   t =
3

2
𝜋 =

3

2

𝑇

2
=

3

4
𝑇 𝑥 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑡 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇

3𝑇

4
= 𝐴𝑐𝑜𝑠

3

2
𝜋 = 𝐴 × 270 = 𝐴 × 0 = 0 𝑥 = 0

Displacement in SHM   t = 2𝜋 = 2
𝑇

2
= 𝑇 𝑥 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑡 = 𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑇 = 𝐴𝑐𝑜𝑠2𝜋 = 𝐴 × 360 = 𝐴 × 1 = 𝐴 𝑥 = 𝐴



𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑠𝑖𝑚𝑝𝑙𝑒 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑜𝑡𝑖𝑜𝑛 𝑖𝑛 𝑜𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑖 𝑐𝑦𝑐𝑙𝑒

𝑣 = −𝜔𝐴𝑠𝑖𝑛 𝜔𝑡 + 𝜙 = −𝜔𝐴𝑠𝑖𝑛𝜔𝑡 = −𝜔𝐴𝑠𝑖𝑛2𝜋𝑓𝑡 = −𝜔𝐴𝑠𝑖𝑛
2𝜋

𝑇
𝑡 𝑣 − 𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇
𝑡

velocity in SHM t = 0 𝑣 − 𝜔𝐴𝑠𝑖𝑛
2𝜋

𝑇
𝑡 = −𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇
0 = −𝜔𝐴𝑠𝑖𝑛 0 = 𝜔𝐴 × 0 = 0 𝒗 = 𝟎

velocity in SHM t =
𝜋

2
=

1

2

𝑇

2
=

𝑇

4 𝑣 = −𝜔𝐴𝑠𝑖𝑛
2𝜋

𝑇
𝑡 = −𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇

𝑇

4
= −𝜔𝐴𝑠𝑖𝑛

𝜋

2
= 𝜔𝐴 × 1 = −𝜔𝐴

𝒗 = −𝝎𝑨

Velocity in SHM   t = 𝜋 =
𝑇

2 𝑣 = −𝜔𝐴𝑠𝑖𝑛
2𝜋

𝑇
𝑡 = −𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇

𝑇

2
= −𝜔𝐴𝑠𝑖𝑛𝜋 = 𝜔𝐴 × 0 = 0 𝒗 = 𝟎

velocity in SHM t =
3

2
𝜋 =

3

2

𝑇

2
=

3

4
𝑇 𝑣 = −𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇
𝑡 = −𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇

3

4
𝑇 = −𝜔𝐴𝑠𝑖𝑛

3

2
𝜋 = −𝜔𝐴𝑠𝑖𝑛 270 = −𝜔𝐴 −1 = 𝜔𝐴 𝒗 = 𝝎𝑨

velocity in SHM   t = 2𝜋 = 2
𝑇

2
= 𝑇 𝑣 = −𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇
𝑡 = −𝜔𝐴𝑠𝑖𝑛

2𝜋

𝑇
𝑇 = −𝜔𝐴𝑠𝑖𝑛2𝜋 = −𝜔𝐴 × 𝑠𝑖𝑛 360 = −𝜔𝐴 0 = 0 𝒗 = 𝟎

Acceleration 𝑖𝑛 𝑠𝑖𝑚𝑝𝑙𝑒 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑜𝑡𝑖𝑜𝑛 𝑖𝑛 𝑜𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑖 𝑐𝑦𝑐𝑙𝑒

𝑎 = −𝜔2𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜙 = −𝜔2𝐴𝑐𝑜𝑠𝜔𝑡 = −𝜔2𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡

𝑎 = −𝜔2𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡

Acceleration in SHM t = 0
𝑎 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑡 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇
0 = −𝜔2𝐴𝑐𝑜𝑠0 = −𝜔2𝐴 × 1 = −𝜔2𝐴 𝑎 = −𝜔2𝐴

Acceleration in SHM t =
𝜋

2
=

1

2

𝑇

2
=

𝑇

4 𝑎 = −𝜔2𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇

𝑇

4
= −𝜔2𝐴𝑐𝑜𝑠

𝜋

2
= −𝜔2𝐴𝑐𝑜𝑠 0 = −𝜔2𝐴 × 0 = 0 𝑎 = 0

Acceleration in SHM   t = 𝜋 =
𝑇

2

Acceleration in SHM t =
3

2
𝜋 =

3

2

𝑇

2
=

3

4
𝑇 𝑎 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑡 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇

3𝑇

4
= −𝜔2𝐴𝑐𝑜𝑠

3𝜋

2
= −𝜔2𝐴𝑐𝑜𝑠 270 = −𝜔2𝐴 0 = 0 𝑎 = 0

𝑎 = −𝜔2𝐴𝑐𝑜𝑠
2𝜋

𝑇
𝑡 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇

𝑇

2
= −𝜔2𝐴𝑐𝑜𝑠 𝜋 = −𝜔2𝐴 −1 = 𝜔2𝐴 𝑎 = 𝜔2𝐴

Acceleration in SHM t = 2𝜋 = 2
𝑇

2
= 𝑇 𝑎 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑡 = −𝜔2𝐴𝑐𝑜𝑠

2𝜋

𝑇
𝑇 = −𝜔2𝐴𝑐𝑜𝑠 2𝜋 = −𝜔2𝐴𝑐𝑜𝑠 360 = −𝜔2𝐴 1 = −𝜔2𝐴 𝑎 = −𝜔2𝐴



figure Two Graphical

representation of simple harmonic

motion. (a) Position versus time.

(b) Velocity versus time. (c)

Acceleration versus time. Note

that at any specified time the

velocity is 90° out of phase with

the position and the acceleration is

180° out of phase with the

position.

Figure 15.8 (a) Position, velocity, and acceleration versus time

for a block undergoing simple harmonic motion under the

initial conditions that at 𝒕 = 𝟎, 𝒙 𝟎 = 𝑨 𝒂𝒏𝒅 𝒗 𝟎 =
𝟎,.

(b) Position, velocity, and acceleration versus time for a block

undergoing simple harmonic motion under the initial

conditions that at 𝒕 = 𝟎, 𝒙 𝟎 = 𝟎 𝒂𝒏𝒅 𝒗 𝟎 = 𝒗𝒑 .

That is, the period and frequency depend only on the mass of the particle and the force constant of the

spring and not on the parameters of the motion, such as A or f. As we might expect, the frequency is larger

for a stiffer spring (larger value of k) and decreases with increasing mass of the particle. We can obtain the

velocity and acceleration2 of a particle undergoing simple harmonic motion from Equations

𝑥𝑚𝑎𝑥 = 𝐴

𝑣𝑚𝑎𝑥 = 𝜔𝐴

𝑎𝑚𝑎𝑥 = 𝜔2𝐴



Solution By comparing this equation with Equation



Q1 An object is moving with SHM of amplitude A on the end of a spring. If the amplitude is doubled, what happens to the total distance the object travels

in one period? What happens to the period? What happens to the maximum speed of the object? Discuss how these answers are related.



Energy of the Simple Harmonic Oscillator

Let us examine the mechanical energy of a system in which a particle undergoes simple

harmonic motion, such as the block–spring system illustrated in this Figure. Because the

surface is frictionless, the system is isolated and we expect the total mechanical energy of

the system to be constant. We assume a massless spring, so the kinetic energy of the

system corresponds only to that of the block. We can use Equation to express the kinetic

energy of the block as
Figure ( ) A block attached to a spring moving on

a friction-less surface.

Oscillations is a special type of motion called periodic motion. This is a repeating motion of an object in which the object continues to return to a

given position after a fixed time interval. Familiar objects that exhibit periodic motion include a pendulum.

The back and forth movements of such an object are called oscillations. We will focus our attention on a special case of periodic motion called simple

harmonic motion. We shall find that all periodic motions can be modeled as combinations of simple harmonic motions. Thus, simple harmonic

motion forms a basic building block for more complicated periodic motion.

Simple harmonic motion also forms the basis for our understanding of mechanical waves. Sound waves, seismic waves, waves on stretched strings,

and water waves are all produced by some source of oscillation.



Energy in simple Harmonic motion

We can learn even more about simple harmonic motion by using energy considerations. The only horizontal force on the body in

SHM in Figs. is the conservative force exerted by an ideal spring. The vertical forces do no work, so the total mechanical energy

of the system is conserved. We also assume that the mass of the spring itself is negligible.

The kinetic energy of the body is 𝑬𝑲 =
𝟏

𝟐
𝒎𝒗𝟐 and the potential energy of the spring is 𝑬𝑷 𝑼 =

𝟏

𝟐
𝒌𝒙𝟐, just as in Section

There are no nonconservative forces that do work, so the total mechanical energy 𝑬𝑻 = 𝑬𝑲 + 𝑬𝑷 𝑼 , 𝑬𝑻 is conserved:

Figure ( )Model for periodic motion. When the body is

displaced from its equilibrium position at x = 0, the

spring exerts a restoring force back toward the

equilibrium position.

How x-velocity vx and x-

acceleration ax vary

during one cycle of SHM



𝑬𝑻 = 𝑬𝑲 + 𝑬𝑷 𝑼Total energy is constant

𝑬𝑻 =
𝟏

𝟐
𝒎𝒗𝟐 +

𝟏

𝟐
𝒌𝒙𝟐 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

𝑬𝑻 =
𝟏

𝟐
𝒎𝒗𝟐 +

𝟏

𝟐
𝒌𝒙𝟐 =

𝟏

𝟐
𝒌𝑨𝟐

(Since the motion is one-dimensional, 𝒗𝟐 = 𝒗𝒙
𝟐 The total mechanical energy 𝑬𝑻 is also directly related to the amplitude A of

the motion. When the body reaches the point x = A, its maximum displacement from equilibrium, it momentarily stops as it

turns back toward the equilibrium position. That is, when x = A (or -A), 𝒗𝒙 = 𝟎. At this point the energy is entirely potential,

and 𝑬𝑻 =
𝟏

𝟐
𝒌𝑨𝟐 . Because E is constant, it is equal to

𝟏

𝟐
𝒌𝑨𝟐 at any other point. Combining this expression with, we get

Displacement, velocity, and acceleration in SHM

Velocity (v) 𝑣 =
𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
𝐴𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝑣 =

𝑑𝑥

𝑑𝑡
= 𝐴 = −𝜔𝐴 𝑠𝑖𝑛 𝜔𝑡 + ∅

acceleration in SHM a=
𝑑𝑣

𝑑𝑡
= −𝜔𝐴

𝑑

𝑑𝑥
𝑠𝑖𝑛 𝜔𝑡 + ∅ a=

𝑑𝑣

𝑑𝑡
= −𝜔2𝑥a=

𝑑𝑣

𝑑𝑡
= −𝜔2𝐴 𝑐𝑜𝑠 𝜔𝑡 + ∅

We can verify this equation (total energy) by substituting the equation of displacement x and the equation of velocity 𝒗𝒙 from equation of total energy

𝑬𝑻 =
𝟏

𝟐
𝒎𝒗𝟐 +

𝟏

𝟐
𝒌𝒙𝟐 𝑬𝑻 =

𝟏

𝟐
𝒎𝑨𝟐

𝑲

𝒎
𝑠𝑖𝑛 𝜔𝑡 + ∅

𝟐

+
𝟏

𝟐
𝒌𝑨𝟐 𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝟐



By substitute the equation of angle frequency for simple harmonic motion from the above equation we get the

𝜔2 =
𝑘

𝑚

𝑬𝑻 =
𝟏

𝟐
𝒎 −𝜔𝐴𝑠𝑖𝑛 𝜔𝑡 + ∅ 𝟐 +

𝟏

𝟐
𝒌 𝐴𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝟐

𝑬𝑻 =
𝟏

𝟐
𝒎𝑨𝟐𝝎𝟐 𝑠𝑖𝑛 𝜔𝑡 + ∅

𝟐
+
𝟏

𝟐
𝒌 𝐴𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝟐

𝑬𝑻 =
𝟏

𝟐
𝒎𝑨𝟐

𝑲

𝒎
𝑠𝑖𝑛 𝜔𝑡 + ∅

𝟐

+
𝟏

𝟐
𝒌𝑨𝟐 𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝟐 𝑬𝑻 =

𝟏

𝟐
𝒌𝑨𝟐 𝑠𝑖𝑛 𝜔𝑡 + ∅

𝟐
+
𝟏

𝟐
𝒌𝑨𝟐 𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝟐

𝑬𝑻 =
𝟏

𝟐
𝒌𝑨𝟐 𝑠𝑖𝑛 𝜔𝑡 + ∅

𝟐
+ 𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝟐 =

𝟏

𝟐
𝒌𝑨𝟐

𝑠𝑖𝑛 𝜔𝑡 + ∅
𝟐
+ 𝑐𝑜𝑠 𝜔𝑡 + ∅ 𝟐 = 𝟏

𝑬𝑻 =
𝟏

𝟐
𝒌𝑨𝟐

That is, the total mechanical energy of a simple harmonic oscillator is a constant of the motion and is proportional to the square of the

amplitude. The total mechanical energy is equal to the maximum potential energy stored in the spring when 𝒙 = ∓𝑨 because 𝒗 = 𝟎 at these

points and there is no kinetic energy. At the equilibrium position, where 𝑬𝑷 𝑼 = 𝟎 because 𝒙 = 𝟎, the total energy, all in the form of kinetic

energy, is again
𝟏

𝟐
𝒌𝑨𝟐 .

Hence our expressions for displacement and velocity in SHM are consistent with energy conservation, as they must be. We can use above

equation to solve for the velocity 𝒗𝒙 of the body at a given displacement x:

𝐸𝑇 =
1

2
𝑚𝑣𝑥

2 +
1

2
𝑘𝑥2 =

𝟏

𝟐
𝒌𝑨𝟐 1

2
𝑚𝑣𝑥

2 =
𝟏

𝟐
𝒌𝑨𝟐 −

1

2
𝑘𝑥2 𝑚𝑣𝑥

2 = 𝒌𝑨𝟐 − 𝒌𝑨𝟐 𝑣𝑥
2 =

𝒌𝑨𝟐

𝑚
−
𝒌𝒙𝟐

𝑚

𝑣𝑥
2 =

𝑘

𝑚
𝐴2 −

𝒌

𝑚
𝑥2 𝑣𝑥

2 =
𝑘

𝑚
𝐴2 − 𝑥2

𝑣𝑥 = ∓
𝑘

𝑚
𝐴2 − 𝑥2

The sign means that at a given value of x the body can be

moving in either direction. For example, when 𝒙 = ∓
𝑨

𝟐
,



Graphs of E, K, and U versus

displacement in SHM. The

velocity of the body is not

constant, so these images of

the body at equally spaced

positions are not equally

spaced in time.

Figure (a) Kinetic energy and potential energy versus time for a

simple harmonic oscillator with ∅ = 0 . (b) Kinetic energy and

potential energy versus position for a simple harmonic oscillator.




