General Science :Second stage
Dr Abbas H Rostam

Chapter Two Oscillatory Motion
Oscillations and Mechanical Wave



Periodic Motion
any kinds of motion repeat themselves over and over: the vibration of a quartz crystal in a watch, and the back-and-forth

motion of the pistons in a car engine. This kind of motion, called periodic motion or oscillation,

amplitude, Period, Frequency, and angular Frequency

The amplitude of the motion, denoted by A, is the maximum magnitude of displacement from equilibrium—that is, the maximum
value of x . Itis always positive.

The period, T, is the time to complete one cycle. It is always positive. The Sl unit is the second, but it is sometimes expressed as
“seconds per cycle.”

The frequency, f, is the number of cycles in a unit of time. It is always positive. The SI unit of frequency is the hert:

The angul [ [ : w = Eﬂf
gular frequency, w is 2m times the frequency:
Period
By definition, period and frequency are reciprocals of each other: :-I.] Pcl:‘it:‘i: “:;(';i'l;“li e P A" 1
'l'(l \ ('. a erioa’ > = —_— —
are reciprocals of each other. %, T ,f
Example :1 PERIOD, FREQUENCY, AND ANGULAR FREQUENCY e Breanency.s
: . : . . Angular frequency.. e Frequency
An ultrasonic transducer used for medical diagnosis oscillates at et l‘{t::z::: . 2 2m G
: . : _ : w =27 = — ...
6.7 MHz = 6.7 % 10° Hz. How long does each oscillation take, and period ] T Period

and what is the angular frequency?

—_— 1 1
SOLUTION T=-— =15 % 107s = 0.15 us

f 67 % 10°Hz

EVALUATE: This is a very rapid vibration, with large f and @ and

small 7. A slow vibration has small f and w and large T.
w = 27f = 2w(6.7 ¥ 10° Hz)

= (2 rad/cycle) (6.7 x 10° cycle/s) = 4.2 ¥ 107 rad/s



Simple Harmonic motion

The simplest kind of oscillation occurs when the restoring force Fy is directly proportional to the displacement ¥ Equilibrium position
: (spring relaxed)
from equilibrium x. This happens if the spring in this figure is an ideal one that obeys Hooke’s law. The SpobE ) ;
ol"
constant of proportionality between Fy and X is the force constant k. On either side of the equilibrium :’Jmm”‘“‘z}:j !

position, Fy and X is always have opposite signs. The force acting on a stretched ideal spring as Fy = —kX . &

The x-component of force the spring exerts on the body is the negative of this, so

Restoring force .o x-component of force

-
exerted by an =" Fr = — kg & Displacement
2 A3

ideal spring Yoenve Lloron o R
SPLIng «Force constant of spring

This equation gives the correct magnitude and sign of the force, whether x is positive, negative, or zero. The force
constant k is always positive and has units of ;N (a u. We are assuming that there is no friction.

When the restoring force is directly proportional to the displacement from equilibrium, Applying newton’s second law of motion

F T . : : : d’x _F
F, =ma, = a, =— the oscillation is called simple harmonic motion (SHM). The acceleration a, = =%
m dt2 m
of a bOdy in SHM is F kx : x-component of acceleration ... Force constant of
. Lquation for 5 A -estorine force
a, = E - ; simple harmonic <=y ¥ _ dx = __/L oy o
motion * '({[2. m . "Displacement

Second derivative of dl\]\l;u‘vmcn( Mass of \\'l‘j{‘k'l

The minus sign means that, in SHM, the acceleration and displacement always have opposite signs. This acceleration is not constant,

Why is simple harmonic motion important? Not all periodic motions are simple harmonic; in periodic motion in general



Displacement, velocity, and acceleration in SHM

We still need to find the displacement x as a function of time for a harmonic Oscillator. Equation

Displacement in Amplitude -., Time ~Phase angle

simple harmonic ... % A "I i d;
. *x = Acos (ot + @)
moftion as a 4

function of time Angular i'rcquéhc_v = \Vﬂ‘k‘,“'m d
: dx dx d , _ax :
Ve|0C|ty0fSHM v:d— - — A_CGS (f_ﬂf —|— {b) — —mA SIN ((ﬂf —|— (]b) T = — (ﬂA 5111 (ﬂjl.f + ¢)
t dt dt | dt
Acceleration of SHM
dv _ a2 d? d = 2A (wt+ ¢)
_dv _ d°x X . = —— = —
a=_ =gzt — = —wA —sin (0t + $) = —w*A cos (wt + ¢) & dt2 LTl ¢
dt dt '
if w=2nf= Z?E Substitute the value of angular frequency in the equation displacement, velocity and acceleration of SHM we get @ = 2m
w T
=/1 = — = —| — = —| — = — = — _— = —
=M =TT <2n) T <2n> K Where K =3 K 2n K
Displacement of SHM  x = Acos(wt + @) = Acos (Z?H t+ 0 )
2T . 2 2 2T
Velocity of SHM v = —Awsin(wt + @) = —Awsin (Tt + @) Acceleration of SHM a = —Aw*(wt + @) = —Aw“cos (?t + Q))

Example determine : Displacement , Velocity and Acceleration of SHM at t = 0

21 21
Solution x = Acoswt = Acos? t = ACOST (0) =Acos(0) =Ax1=A

21 21
Velocity of SHM v = —Awsin?t = —AwsinT(O) = Awsin(0) = Ao x0=0

Acceleration of SHM a = —szcosz%rt =q= —szcos%n(O) = —Aw?cos(0) = —Aw?cos(0) = —Aw? X 1 = —Aw?



Graphic diagram for displacement, velocity, and acceleration in SHM in periodic cycle.

Displacement in Amplitude ., Time
simple harmonic ..., ¥ P ¥
: e = =

motion as a x = A cos (ﬁot (b)
function of time Angular frequency = Vk/m

dv

a=—-= %{—wASin(wt + $)} = —w?Acos(wt + ¢)

. Phase angle

v = % = %Acos(wt + ¢) = —wAsin(wt + ¢)

Displacement, velocity and acceleration in simple Harmonic Motion in one periodi cycle

T = 2m = 360° —

2

One period cycle isfromt =0sec to t=2n =T

Displacement in SHM ¢ =0

Displacement in SHM t =10

Displacement in SHM t=Z=2 (Z) _T
2 2 \2

Displacement in SHM t=m = G)

Displacement in SHM t = Sn= E(Z) =3r
2 2 \2 4

Displacement in SHM t =2mr =2 (g) T

4 2T
21 X = Acos—t
x = Acoswt = Acos2nft = AcosTt T
2T 21 — A
X =Acos?t =Acos?((0)) =Acos(0) =Ax1=A4 X =
= Acos Tt = acos Z (L) = acosT= ax 0= 0 x=0
x = Acos—-t = Acos——| 7 | = Acos 5 = =
2T 2 (T
x =Acos—t =Acos—|—= | =Acost =AxX (—) =—-A x=-—A
T T \2
= 10052 ¢ = acos (30 = dcosSm= Ax (270) = A% 0 = 0
X = Acos -t = Acos—| -~ | = Acos 5T = = = x =0
21 21
x=AcosTt=AcosTT=Ac052n=A><(360) =AxXx1=A x=A

v = —wAsin(wt + ¢)

a = —w?Acos(wt + @)



velocity in simple Harmonic Motion in one periodi cycle

s 2T
v = —wAsin(wt + ¢) = —wAsinwt = —wAsin2nft = —wAsinTt v — wAsin—t
o 2@ . 2m .
velocity in SHM t =0 v— wAsmTt = —wAsm?(O) = —wAsin(0) = wA X (0) =0 v=20
T 21 2 (T T
velocity inSHM t=Z2=2(3) =1 e C e CT DY (_>= _
2 2 (2) 4 v wAsin T t wAsin 7\ 2 wAsin > wA X 1 wA b= —wA
L T
=== 21 2 (T —
Velocity in SHM ¢ = (2) v = —a)ASinTt = —wAsin?<§ > = —wAsint = wAX0=0 v="0
N 3 3(T 3 A . 2m (3 3 )
velocity inSHM t=-m = 5(5) =T v = —a)AsmTt = —wAsmT ZT = —wAsmzn = —wAsin(270) = —wA(-1) = wA v = wA
PR _ _(T) _ 21 2T
velocity in SHM  t = 2 = 2 (2) =T v= —wAsinTt = —wAsin?(T) = —wAsin2m = —wA X sin(360) = —wA(0) =0 v=20
Acceleration in simple Harmonic Motion in one periodi cycle 21T
2 2 2 2T a=—w?Acos—t
a=—w"Acos(wt + ¢) = —w*Acoswt = —w AcosTt T
Acceleration inSHM t=0 a=—a)2ACOS?t=—w2ACOST(O)=—w2ACOSO=—a)2AX1=—w2A a4 =—w?A
Acceleration in SHM t=Z=1 (Z) =1 2T 21 (T T
2o 282s 4 a= —szcosTt = —a)ZAcos? 1] = —w?Acos (5) = —w?4cos(0) = —w?Ax0=0 a=0
. T
Acceleration inSHM t=m = (= 2m 2 (T
. (2) a= —szcos?t = —a)ZAcosT 5= —w?Acos(n) = —w?A(-1) = w?A a4 = w?A
PR _3__3(T\_3 21 2m (3T 3
Acceleration in SHM  t = -m = E(E) =T a= —a)ZAcosTt = —szcos?<T> = —w?Acos <7> = —w?Acos(270) = —w?A(0) =0 a=0

T

L 2T 2T
Acceleration in SHM t = 2 = 2 (5) =T a= —a)zAcos?t = —a)zAcosT(T) = —w?Acos(2m) = —w?Acos(360) = —w?A(1) = —w?A a=—w2A
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(a) (b)

Figure 15.8 (a) Position, velocity, and acceleration versus time
for a block undergoing simple harmonic motion under the
initial conditions that at t=0,x(0) =4 andv(0) =
0,.

(b) Position, velocity, and acceleration versus time for a block
undergoing simple harmonic motion under the initial
conditions thatat t = 0,x(0) = 0 and v(0) = v, .

i 2ﬂ- 2” :l:i ":Q_ﬂ-: \/E
I:? W =27 =~ / T or T w ™%

1 1 [k
127" o\

That is, the period and frequency depend only on the mass of the particle and the force constant of the
spring and not on the parameters of the motion, such as A or f. As we might expect, the frequency is larger
for a stiffer spring (larger value of k) and decreases with increasing mass of the particle. We can obtain the

(a)

(b)

(c)

]

]

x

figure Two Graphical
representation of simple harmonic
motion. (a) Position versus time.
(b) Velocity versus time. (c)
Acceleration versus time. Note
that at any specified time the
velocity is 90° out of phase with
the position and the acceleration is
180° out of phase with the
position.

velocity and acceleration?2 of a particle undergoing simple harmonic motion from Equations

a

0 A 0 —w°A
/4 0 —mA 0
T/2 -A 0 m* A
57T/4 0 A 0
T A 0 —w’A




Example An Qtyect DSC.I].IELIES w.lth 5!mpl.e harmunu.: motion along _[he
x axis. Its position varies with time according to the equation

where {is in seconds and the angles in the parentheses are

in radians.

(A) Determine the amplitude, frequency, and period of the

motion.
Solution By comparing this equation with Equation

x = (4.00 m) cos ('m? + %)

x=Acos (wt+d&d), we see that A= 4.00m and

w = wrad/s. Therefore, f=w/27 = a/2m= 0500 Hz

Aand T — 1 /F— 9NN e

(B) Calculate the velocity and acceleration of the object at
any time .

Solution Differentiating x to find v, and v to find a, we obtain

x = (4.00 m) cos (-m? + %)

_ﬁ—_(q_ﬂo / H ( r+1)i( !f]
v = i 00 m/s) sin "n. 2 ) @ ™

= — (4.007 m/s) sin (m v %)

W (400w m/s) ( s+”)d(r)
a =——-= — . T IM/S) COS | T — | — T
dt ‘ 4 ) dt

= - (4.0017? m/s%) cos (m‘ + %)

x = (4.00 m) cos (mf + %)

(C) Using the results of part (B). determine the position,
velocity, and acceleration of the objectat t = 1.00 s.

Solution Noting that the angles in the trigonometric func-
tions are in radians, we obtain, at t = 1.00 s,

) 5
x = (4.00 m) c-:)s(qr + T) = (4.00 m) cos( 4 )

= (400 m)(—0.707) = —283m

5
v = — (4.0077 m/s) sin( 1 )

— (4.007% m/s)(—0.707) = 8.89m/s

bar

a = — (4.007* m/s?) cos (T)

= — (4.0072 m/s?)(—0.707) = 27.9m/s?

(D) Determine the maximum speed and maximum acceler-
ation of the object.

Solution In the general expressions for v and a found in
part (B), we use the fact that the maximum values of the
sine and cosine functions are unity. Therefore, v varies be-
tween = 4.007m m/s, and a varies between = 4.00 2 m,fsz.
Thus,

Upax = 400 m/s = 126 m/s

Apax = 4.0072 m/s”> = 39.5 m/s”

We obtain the same results using the relations vpmax = wA
and @, = @A, where A = 4.00 m and @ = 7 rad/s.



(E) Find the displacement of the object between { = 0 and

t=1.00s.
Solution The positionatt = 01is

T
x; = (4.00 m) cos (0 + T) = (4.00 m)(0.707) = 2.83 m
In part (C), we found that the position at = 1.00s is
— 2.83 m; therefore, the displacement between f= 0 and
t=100sis

Ax=x;— x;= —283m — 283m= —5.66m

Because the object’s velocity changes sign during the first sec-
ond, the magnitude of Ax is not the same as the distance trav-
eled in the first second. (By the time the first second is over,
the object has been through the point x = —2.83 m once,
traveled to x = — 4.00 m, and come back to x = — 2.83 m.)

Q1 An object is moving with SHM of amplitude A on the end of a spring. If the amplitude is doubled, what happens to the total distance the object travels
in one period? What happens to the period? What happens to the maximum speed of the object? Discuss how these answers are related.

SET Up: The frequency / in Hz is the number of cycles per second. The angular frequency @ i1s

@ =27 and has units of radians per second. The period T is the time for one cycle of the wave and has

units of seconds. The period and frequency are related by T = l

EXECUTE: (a) T:i: !
f 466 Hz

@ =21 f = 2m(466 Hz) = 2.93x10° rad/s.

=2.15x10""s.

®) f=L- : =2.00x10* Hz. @=27f=1.26x10° rads.

T 50.0x10°s

2.7 x10" rad/
(c) fzﬂ so [ ranges from “ o =43x10" Hz to
27 2 rad

4.7 % 10" rad/s
27 rad

=7.5x10" Hz. T:% so T ranges from

1 1

T =130 s to ——— - =23x10 Vs,
7.5x10" Hz 43x10M Hz
1 1 _
@) T == gy~ 20X107" s and =22 =27(5.0x10° Hz)=3.1x10" rad’s.
R

EVALUATE: Visible light has much higher frequency than either sounds we can hear or ultrasound.
Ultrasound 1s sound with frequencies higher than what the ear can hear. Large f corresponds to small T.



Energy of the Simple Harmonic Oscillator K, When the block is displaced

-

to the right of equilibrium,
. . . . . . I m the force exerted by the
Let us examine the mechanical energy of a system in which a particle undergoes simple ! L X | spring acts to the left
harmonic motion, such as the block—spring system illustrated in this Figure. Because the \ Tt When the block is at its
. o o . | ’ equilibrium position, Lh_c
surface is frictionless, the system is isolated and we expect the total mechanical energy of T‘ x | force exerted by the spring
H 1S ZETO.
the system to be constant. We assume a massless spring, so the kinetic energy of the Pl
i : When the block is displaced
system corresponds only to that of the block. We can use Equation to express the kinetic m | totheleft of equilibrium,
| : X the force exerted by the
b spring acts to the right.
energy of the block as =0 PSRRI TS

Figure () A block attached to a spring moving on
a friction-less surface.

The back and forth movements of such an object are called oscillations. We will focus our attention on a special case of periodic motion called simple
harmonic motion. We shall find that all periodic motions can be modeled as combinations of simple harmonic motions. Thus, simple harmonic

motion forms a basic building block for more complicated periodic motion.

Simple harmonic motion also forms the basis for our understanding of mechanical waves. Sound waves, seismic waves, waves on stretched strings,

and water waves are all produced by some source of oscillation.

Oscillations is a special type of motion called periodic motion. This is a repeating motion of an object in which the object continues to return to a

given position after a fixed time interval. Familiar objects that exhibit periodic motion include a pendulum.



Energy in simple Harmonic motion

We can learn even more about simple harmonic motion by using energy considerations. The only horizontal force on the body in
SHM in Figs. is the conservative force exerted by an ideal spring. The vertical forces do no work, so the total mechanical energy

of the system is conserved. We also assume that the mass of the spring itself is negligible.

The kinetic energy of the body is Eg = %mv2 and the potential energy of the spring is Ep(U) = %kxz, just as in Section

There are no nonconservative forces that do work, so the total mechanical energy Er = Ex + Ep(U), Eg is conserved:

(a) ,_J'\\\\\\\\\\\\E;-“
x > 0: glider displaced F, < 0, so a, < 0: (b) () Vs

x < 0: glider displaced F, > 0, so a, > 0: ! ! !

to the right from the stretched spring

S 5. S ol x = 0: The relaxed spring exerts no force on the bt : T L)
equilibrium position. pulls glider toward B o liidan Wite: ok doaoliats to the left from the compressed spring
", equilibium position. SUCNG o R alionn s 268 tu‘k-:]ud“”n' equilibrium position. pushes glider toward
‘ LY 4 Y Y i equilibrium position. A A2 9 A/2 A
F L -., %, 2 ea Ll &
AV e x O . v | O agale
& + SO x %) B il x
‘J/ ,'; £5 S F X a, = Ogim .
’ =~ U ) — -
§ = o | \_
T, == 5 2
Figure ( )Model for periodic motion. When the body is S A
1 i ihi i 1t1 j— - ‘ e (l‘, :
dlsplaced from its equnl_brlurp posﬂtl)onkat X é) tEe How x-velocity vx and x- e :
Sprl-l’ll-gb _exerts :l restoring ftorce ac towar the acceleration ax vary D.“;;g‘; st
equitiiprium positon. during one cycle of SHM a, = I

| Ox T TOmay e X
v,=0




Total energy Is constant Er =Eg + Ep(U)

1 1 Ep = 2+1k 2 1kA2
=—mv*+=kx* ==
Er =Emv2 +Ekx2 = constant T—2 2 2

(Since the motion is one-dimensional, v? = v2 The total mechanical energy E7 is also directly related to the amplitude A of
the motion. When the body reaches the point x = A, its maximum displacement from equilibrium, it momentarily stops as it

turns back toward the equilibrium position. That is, when x = A (or -A), v, = 0. At this point the energy is entirely potential,

and Er = %kA2 . Because E is constant, it is equal to %kA2 at any other point. Combining this expression with, we get

o : Mass Force constant of restoring force Displacement in Amplitude -, Time - Phase angle
l'otal mechanical Ve (9 imple harmonic - Y ¢ -
s . e & 1 » 2 | : 2 1 i 2 S e ne (1711 (GREE S - <
energy insimple"* I = smp * + 5kx° = 5kA~ = constant motion as a x = Acos (o + ¢)
N L ) / L r L Y. . - ey o
harmonic motion ) ) _-" g ) function of time Angular frequency = Vk/m
Velocity Displacement Amplitude 2 :

Displacement, velocity, and acceleration in SHM

dx d B dx . .
Velocity (V) V=TT (Acos(wt + 0)) v=—r= A = —wA(sin(wt + 0))
] . dv d . d __dv
acceleration in SHM a=— = —wA—(sin(wt + 0)) 3= d_'; = —w?A(cos(wt + ) a= &

= —w

2

X

We can verify this equation (total energy) by substituting the equation of displacement x and the equation of velocity v, from equation of total energy

1, 1 1 K 21
E; = 5 mv + Ekx E; = EmA2 - (sin(wt + (Z))) + EkAz{cos(a)t + @)}



By substitute the equation of angle frequency for simple harmonic motion from the above equation we get the

Angular frequency J ¢~ Force constant of restoring force w? = k
for simple -~ g = | [ —
n

m
harmonic motion *-....- Mass of object

1 1
1 1 Er = EmAzco2 (sin(wt + (Z)))Z + Ek{Acos(wt + 0)}?
E; = Em{—a)Asin(wt + @)} + Ek{Acos(wt + 0)}?
1 2 1
1 K 21 = ~ kA?(si ~ kA? 2
E; = EmA2 o (Sin(a)t + @)) + EkAZ{cos(wt + 0)}? Er 2 ka (sm(wt + Q)) + 2 kA%(cos(wt + 0))
2
1 1 sin(wt + 0))” + {cos(wt + ®)}* =1
Er = EkAZ [(sin(a)t + (Z)))Z + {cos(wt + (Z))}Z] = EkAZ ( ( )) teos( )}
- . Mass Force constant of restoring force
1 Total mechanical Ve ",
Er = —kA? energy in simple [ — %H‘IUYQ + %/\-_\3- = -,l;kAz = constijt
2 harmonic motion ot 7 R T Ry = F [ — A% — x2
Velocity Displacement Athplitude [ m

That is, the total mechanical energy of a simple harmonic oscillator is a constant of the motion and is proportional to the square of the
amplitude. The total mechanical energy is equal to the maximum potential energy stored in the spring when x = +A4 because v = 0 at these

points and there is no Kinetic energy. At the equilibrium position, where Ep(U) = 0 because x = 0, the total energy, all in the form of Kinetic

energy, is again %kA2 .

Hence our expressions for displacement and velocity in SHM are consistent with energy conservation, as they must be. We can use above
equation to solve for the velocity v, of the body at a given displacement x:

1 1 1 " " " , _ kA® kX’
— 12 L 2 — 1 A2 2 — A2 _ 1 A2 Vy =—— — ——
Er vax + 2kx 2kA Emv’? _ EkAz _Ekxz mvy = kA“ — kA m m
k k i :
P2 = A2 = x2 , f 42 2 The sign means that at a given value of x the body can be
m m vy = —( x“)

moving in either direction. For example, when x = + g,



Graphs of E, K, and U versus
=0 by =1 displacement in SHM. The
velocity of the body is not
J -_ « constant, so these images of
o A the body at equally spaced
T = positions are not equally
spaced in time.
13 i
1O | : =l
E=K+U E=K+ U E=K+U
E is all potential E is partly potential, E is all kinetic E is partly potential, E is all potential
energy. partly kinetic energy. partly kinetic energy.
eneray. energy.
In cither plot, notice that
K U= constant Figure (a) Kinetic energy and potential energy versus time for a
v KN v=ek K= g simple harmonic oscillator with @ = 0. (b) Kinetic energy and
K, U K U

potential energy versus position for a simple harmonic oscillator.
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Figure 15.5 A block is attached to one end of a spring and placed on a frictionless table. The other end of the spring is
anchored to the wall. The equilibrium position, where the net force equals zero, is marked as x = 0 m. Work is done on the
block, pulling itoutto x = + A, and the block is released from rest. The block oscillates between x = + A and x = —A.
The force is also shown as a vector.

Figure (ab through (e) Several insanc inothe simple harmonic maoton for a block-speing seeem. Energy bar graphs show che disii-bucion of
the energy of the symiem ar rach insmane. The paramevers in che @hle a the ngha refer w the block—spring syseem, assuming m i =0, xr = 4;
hence, x = A oos wl. For these free special insanes, one of the ppes of energy = oero. () An arbamary poine in the moton of the ocsglia-oor. The
wyxirm possesses both kineoc energy and povenin] energy ar this insiana as shown o the bar graph.

Figure 15.5 A block is attached to one end of a spring and placed on a frictionless table. The other end of the spring is
anchored to the wall. The equilibrium position, where the net force equals zero, is marked as x = () m. Work is done on the

block, pulling it out to x = 4 A, and the block is released from rest. The block oscillates between x = + A and x = —A

The force is also shown as a vector.



