Q1 // derive the following

1. Derive the solution for a homogeneous Pfaffian differential equation in the variable x.
2. Derive the solution for a homogeneous Pfaffian differential equation in the variable y.
3. Derive the solution for a homogeneous Pfaffian differential equation in the variable z.
4. Derive the quasi linear $\operatorname{PDE} A p+B q=R$ by the elimination of arbitrary function F from the equation $F(u, v)=0$. where u and v are functions of x, y and z.
5. Derive the second order partial D.E by eliminating the arbitrary functions f and g from the relation $z=f(u)+g(v)+w$, where u, v and w are functions of x and y.
6. Derive the Charpit's auxiliary equation.

Q2 // Theorems

1. Prove that the general solution of linear PDE $A p+B q=R$ is $F(u, v)=0$, where f is an arbitrary function and $u(x, y, z)=c_{1}$ and $v(x, y, z)=c_{2}$ form a solution of the equation $\frac{d x}{A}=\frac{d y}{B}=\frac{d z}{R}$.
2. State and prove the Integrable Theorem of Pfaffian differential equations.

Exercise:

$$
\begin{aligned}
& \text { 1- } \operatorname{IAN~ex~} x^{2}+y^{2}+(z-c)^{2}=a^{2} \text { Ans. } y p-x q=0 \\
& \text { 2- } \operatorname{IAN~ex~} x^{2}+y^{2}=(z-c)^{2} \tan ^{2} a \quad \text { Ans. } y p-x q=0 \\
& \text { 3- } \operatorname{IAN}(x-a)^{2}+(y-b)^{2}+z^{2}=1 \quad \text { Ans. } z^{2}\left(p^{2}+q^{2}+1\right)=1 \\
& \text { 4- } \operatorname{IAN} z=(x+a)(y+b) \quad \text { Ans. } z=p q \\
& \text { 5- } \operatorname{IAN} 2 z=(a x+y)^{2}+b \text { Ans. } x p+y q=q^{2} \\
& \text { 6- } \operatorname{IAN~} a x^{2}+b y^{2}+z^{2}=1 \text { Ans. } x p+y q=\frac{z^{2}-1}{z}
\end{aligned}
$$

Exercise:

$$
\begin{array}{ll}
\text { 1- } 1 \mathrm{AN} z=x y+f\left(x^{2}+y^{2}\right) & \text { Ans. } x q-y p=x^{2}-y^{2} \\
\text { 2- } 1 \mathrm{AN} z=x+y+f(x y) & \text { Ans. } x p-y q=x-y \\
\text { 3- } 1 \mathrm{AN} z=f\left(\frac{x y}{z}\right) & \text { Ans. } x p-y q=0 \\
\text { 4- IAN } z=f(x-y) & \text { Ans. } p+q=0 \\
\text { 5- IAN } z=f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right) & \text { Ans. } z(p-q)=y-x
\end{array}
$$

Exercise:

1- (IAN) Verify that the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=\frac{2 z}{x^{2}}$ is satisfied by $z=\frac{1}{x} \phi(y-x)+\phi^{\prime}(y-x)$ where ϕ is an arbitrary function.

2- (IAN) if $u=f(x+i y)+g(x-i y)$, where the functions f and g are arbitrary, show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.

3- (IAN) Show that if f and g are arbitrary functions of a single variable, then
$u=f(x-v t+i \alpha y)+g(x-v t-i \alpha y)$ is a solution of the equation
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ provided that $\alpha^{2}=1-v^{2} / c^{2}$.
4- (IAN) If $z=f\left(x^{2}-y\right)+g\left(x^{2}+y\right)$ where the functions f, g are arbitrary, prove that $\frac{\partial^{2} z}{\partial x^{2}}-\frac{1}{x} \frac{\partial z}{\partial x}=4 x^{2} \frac{\partial^{2} z}{\partial y^{2}}$

5- (IAN) A variable Z is defined in terms of variables x, y as the result of eliminating t from the equations

$$
\begin{aligned}
& z=\mathrm{t} x+y f(t)+g(t) \\
& 0=x+y f^{\prime}(t)+g^{\prime}(t)
\end{aligned}
$$

Prove that, whatever the functions f and g may be, the equation $r t-s^{2}=0$ is satisfied.

Exercise:

$$
\begin{array}{ll}
\text { 1- } & (\text { IAN }) z(x p-y q)=y^{2}-x^{2} \quad \text { Ans. } d x=d y ; x, y, z F\left(x y, x^{2}+y^{2}+z^{2}\right)=0 \\
\text { 2- } & (\text { IAN }) p x\left(z-2 y^{2}\right)=(z-q y)\left(z-y^{2}-2 x^{3}\right) \\
\text { 3- } & (\text { IAN }) p x(x+y)=q y(x+y)-(x-y)(2 x+2 y+z) \\
& d x=d y: d x+d y=d x+d y+d z \quad \text { Ans. } F(x y,(x+y)(x+y+z))=0 \\
\text { 4- } & (\mathrm{IAN}) y^{2} p-x y q=x(z-2 y) \quad \text { Ans. } F\left(x^{2}+y^{2}, y z-y^{2}\right)=0 \\
\text { 5- } & (\text { IAN })(y+x z) p-(x+y z) q=x^{2}-y^{2} \quad \text { Ans. } y, x, 1: x, y,-z \quad F(x y+ \\
& \left.z, x^{2}+y^{2}-z^{2}\right)=0 \\
\text { 6- } & (\text { IAN }) x\left(x^{2}+3 y^{2}\right) p-y\left(3 x^{2}+y^{2}\right) q=2 z\left(y^{2}-x^{2}\right)
\end{array}
$$

Exercise: (IAN)

1- Find the equation of the integral surface of the differential equation
$2 y(z-3) p+(2 x-z) q=y(2 x-3)$ which passes through the circle $z=0, x^{2}+y^{2}=2 x$. Ans. $1,2 y,-2 ; d x=d z: x+y^{2}-2 z=c_{1} ; x^{2}-3 x-z^{2}+6 z=c_{2}, x=t \rightarrow c_{1}+c_{2}=0$.
2- Find the general integral of the P.D.E. $(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)$ and also the particular integral which passes through the line $x=1, y=0$.
3- Find the integral surface of the equation $(x-y) y^{2} p+(y-x) x^{2} q=z\left(x^{2}+y^{2}\right)$
through the curve $x z=a^{3}, y=0$.
Ans. $d x=d y ; \frac{1}{x-y}, \frac{-1}{x-y}, \frac{-1}{z}: x^{3}+y^{3}=c_{1} ; \frac{x-y}{z}=c_{2}, x=t \rightarrow\left(x^{3}+y^{3}\right)^{2}=a^{9} \frac{(x-y)^{3}}{z^{3}}$.
4- Find the general solution of the equation $2 x\left(y+z^{2}\right) p+y\left(2 y+z^{2}\right) q=z^{3}$ and deduce that $y z\left(z^{2}+y z-2 y\right)=x^{2}$ is a solution.
Ans. $\frac{1}{x} d x-\frac{1}{y} d y=\mathrm{dz} ; d y=d z: y^{2}+z^{2}=f\left(x^{2}-y^{2}\right)$.
5- Find the general integral of the equation $(x-y) p+(y-x-z) q=z$ and the particular solution through the circle $z=1, x^{2}+y^{2}=1$.
6 - Find the general solution of the differential equation

$$
x(z+2 a) p+(x z+2 y z+2 a y) q=z(z-a)
$$

Find also the integral surfaces which pass through the curves:
(a) $y=0, z^{2}=4 a x$
(b) $y=0, z^{3}+x(z+a)^{2}=0$

7- Find the surface which is orthogonal to the one-parameter system $z=c x y\left(x^{2}+y^{2}\right)$ and which passes through the hyperbola $x^{2}-y^{2}=a^{2}, z=0$.

Ans. $x d x+y d y=-z d z$
8- Find the equation of the system of surfaces which cut orthogonally the cones of the system $x^{2}+$ $y^{2}+z^{2}=c x y$.

Ans. $x, y, z ; x d x-y d y=d z$
9- Find the general equation of surfaces orthogonal to the family given by:
a) $x\left(x^{2}+y^{2}+z^{2}\right)=c_{1} y^{2}$ Ans. $4 x d x+2 y d y=d z$
showing that one such orthogonal set consists of the family of spheres given by
b) $x^{2}+y^{2}+z^{2}=c_{2} z$

If a family exists, orthogonal to both (a) and (b), show that it must satisfy

$$
2 x\left(x^{2}-z^{2}\right) d x+\mathrm{y}\left(3 x^{2}+y^{2}-z^{2}\right) d y+2 z\left(2 x^{2}+y^{2}\right) d z=0
$$

Show that such a family in fact exists, and find its equation.
10- Show that the integral surface of $\left(x^{2}+y^{2}-a^{2}\right)(x p+y q)=z\left(x^{2}+y^{2}\right)$ are generated by conics, and find the integral surface through the curve $x=2 z, x^{2}+y^{2}=4 a^{2}$.
Ans. $\frac{x^{2}+y^{2}-a^{2}}{z^{2}}=c_{1} ; \frac{y}{x}=c_{2} ; z=t \rightarrow 3 z^{2}\left(x^{2}+y^{2}\right)=x^{2}\left(x^{2}+y^{2}-a^{2}\right)$

Exercise: (IAN70)
1- $\left(p^{2}+q^{2}\right) y=q z$.
2- $p=(z+q y)^{2}$.
3- $z^{2}=p q x y$.
4- $x p+3 y q=2\left(z-x^{2} q^{2}\right)$.
5- $p x^{5}-4 q^{3} x^{2}+6 x^{2} z-2=0$.
6- $2(y+z q)=q(x p+y q)$.
7- $2(z+x p+y q)=y p^{2}$.

Exercise: (IAN73)
1- $p+q=p q$.
2- $z=p^{2}-q^{2}$.
3- $z p q=p+q$.
4- $p^{2} q\left(x^{2}+y^{2}\right)=p^{2}+q$.
5- $p^{2} q^{2}+x^{2} y^{2}=x^{2} q^{2}\left(x^{2}+y^{2}\right)$.
6- $p q z=p^{2}\left(x q+p^{2}\right)+q^{2}\left(y p+q^{2}\right)$

