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Chapter  1 

1.1 INTRODUCTION 

Partial differential equations arise in geometry, physics and applied mathematics when 
the number of independent variables in the problem under consideration is two or 
more. Under such a situation, any dependent variable will be a function of more than 
one variable and hence it possesses not ordinary derivatives with respect to a single 
variable but partial derivatives with respect to several independent variables. In the 
present part of the book, we propose to study various methods to solve partial 
differential equations. 

1.2 PARTIAL DIFFERENTIAL EQUATION (P.D.E.) 

Definition. An equation containing one or more partial derivatives of an unknown 
function of two or more independent variables is known as a partial differential 
equation. 

For examples of partial differential equations, we list the following: 

∂𝑧/ ∂𝑥 + ∂𝑧/ ∂𝑦 = 𝑧 + 𝑥𝑦 … (1)

(∂𝑧/ ∂𝑥)2 + ∂3𝑧/ ∂𝑦3 = 2𝑥 (
∂𝑧

∂𝑥
) … (2)

𝑧(∂𝑧/ ∂𝑥) + ∂𝑧/ ∂𝑦 = 𝑥 … (3)

 

∂𝑢/ ∂𝑥 + ∂𝑢/ ∂𝑦 + ∂𝑢/ ∂𝑧 = 𝑥𝑦𝑧 … (4)

∂2𝑧/ ∂𝑥2 = (1 + ∂𝑧/ ∂𝑦)1/2 … (5)

𝑦{(∂𝑧/ ∂𝑥)2 + (∂̂𝑧/ ∂𝑦)2} = 𝑧 (
∂𝑧

∂𝑦
) … (6)
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Definition. The order of a partial differential equation is defined as the order of the 
highest partial derivative occurring in the partial differential equation. 

Definition. The degree of a partial differential equation is the degree of the highest 
order derivative which occurs in it after the equation has been rationalized, i.e., made 
free from radicals and fractions so far as derivatives are concerned. 

 

 

1.3 LINEAR AND NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS  

Definitions. A partial differential equation is said to be linear if the dependent 
variable and its partial derivatives occur only in the first degree and are not 
multiplied. A partial differential equation which is not linear is called a non-linear 
partial differential equation. 

 

1.4 NOTATIONS 

When we consider the case of two independent variables, we usually assume them to 
be 𝑥 and 𝑦 and assume 𝑧 to be the dependent variable. We adopt the following 
notations throughout the study of partial differential equations 

𝑝 = ∂𝑧/ ∂𝑥,  𝑞 = ∂𝑧/ ∂𝑦,  𝑟 = ∂2𝑧/ ∂𝑥2,  𝑠 = ∂2𝑧/ ∂𝑥 ∂𝑦  and  𝑡 = ∂2𝑧/ ∂𝑦2 

 

1.5 CLASSIFICATION OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

Linear equation. A first order equation 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 is known as linear if it is 
linear in 𝑝, 𝑞 and 𝑧, that is, if given equation is of the form 

𝑃(𝑥, 𝑦)𝑝 + 𝑄(𝑥, 𝑦)𝑞 = 𝑅(𝑥, 𝑦)𝑧 + 𝑆(𝑥, 𝑦) 
 

 

Semi-linear equation. A first order partial differential equation 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 is 
known as a semi-linear equation, if it is linear in 𝑝 and 𝑞 and the coefficients of 𝑝 and 
𝑞 are functions of 𝑥 and 𝑦 only i.e. if the given equation is of the form 

𝑃(𝑥, 𝑦)𝑝 + 𝑄(𝑥, 𝑦)𝑞 = 𝑅(𝑥, 𝑦, 𝑧) 
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Quasi-linear equation. A first order partial differential equation 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 is 
known as quasi-linear equation, if it is linear in 𝑝 and 𝑞, i.e., if the given equation is of 
the form 

𝑃(𝑥, 𝑦, 𝑧)𝑝 + 𝑄(𝑥, 𝑦, 𝑧)𝑞 = 𝑅(𝑥, 𝑦, 𝑧) 

 
Non-linear equation. A first order partial differential equation 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) =  0 
which does not come under the above three types, in known as a non-liner equation. 
 
 
1.6 Origin of partial differential equations. We shall now examine the interesting 
question of how partial differential equations arise. We show that such equations can 
be formed by the elimination of arbitrary constants or arbitrary functions. 

Rule I. Derivation of a partial differential equation by the elimination of arbitrary 
constants. 

Consider an equation    𝐹(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0 … (1) 
where 𝑎 and 𝑏 denote arbitrary constants. Let 𝑧 be regarded as function of two 
independent variables 𝑥 and 𝑦. Differentiating (1) with respect to 𝑥 and 𝑦 partially in 
turn, we get 

∂𝐹/ ∂𝑥 + 𝑝(∂𝐹/ ∂𝑧) = 0  and ∂𝐹/ ∂𝑦 + 𝑞(∂𝐹/ ∂𝑧) = 0  … (2) 

Eliminating two constants 𝑎 and 𝑏 from three equations of (1) and (2), we shall obtain 
an equation of the form 

𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0, … (3) 

which is partial differential equation of the first order. 

In a similar manner it can be shown that if there are more arbitrary constants 
than the number of independent variables, the above procedure of elimination will 
give rise to partial differential equations of higher order than the first. 

Working rule for solving problems: For the given relation 𝐹(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0 involving 
variables 𝑥, 𝑦, 𝑧 and arbitrary constants 𝑎, 𝑏, the relation is differentiated partially with 
respect to independent variables 𝑥  and 𝑦 . Finally arbitrary constants 𝑎  and 𝑏  are 
eliminated from the relations 

𝐹(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0,  ∂𝐹/ ∂𝑥 = 0  and  ∂𝐹/ ∂𝑦 = 0 

The equation free from 𝑎 and 𝑏 will be the required partial differential equation. 
Three situations may arise: 
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Situation I. When the number of arbitrary constants is less than the number of 
independent variables, then the elimination of arbitrary constants usually gives rise 
to more than one partial differential equation of order one. 

For example (Raisin), consider              𝑧 = 𝑎𝑥 + 𝑦  … (1) 

where 𝑎 is the only arbitrary constant and 𝑥, 𝑦 are two independent variables. 
Differentiating (1) partially w.r.t. ' 𝑥 ', we get   ∂𝑧/ ∂𝑥 = 𝑎  … (2) 
Differentiating (1) partially w.r.t. ' 𝑦 ', we get   ∂𝑧/ ∂𝑦 = 1  … (3) 
Eliminating 𝑎 between (1) and (2) yields 

𝑧 = 𝑥(∂𝑧/ ∂𝑥) + 𝑦  … (4) 

Since (3) does not contain arbitrary constant, so (3) is also partial differential under 
consideration. Thus, we get two partial differential equations (3) and (4). 

Example: 
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Situation II. When the number of arbitrary constants is equal to the number of 
independent variables, then the elimination of arbitrary constants shall give rise to a 
unique partial differential equation of order one. 

Example (Raisin): Eliminate 𝑎 and 𝑏 from   𝑎𝑧 + 𝑏 = 𝑎2𝑥 + 𝑦  … (1) 

Differentiating (1) partially w.r.t ' 𝑥 ' and ' 𝑦 ', we have 

𝑎(∂𝑧/ ∂𝑥) = 𝑎2 … (2)   and   𝑎(∂𝑧/ ∂y) = 1 … (3) 

Eliminating 𝑎 from (2) and (3), we have   (∂𝑧/ ∂𝑥)(∂𝑧/ ∂𝑦) = 1 

which is the unique partial differential equation of order one. 

Example: 
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Situation III. When the number of arbitrary constants is greater than the number of 
independent variables, then the elimination of arbitrary constants leads to a partial 
differential equation of order usually greater than one. 

Example (Raisin): Eliminate 𝑎, 𝑏 and 𝑐 from   𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥𝑦  … (1) 
Differentiating (1) partially w.r.t., ' 𝑥 ' and ' 𝑦, we have 

∂𝑧

∂𝑥
= 𝑎 + 𝑐𝑦 … (2)    and   

∂𝑧

∂𝑦
= 𝑏 + 𝑐𝑥 … (3) 

From (2) and (3),   
∂2𝑧

∂𝑥2
= 0,   

∂2𝑧

∂𝑥2
= 0   … (4)       and    

∂2𝑧

∂𝑥 ∂𝑦
= 𝑐 … (5) 

Now, (2) and (3) ⇒  𝑥(∂𝑧/ ∂𝑥) = 𝑎𝑥 + 𝑐𝑥𝑦  and  𝑦(∂𝑧/ ∂𝑦) = 𝑏𝑦 + 𝑐𝑥𝑦  

∴  𝑥(∂𝑧/ ∂𝑥) + 𝑦(∂𝑧/ ∂𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥𝑦 + 𝑐𝑥𝑦 

then "using (1) and (5) "     𝑥 (
∂𝑧

∂𝑥
) + 𝑦 (

∂𝑧

∂𝑦
) = 𝑧 + 𝑥𝑦 (

∂2𝑧

∂𝑥 ∂𝑦
)  … (6) 

Thus, we get three partial differential equations given by (4) and (6), which are all of 
order two. 

 

 

 

 

 

Exercise: IAN 

1- Ex    𝑥2 + 𝑦2 + (𝑧 − 𝑐)2 = 𝑎2   

2- Ex   𝑥2 + 𝑦2 = (𝑧 − 𝑐)2 tan2 𝑎   

3- (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 = 1   

4- 𝑧 = (𝑥 + 𝑎)(𝑦 + 𝑏)  

5- 2𝑧 = (𝑎𝑥 + 𝑦)2 + 𝑏   

6- 𝑎𝑥2 + 𝑏𝑦2 + 𝑧2 = 1  

 

Quiz one: 
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Rule II. Derivation of partial differential equation by the elimination of arbitrary function 
𝝓 from the equation 𝝓(𝒖, 𝒗) = 𝟎, where 𝒖 and 𝒗 are functions of 𝒙, 𝒚 and 𝐳. 

Proof. Given   𝜙(𝑢, 𝑣) = 0.  … (1) 
We treat 𝑧 as dependent variable and 𝑥 and 𝑦 as independent variables so that 
∂𝑧/ ∂𝑥 = 𝑝,   ∂𝑧/ ∂𝑦 = 𝑞,   ∂𝑦/ ∂𝑥 = 0   and   ∂𝑥/ ∂𝑦 = 0 
Differentiating (1) partially with respect to 𝑥, we get 

∂𝜙

∂𝑢
(

∂𝑢 ∂𝑥

∂𝑥 ∂𝑥
+

∂𝑢

∂𝑦

∂𝑦

∂𝑥
+

∂𝑢

∂𝑧

∂𝑧

∂𝑥
) +

∂𝜙

∂𝑣
(

∂𝑣

∂𝑥

∂𝑥

∂𝑥
+

∂𝑣

∂𝑦

∂𝑦

∂𝑥
+

∂𝑣

∂𝑧

∂𝑧

∂𝑥
) = 0 

or 

∂𝜙

∂𝑢
(

∂𝑢

∂𝑥
+ 𝑝

∂𝑢

∂𝑧
) +

∂𝜙

∂𝑣
(

∂𝑣

∂𝑥
+ 𝑝

∂𝑣

∂𝑧
) = 0 

∂𝜙

∂𝑢
/

∂𝜙

∂𝑣
= − (

∂𝑣

∂𝑥
+ 𝑝

∂𝑣

∂𝑧
) / (

∂𝑢

∂𝑥
+ 𝑝

∂𝑢

∂𝑧
)   …(2) 

Similarly, differentiating (1) partially w.r.t. ' 𝑦′, we get 

∂𝜙

∂𝑢
/

∂𝜙

∂𝑣
= − (

∂𝑣

∂𝑦
+ 𝑞

∂𝑣

∂𝑧
) / (

∂𝑢

∂𝑦
+ 𝑞

∂𝑢

∂𝑧
)   …(3) 

Eliminating 𝜙 with the help of (2) and (3), we get 

(
∂𝑣

∂𝑥
+ 𝑝

∂𝑣

∂𝑧
) / (

∂𝑢

∂𝑥
+ 𝑝

∂𝑢

∂𝑧
) = (

∂𝑣

∂𝑦
+ 𝑞

∂𝑣

∂𝑧
) / (

∂𝑢

∂𝑦
+ 𝑞

∂𝑢

∂𝑧
)

(
∂𝑢

∂𝑦
+ 𝑞

∂𝑢

∂𝑧
) (

∂𝑣

∂𝑥
+ 𝑝

∂𝑣

∂𝑧
) = (

∂𝑢

∂𝑥
+ 𝑝

∂𝑢

∂𝑧
) (

∂𝑣

∂𝑦
+ 𝑞

∂𝑣

∂𝑧
)

𝑃𝑝 + 𝑄𝑞 = 𝑅

 

𝑃 =
∂𝑢 ∂𝑣

∂𝑦 ∂𝑧
−

∂𝑢 ∂𝑣

∂𝑧 ∂𝑦
,  𝑄 =

∂𝑢 ∂𝑣

∂𝑧 ∂𝑥
−

∂𝑢 ∂𝑣

∂𝑥 ∂𝑧
,  𝑅 =

∂𝑢

∂𝑥

∂𝑣

∂𝑦
−

∂𝑢

∂𝑦

∂𝑣

∂𝑥
 

Thus we obtain a linear partial differential equation of first order and of first degree in 
𝑝 and 𝑞.  

Note. If the given equation between 𝑥, 𝑦, 𝑧 contains two arbitrary functions, then in 
general, their elimination gives rise to equations of higher order. 
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Example: Form a partial differential equation by eliminating the arbitrary functions 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise: IAN(P47) 

1- 𝑧 = 𝑥𝑦 + 𝑓(𝑥2 + 𝑦2)    

2- 𝑧 = 𝑥 + 𝑦 + 𝑓(𝑥𝑦)     

3- 𝑧 = 𝑓(
𝑥𝑦

𝑧
)      

4- 𝑧 = 𝑓(𝑥 − 𝑦)      
5- 𝑓(𝑥2 + 𝑦2 + 𝑧2, 𝑧2 − 2𝑥𝑦) = 0    
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The Origin of Second order Equations: 

Suppose that the function 𝑧 is given by an expression of the type 𝑧 = 𝑓(𝑢) + 𝑔(𝑣) + 𝑤 …(1) where 𝑓 and 

𝑔 are arbitrary functions of 𝑢 and 𝑣, respectively, and 𝑢, 𝑣 and 𝑤 are prescribed functions of 𝑥 and 𝑦. 

We find, on differentiating both sides of (1) w.r.t. 𝑥 and 𝑦, respectively, that  

𝑝 = 𝑓′(𝑢) ⋅ 𝑢𝑥 + 𝑔′(𝑣) ⋅ 𝑣𝑥 + 𝑤𝑥 → 𝑃 − 𝑤𝑥 = 𝑓′ ⋅ 𝑢𝑥 + 𝑔′ ⋅ 𝑣𝑥  

𝑞 = 𝑓′(𝑢)𝑢𝑦 + 𝑔′(𝑣) ⋅ 𝑣𝑦 + 𝑤𝑦 → 𝑞 − 𝑤𝑦 = 𝑓′ ⋅ 𝑢𝑦 + 𝑔′ ⋅ 𝑣𝑦  

and hence that 

𝑟 = 𝑓′(𝑢) ⋅ 𝑢𝑥𝑥 + 𝑓′′(𝑢) ⋅ 𝑢𝑥
2 + 𝑔′(𝑣) ⋅ 𝑣𝑥𝑥 + 𝑔′′(𝑣) ⋅ 𝑣𝑥

2 + 𝑤𝑥𝑥

 ⟶  𝑟 − 𝑤𝑥𝑥 = 𝑓′(𝑢) ⋅ 𝑢𝑥 + 𝑔′(𝑣) ⋅ 𝑣𝑥𝑥 + 𝑓′′(𝑢) ⋅ 𝑢𝑥
2 + 𝑔′(𝑣) ⋅ 𝑣𝑥

2

𝑆 = 𝑓′(𝑢) ⋅ 𝑢𝑥𝑦 + 𝑓′′(𝑢) ⋅ 𝑢𝑥𝑢𝑦 + 𝑔′(𝑣) ⋅ 𝑣𝑥𝑦 + 𝑔′′(𝑣) ⋅ 𝑣𝑥 ⋅ 𝑣𝑦 + 𝑤𝑥𝑦

 ⟶  𝑆 − 𝑤𝑥𝑦 = 𝑓′(𝑢)𝑢𝑥𝑦 + 𝑔(𝑣)𝑣𝑥𝑦 + 𝑓′′(𝑢) ⋅ 𝑢𝑥𝑢𝑦 + 𝑔′′(𝑣) ⋅ 𝑣𝑥𝑣𝑦 .

𝑡 = 𝑓′(𝑢) ⋅ 𝑢𝑦𝑦 + 𝑓′′(𝑢) ⋅ 𝑢𝑦
2 + 𝑔′(𝑣) ⋅ 𝑣𝑦𝑦 + 𝑔′′(𝑣) ⋅ 𝑣𝑦

2 + 𝑤𝑦𝑦

 ⟶ 𝑡 − 𝑤𝑦𝑦 = 𝑓′(𝑢) ⋅ 𝑢𝑦𝑦 + 𝑔(𝑣) ⋅ 𝑣𝑦𝑦 + 𝑓′′(𝑢) ⋅ 𝑢𝑦
2 + 𝑔′′(𝑣) ⋅ 𝑣𝑦

2.

 

We now have five equations involving the four arbitrary quantities  𝑓′, 𝑓′′, 𝑔′, 𝑔′′. 

If we eliminate these four quantities from the five equations, we obtain the relation: 

|

|

𝑝 − 𝑤𝑥 𝑢𝑥 𝑣𝑥 0 0
𝑞 − 𝑤𝑦 𝑢𝑦 𝑣𝑦 0 0

𝑟 − 𝑤𝑥𝑥 𝑢𝑥𝑥 𝑣𝑥𝑥 𝑢𝑥
2 𝑣𝑥

2

s − 𝑤𝑥𝑦 𝑢𝑥𝑦 𝑣𝑥𝑦 𝑢𝑥𝑢𝑦 𝑣𝑥𝑣𝑦

𝑠 − 𝑡𝑦𝑦 𝑢𝑦𝑦 𝑣𝑦𝑦 𝑢𝑦
2 𝑣𝑦

2

|

|
= 0    …(2) 

which involves only the derivatives 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 and unknown functions of 𝑥 and 𝑦. 

It is therefore a P.D.E. of the second order. 

Example : Form a partial differential equation by eliminating the arbitrary functions 𝑓 and 𝑔 from the relation 

𝑧 = 𝑓(𝑥 + 𝑦) + 𝑔(𝑥 − 𝑦) where 𝑎 is a constant. 

Ans. 𝑃 = 𝑓′ + 𝑔′ ⟶ 𝑟 = 𝑓′′ + 𝑔′′ 

 𝑞 = 𝑓′ − 𝑔′ →  𝑡 = 𝑓′′ + 𝑔′′ 

   ⟶  𝑡 = 𝑟 is the P.D.E. of second order. 
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Example IAN: Form a partial differential equation by eliminating the arbitrary functions 

1- 𝑧 = 𝑓(𝑥 + 𝑎𝑦) + 𝑔(𝑥 − 𝑎𝑦)     

 

Exercise: (IAN) 

1- Verify that the partial differential equation   
∂2𝑧

∂𝑥2
−

∂2𝑧

∂𝑦2
=

2𝑧

𝑥2
   is satisfied by  

𝑧 =
1

𝑥
𝜙(𝑦 − 𝑥) + 𝜙′(𝑦 − 𝑥)   where 𝜙 is an arbitrary function. 

2- If 𝑢 = 𝑓(𝑥 + 𝑖𝑦) + 𝑔(𝑥 − 𝑖𝑦), where the functions 𝑓 and 𝑔 are arbitrary, show that 
∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
= 0.  

3- Show that if 𝑓 and 𝑔 are arbitrary functions of a single variable, then  

𝑢 = 𝑓(𝑥 − 𝑣𝑡 + 𝑖𝛼𝑦) + 𝑔(𝑥 − 𝑣𝑡 − 𝑖𝛼𝑦) is a solution of the equation  
∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
=

1

𝑐2

∂2𝑢

∂𝑡2
   provided that   𝛼2 = 1 − 𝑣2/𝑐2. 

4- If   𝑧 = 𝑓(𝑥2 − 𝑦) + 𝑔(𝑥2 + 𝑦) where the functions 𝑓, 𝑔 are arbitrary, prove that 
∂2𝑧

∂𝑥2
−

1

𝑥

∂𝑧

∂𝑥
= 4𝑥2 ∂2𝑧

∂𝑦2
  

5-  A variable 𝑧 is defined in terms of variables 𝑥, 𝑦 as the result of eliminating 𝑡 from the equations 
𝑧 = t𝑥 + 𝑦𝑓(𝑡) + 𝑔(𝑡)

0 = 𝑥 + 𝑦𝑓′(𝑡) + 𝑔′(𝑡)
 

Prove that, whatever the functions 𝑓 and 𝑔 may be, the equation 𝑟𝑡 − 𝑠2 = 0 is satisfied. 

 

 

Quiz  two: 
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Chapter  2 

Partial differential equations of order one 

2.1 LAGRANGE’S EQUATION 

A quasi–linear partial differential equation of order one is of the form 𝑃𝑝 +  𝑄𝑞 =  𝑅, 

where 𝑃, 𝑄 and 𝑅 are functions of 𝑥, 𝑦, 𝑧. Such a partial differential equation is known 

as Lagrange equation. 

For example 𝑥𝑦𝑝 +  𝑦𝑧𝑞 =  𝑧𝑥 is a Lagrange equation. 

Theorem. The general solution of Lagrange equation 𝑃𝑝 + 𝑄𝑞 = 𝑅  … (1) is 
𝜙(𝑢, 𝑣) = 0   … (2) where 𝜙 is an arbitrary function and 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 
𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 are two independent solutions of 

𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
  … (3) 

Here, 𝑐1 and 𝑐2 are arbitrary constants and at least one of 𝑢, 𝑣 must contain z. 
Proof. Differentiating (2) partially w.r.t. ' 𝑥 ' and ' 𝑦 ', we get 

∂𝜙

∂𝑢
(

∂𝑢

∂𝑥
+ 𝑝

∂𝑢

∂𝑧
) +

∂𝜙

∂𝑣
(

∂𝑣

∂𝑥
+ 𝑝

∂𝑣

∂𝑧
) = 0 … (4) 

∂𝜙

∂𝑢
(

∂𝑢

∂𝑦
+ 𝑞

∂𝑢

∂𝑧
) +

∂𝜙

∂𝑣
(

∂𝑣

∂𝑦
+ 𝑞

∂𝑣

∂𝑧
) = 0 … (5)

 

Eliminating ∂𝜙/ ∂𝑢 and ∂𝜙/ ∂𝑣 between (5) and (6), we have 

|
∂𝑢/ ∂𝑥 + 𝑝(∂𝑢/ ∂𝑧) ∂𝑣/ ∂𝑥 + 𝑝(∂𝑣/ ∂𝑧)
∂𝑢/ ∂𝑦 + 𝑞(∂𝑢/ ∂𝑧) ∂𝑣/ ∂𝑦 + 𝑞(∂𝑣/ ∂𝑧)

| = 0 

or    (
∂𝑢

∂𝑥
+ 𝑝

∂𝑢

∂𝑧
) (

∂𝑣

∂𝑦
+ 𝑞

∂𝑣

∂𝑧
) − (

∂𝑢

∂𝑦
+ 𝑞

∂𝑢

∂𝑧
) (

∂𝑣

∂𝑥
+ 𝑝

∂𝑣

∂𝑧
) = 0  

or    (
∂𝑢

∂𝑧

∂𝑣

∂𝑦
−

∂𝑢

∂𝑦

∂𝑣

∂𝑧
) 𝑝 + (

∂𝑢

∂𝑥

∂𝑣

∂𝑧
−

∂𝑢

∂𝑧

∂𝑣

∂𝑥
) 𝑞 +

∂𝑢

∂𝑥

∂𝑣

∂𝑦
−

∂𝑢

∂𝑦

∂𝑣

∂𝑥
= 0  

∴  (
∂𝑢

∂𝑦

∂𝑣

∂𝑧
−

∂𝑢

∂𝑧

∂𝑣

∂𝑦
) 𝑝 + (

∂𝑢

∂𝑧

∂𝑣

∂𝑥
−

∂𝑢

∂𝑥

∂𝑣

∂𝑧
) 𝑞 =

∂𝑢

∂𝑥

∂𝑣

∂𝑦
−

∂𝑢

∂𝑦

∂𝑣

∂𝑥
  … (6) 

 
Hence (2) is a solution of the equation (6) 
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Taking the differentials of 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2, we get 

         (
∂𝑢

∂𝑥
) 𝑑𝑥 + (

∂𝑢

∂𝑦
) 𝑑𝑦 + (

∂𝑢

∂𝑧
) 𝑑𝑧 = 0 … (7) or  𝑢𝑥𝑑𝑥 + 𝑢𝑦𝑑𝑦 + 𝑢𝑧𝑑𝑧 = 0 

and   (
∂𝑣

∂𝑥
) 𝑑𝑥 + (

∂𝑣

∂𝑦
) 𝑑𝑦 + (

∂𝑣

∂𝑧
) 𝑑𝑧 = 0  … (8) or 𝑣𝑥𝑑𝑥 + 𝑣𝑦𝑑𝑦 + 𝑣𝑧𝑑𝑧 = 0 

 

 

 

 

 

 

 

 

Since 𝑢 and 𝑣 are independent functions, solving (7) and (8) for the ratios 𝑑𝑥: 𝑑𝑦: 𝑑𝑧, 
gives 

𝑑𝑥

∂𝑢
∂𝑦

∂𝑣
∂𝑧

−
∂𝑢
∂𝑧

∂𝑣
∂𝑦

=
𝑑𝑦

∂𝑢
∂𝑧

∂𝑣
∂𝑥

−
∂𝑢
∂𝑥

∂𝑣
∂𝑧

=
𝑑𝑧

∂𝑢
∂𝑥

∂𝑣
∂𝑦

−
∂𝑢
∂𝑦

∂𝑣
∂𝑥

  … (9) 

Comparing (3) and (9), we obtain 
∂𝑢
∂𝑦

∂𝑣
∂𝑧

−
∂𝑢
∂𝑧

∂𝑣
∂𝑦

𝑃
=

∂𝑢
∂𝑧

∂𝑣
∂𝑥

−
∂𝑢
∂𝑥

∂𝑣
∂𝑧

𝑄
=

∂𝑢
∂𝑥

∂𝑣
∂𝑦

−
∂𝑢
∂𝑦

∂𝑣
∂𝑥

𝑅
= 𝑘, say  

⇒
∂𝑢

∂𝑦

∂𝑣

∂𝑧
−

∂𝑢

∂𝑧

∂𝑣

∂𝑦
= 𝑘𝑃,  

∂𝑢

∂𝑧

∂𝑣

∂𝑥
−

∂𝑢

∂𝑥

∂𝑣

∂𝑧
= 𝑘𝑄  and  

∂𝑢

∂𝑥

∂𝑣

∂𝑦
−

∂𝑢

∂𝑦

∂𝑣

∂𝑥
= 𝑘𝑅 

Substituting these values in (6), we get  𝑘(𝑃𝑝 + 𝑄𝑞) = 𝑘𝑅  or  𝑃𝑝 + 𝑄𝑞 = 𝑅, which 
is the given equation (1). 
Therefore, if 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 are two independent solutions of the 
system of differential equations (𝑑𝑥)/𝑃 = (𝑑𝑦)/𝑄 = (𝑑𝑧)/𝑅, then 𝜙(𝑢, 𝑣) = 0 is a 
solution of 𝑃𝑝 + 𝑄𝑞 = 𝑅, 𝜙 being an arbitrary function. This is what we wished to 
prove.    
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2.2 Methods for solving Lagrange’s auxiliary equations  
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
  … (1) 

2.2.1 Type 1  

Suppose that one of the variables is either absent or cancels out from any two fractions 
of given equations (1). Then an integral can be obtained by the usual methods. The 
same procedure can be repeated with another set of two fractions of given equations 
(1). 

Example: 

1-  
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2.2.2 Type 2  

Suppose that one integral of (1) is known by using rule I explained in section 2.2.1 and 
suppose also that another integral cannot be obtained by using rule I of section. 2.5. 
Then one integral known to us is used to find another integral. Note that in the second 
integral, the constant of integration of first integral should be removed later on. 

 

 

Example: 
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2.2.3 Type 3  

Let 𝑃1, 𝑄1 and 𝑅1 be functions of 𝑥, 𝑦 and 𝑧. Then, by a well-known principle of algebra, 
each fraction in (1) will be equal to 

(𝑃1𝑑𝑥 + 𝑄1𝑑𝑦 + 𝑅1𝑑𝑧)

(𝑃1𝑃 + 𝑄1𝑄 + 𝑅1𝑅)
 … (2) 

If 𝑃1𝑃 + 𝑄1𝑄 + 𝑅1𝑅 = 0, then we know that the numerator of (2) is also zero. This 
gives 𝑃1𝑑𝑥 + 𝑄1𝑑𝑦 + 𝑅1𝑑𝑧 = 0 which can be integrated to give 𝑢1(𝑥, 𝑦, 𝑧) = 𝑐1. This 
method may be repeated to get another integral 𝑢2(𝑥, 𝑦, 𝑧) = 𝑐2. 𝑃1, 𝑄1, 𝑅1 are called 
multipliers. As a special case, these can be constants also. Sometimes only one integral 
is possible by use of multipliers. In such cases second integral should be obtained by 
using rule I of section. 2.2.1 or rule II of section. 2.2.2 as the case may be. 

 

 

 

 

 

 

Example: 

1-  
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2.2.4 Type 4 

Let 𝑃1, 𝑄1 and 𝑅1 be functions of 𝑥, 𝑦 and 𝑧. Then, by a well-known principle of algebra, 
each fraction of (1) will be equal to 

(𝑃1𝑑𝑥 + 𝑄1𝑑𝑦 + 𝑅1𝑑𝑧)

(𝑃1𝑃 + 𝑄1𝑄 + 𝑅1𝑅)
  … (2) 

Suppose the numerator of (2) is exact differential of the denominator of (2). Then (2) 
can be combined with a suitable fraction in (1) to give an integral. However, in some 
problems, another set of multipliers 𝑃2, 𝑄2 and 𝑅2 are so chosen that the fraction 

(𝑃2𝑑𝑥 + 𝑄2𝑑𝑦 + 𝑅2𝑑𝑧)

(𝑃2𝑃 + 𝑄2𝑄 + 𝑅2𝑅)
  … (3) 

is such that its numerator is exact differential of denominator. Fractions (2) and (3) are 
then combined to given an integral. This method may be repeated in some problems 
to get another integral. Sometimes only one integral is possible by using the above rule 
IV. In such cases second integral should be obtained by using rule 1 of section. 2.2.1 or 
rule 2 of section. 2.2.2 or rule 3 of section. 2.2.3. 
 

 

 

 

 

 

Example: 
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Exercise: (IAN P55) 

1- 𝑧(𝑥𝑝 − 𝑦𝑞) = 𝑦2 − 𝑥2  

2- 𝑝𝑥(𝑧 − 2𝑦2) = (𝑧 − 𝑞𝑦)(𝑧 − 𝑦2 − 2𝑥3)  

3- 𝑝𝑥(𝑥 + 𝑦) = 𝑞𝑦(𝑥 + 𝑦) − (𝑥 − 𝑦)(2𝑥 + 2𝑦 + 𝑧)   

4- 𝑦2𝑝 − 𝑥𝑦𝑞 = 𝑥(𝑧 − 2𝑦)     

5- (𝑦 + 𝑥𝑧)𝑝 − (𝑥 + 𝑦𝑧)𝑞 = 𝑥2 − 𝑦2 

6- 𝑥(𝑥2 + 3𝑦2)𝑝 − 𝑦(3𝑥2 + 𝑦2)𝑞 = 2𝑧(𝑦2 − 𝑥2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quiz three: 
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2.3 Integral surfaces passing through a given curve.  

We shall now present two methods of using such a general solution for getting the 
integral surface which passes through a given curve.  

2.3.1 Method I.  

Let 𝑃𝑝 + 𝑄𝑞 = 𝑅 ...(1) be the given equation. Let its auxiliary equations give the 
following two independent solutions   𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2. ...(2) 
Suppose we wish to obtain the integral surface which passes through the curve whose 
equation in parametric form is given by   𝑥 = 𝑥(𝑡), 𝑦 = (𝑡), 𝑧 = 𝑧(𝑡) ...(3) 
where 𝑡 is a parameter.  
Then (2) may be expressed as: 
𝑢[𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] = 𝑐1 and 𝑣[𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] = 𝑐2. ...(4) 
We eliminate single parameter t from the equations of (4) and get a relation involving 
𝑐1 and 𝑐2. Finally, we replace 𝑐1 and 𝑐2with help of (2) and obtain the required integral 
surface. 
2.3.2 Method II.  

Let 𝑃𝑝 + 𝑄𝑞 = 𝑅 ...(1) be the given equation. Let is Lagrange’s auxiliary equations give 
the following two independent integrals 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2. ...(2) 
Suppose we wish to obtain the integral surface passing though the curve which is 
determined by the following two equations 𝐺(𝑥, 𝑦, 𝑧) = 0 and 𝐻(𝑥, 𝑦, 𝑧) = 0. ...(3) 
We eliminate 𝑥, 𝑦, 𝑧 from four equations of (2) and (3) and obtain a relation between 
𝑐1 and 𝑐2. Finally, replace 𝑐1 by 𝑢(𝑥, 𝑦, 𝑧) and 𝑐2 by 𝑣(𝑥, 𝑦, 𝑧) in that relation and obtain 
the desired integral surface. 

Example: 

1. (IAN ex) Find the integral surface of the linear PDE 𝑥(𝑦2 + 𝑧)𝑝– 𝑦(𝑥2 + 𝑧)𝑞 =
(𝑥2– 𝑦2)𝑧 which contains the straight line 𝑥 + 𝑦 = 0, 𝑧 = 1. 
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1.4 SURFACES ORTHOGONAL TO A GIVEN SYSTEM OF SURFACES 

 

Let 𝑓(𝑥, 𝑦, 𝑧) = 𝐶 ...(1) represents a system of 
surfaces where 𝐶 is parameter.  

We want to find a collection of surfaces which cut 
each of these given surfaces (1) at right angles. 

Let the surface 𝐹(𝑥, 𝑦, 𝑧) = 𝑧(𝑥, 𝑦) − 𝑧 = 0 ...(2) 
cuts each surface of (1) at right angles. 

At a point of intersection (𝑥, 𝑦, 𝑧) , observe that 

∇𝑓 = (
∂𝑓

∂𝑥
 ,

∂𝑓

∂y
 ,

∂𝑓

∂z
) is the normal to the surface (1). 

Similarly, ∇𝐹 = (
∂𝑧

∂𝑥
 ,

∂𝑧

∂y
 , −1) is the normal to the 

surface (2). 

 

 

 

Since both the surfaces intersect orthogonally, at 
point of intersection (𝑥, 𝑦, 𝑧) their respective 
normals are perpendicular.  

∇𝑓. ∇𝐹 = 𝑓𝑥𝑧𝑥 + 𝑓𝑦𝑧𝑦 + 𝑓𝑧(−1) = 0 

𝑓𝑥𝑝 + 𝑓𝑦𝑞 = 𝑓𝑧    …(3) 

Therefore, integral surface of quasi-linear P.D.E. (3) is orthogonal to the given surface (1). 

Conversely, we easily verify that any solution of (3) is orthogonal to every surface of (1). 

Example: 

1- (IAN ex) Find the surface which intersects the surfaces of the system 𝑧(𝑥 + 𝑦)  =  𝑐(3𝑧 + 1) 

orthogonally and which passes through the circle 𝑥2 + 𝑦2 = 1, 𝑧 = 1. 
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Exercise: (IAN57,P59) 

1- Find the equation of the integral surface of the differential equation  
2𝑦(𝑧 − 3)𝑝 + (2𝑥 − 𝑧)𝑞 = 𝑦(2𝑥 − 3) which passes through the circle 𝑧 = 0, 𝑥2 + 𝑦2 = 2𝑥. 

2- Find the general integral of the P.D.E. (2𝑥𝑦 − 1)𝑝 + (𝑧 − 2𝑥2)𝑞 = 2(𝑥 − 𝑦𝑧) and also the 
particular integral which passes through the line 𝑥 = 1, 𝑦 = 0. 

3- Find the integral surface of the equation (𝑥 − 𝑦)𝑦2𝑝 + (𝑦 − 𝑥)𝑥2𝑞 = 𝑧(𝑥2 + 𝑦2)  
through the curve 𝑥𝑧 = 𝑎3, 𝑦 = 0. 
 

4- Find the general solution of the equation 2𝑥(𝑦 + 𝑧2)𝑝 + 𝑦(2𝑦 + 𝑧2)𝑞 = 𝑧3 and deduce that 
𝑦𝑧(𝑧2 + 𝑦𝑧 − 2𝑦) = 𝑥2 is a solution.   
 

5- Find the general integral of the equation (𝑥 − 𝑦)𝑝 + (𝑦 − 𝑥 − 𝑧)𝑞 = 𝑧 and the particular 
solution through the circle 𝑧 = 1, 𝑥2 + 𝑦2 = 1. 

6- Find the general solution of the differential equation  
𝑥(𝑧 + 2𝑎)𝑝 + (𝑥𝑧 + 2𝑦𝑧 + 2𝑎𝑦)𝑞 = 𝑧(𝑧 − 𝑎) 

Find also the integral surfaces which pass through the curves: 
(a) 𝑦 = 0,  𝑧2 = 4𝑎𝑥 
(b) 𝑦 = 0,  𝑧3 + 𝑥(𝑧 + 𝑎)2 = 0 

7- Find the surface which is orthogonal to the one-parameter system 𝑧 = 𝑐𝑥𝑦 (𝑥2 + 𝑦2)and 
which passes through the hyperbola 𝑥2 − 𝑦2 = 𝑎2, 𝑧 = 0. 

8- Find the equation of the system of surfaces which cut orthogonally the cones of the system 
𝑥2 + 𝑦2 + 𝑧2 = 𝑐𝑥𝑦. 

9- Find the general equation of surfaces orthogonal to the family given by: 

a) 𝑥(𝑥2 + 𝑦2 + 𝑧2) = 𝑐1𝑦2   Ans. 4𝑥𝑑𝑥 + 2𝑦𝑑𝑦 = 𝑑𝑧 

showing that one such orthogonal set consists of the family of spheres given by 
b) 𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑧  

If a family exists, orthogonal to both (𝑎) and (𝑏), show that it must satisfy 
2𝑥(𝑥2 − 𝑧2)𝑑𝑥 + y(3𝑥2 + 𝑦2 − 𝑧2)𝑑𝑦 + 2𝑧(2𝑥2 + 𝑦2)𝑑𝑧 = 0 

Show that such a family in fact exists, and find its equation. 

10- Show that the integral surface of (𝑥2 + 𝑦2 − 𝑎2)(𝑥𝑝 + 𝑦𝑞) = 𝑧(𝑥2 + 𝑦2) are generated 

by conics, and find the integral surface through the curve 𝑥 = 2𝑧, 𝑥2 + 𝑦2 = 4𝑎2 . 
 

 

 

Quiz four:  



 

21 
 

Chapter  3 

Nonlinear Partial Differential Equations of the First Order 

3.1 Charpit’s method 

Let the given partial differential equation of first order and non-linear in 𝑝 and 𝑞 be 

𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 … (1). 

We know that   𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 … (2). 

The next step consists in finding another relation 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 … (3) such that 
when the values of 𝑝 and 𝑞 obtained by solving (1) and (3), are substituted in (2), it 
becomes integrable. The integration of (2) will give the complete integral of (1). 

In order to obtain (2), differentiate partially (1) and (3) with respect to 𝑥 and 𝑦 and 
get 

∂𝑓

∂𝑥
+

∂𝑓

∂𝑧
𝑝 +

∂𝑓

∂𝑝

∂𝑝

∂𝑥
+

∂𝑓

∂𝑞

∂𝑞

∂𝑥
= 0  … (4)

∂𝐹

∂𝑥
+

∂𝐹

∂𝑧
𝑝 +

∂𝐹

∂𝑝

∂𝑝

∂𝑥
+

∂𝐹

∂𝑞

∂𝑞

∂𝑥
= 0  … (5)

∂𝑓

∂𝑦
+

∂𝑓

∂𝑧
𝑞 +

∂𝑓

∂𝑝

∂𝑝

∂𝑦
+

∂𝑓

∂𝑞

∂𝑞

∂𝑦
= 0  … (6)

∂𝐹

∂𝑦
+

∂𝐹

∂𝑧
𝑞 +

∂𝐹

∂𝑝

∂𝑝

∂𝑦
+

∂𝐹

∂𝑞

∂𝑞

∂𝑦
= 0  … (7)

 

Eliminating ∂𝑝/ ∂𝑥 from (4) and (5), we get 

(
∂𝑓

∂𝑥
+

∂𝑓

∂𝑧
𝑝 +

∂𝑓

∂𝑞

∂𝑞

∂𝑥
)

∂𝐹

∂𝑝
− (

∂𝐹

∂𝑥
+

∂𝐹

∂𝑧
𝑝 +

∂𝐹

∂𝑞

∂𝑞

∂𝑥
)

∂𝑓

∂𝑝
= 0

 or (
∂𝑓

∂𝑥

∂𝐹

∂𝑝
−

∂𝐹

∂𝑥

∂𝑓

∂𝑝
) + (

∂𝑓

∂𝑧

∂𝐹

∂𝑝
−

∂𝐹

∂𝑧

∂𝑓

∂𝑝
) 𝑝 + (

∂𝑓

∂𝑞

∂𝐹

∂𝑝
−

∂𝐹

∂𝑞

∂𝑓

∂𝑝
)

∂𝑞

∂𝑥
= 0  … (8)

 

Similarly, eliminating ∂𝑞/ ∂𝑦 from (6) and (7), we get 

(
∂𝑓

∂𝑦

∂𝐹

∂𝑞
−

∂𝐹

∂𝑦

∂𝑓

∂𝑞
) + (

∂𝑓

∂𝑧

∂𝐹

∂𝑞
−

∂𝐹

∂𝑧

∂𝑓

∂𝑞
) 𝑞 + (

∂𝑓

∂𝑝

∂𝐹

∂𝑞
−

∂𝐹

∂𝑝

∂𝑓

∂𝑞
)

∂𝑝

∂𝑦
= 0  … (9) 

Since ∂𝑞/ ∂𝑥 = ∂2𝑧/ ∂𝑥 ∂𝑦 = ∂𝑝/ ∂𝑦, the last term in (8) is the same as that in (9), 
except for a minus sign and hence they cancel on adding (8) and (9). 
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Therefore, adding (8) and (9) and rearranging the terms, we obtain 

(
∂𝑓

∂𝑥
+ 𝑝

∂𝑓

∂𝑧
)

∂𝐹

∂𝑝
+ (

∂𝑓

∂𝑦
+

∂𝑓

∂𝑧
𝑞)

∂𝐹

∂𝑞
+ (−𝑝

∂𝑓

∂𝑝
− 𝑞

∂𝑓

∂𝑞
)

∂𝐹

∂𝑧
+ (−

∂𝑓

∂𝑝
)

∂𝐹

∂𝑥

+ (−
∂𝑓

∂𝑞
)

∂𝐹

∂𝑦
= 0  … (10) 

This is a linear equation of the first order to obtain the desired function 𝐹. As in 
chapter 2, integral of (10) is obtained by solving the auxiliary equations 

𝑑𝑝

(∂𝑓/ ∂𝑥) + 𝑝(∂𝑓/ ∂𝑧)
=

𝑑𝑞

(∂𝑓/ ∂𝑦) + 𝑞(∂𝑓/ ∂𝑧)
=

𝑑𝑧

−𝑝(∂𝑓/ ∂𝑝) − 𝑞(∂𝑓/ ∂𝑞)

=
𝑑𝑥

− ∂𝑓/ ∂𝑝
=

𝑑𝑦

− ∂𝑓/ ∂𝑞
=

𝑑𝐹

0
   … (11). 

Since any of the integrals of (11) will satisfy (10), an integral of (11) which involves 𝑝 or 
𝑞 (or both) will serve along with the given equation to find 𝑝 and 𝑞. In practice, 
however, we shall select the simplest integral. 

Note. In what follows we shall use the following standard notations: 

∂𝑓/ ∂𝑥 = 𝑓𝑥 ,  ∂𝑓/ ∂𝑦 = 𝑓𝑦 ,  ∂𝑓/ ∂𝑧 = 𝑓𝑧 ,  ∂𝑓/ ∂𝑝 = 𝑓𝑝,  ∂𝑓/ ∂𝑞 = 𝑓𝑞 . 

Therefore, Charpit's auxiliary equations (11) may be re-written as 

𝑑𝑝

𝑓𝑥 + 𝑝𝑓𝑧
=

𝑑𝑞

𝑓𝑦 + 𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝 − 𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
=

𝑑𝐹

0
  … (11′) 

WORKING RULE WHILE USING CHARPIT'S METHOD 

Step 1. Transfer all terms of the given equation to L.H.S. and denote the entire 
expression by 𝑓. 

Step 2. Write down the Charpit's auxiliary equations (11) or (11)'. 

Step 3. Using the value of 𝑓 in step 1 write down the values of ∂𝑓/ ∂𝑥, ∂𝑓𝑙 ∂𝑦 …, i.e., 
𝑓𝑥 , 𝑓𝑦 , … etc. occuring in step 2 and put these in Charpit's equations (11) or (11)'. 

Step 4. After simplifying the step 3, select two proper fractions so that the resulting 
integral may come out to be the simplest relation involving at least one of 𝑝 and 𝑞. 

Step 5. The simplest relation of step 4 is solved along with the given equation to 
determine 𝑝 and 𝑞. Put these values of 𝑝 and 𝑞 in 𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 which on 
integration gives the complete integral of the given equation. 
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The Singular and General integrals may be obtained in the usual manner. 

Remark. Sometimes Charpit's equations give rise to 𝑝 = 𝑎 and 𝑞 = 𝑏, where 𝑎 and 𝑏 
are constants. In such cases, putting 𝑝 = 𝑎 and 𝑞 = 𝑏 in the given equation will give 
the required complete integral. 

Special methods of solutions applicable to certain standard forms: 

We have already discussed the general method (i.e., Charpit’s method). We now 
discuss four standard forms to which many equations can be reduced, and for which a 
complete integral can be obtained by inspection or by other shorter methods. 

Standard Form I. Only p and q present (Equations involving only p and q): 

Under this standard form, we consider equations of the form  𝑓(𝑝, 𝑞) = 0 … (1). 

Charpit's auxiliary equations are  
𝑑𝑝

𝑓𝑥+𝑝𝑓𝑧
=

𝑑𝑞

𝑓𝑦+𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
 

giving 
𝑑𝑝

0
=

𝑑𝑞

0
, by (1) 

Taking the first ratio,  𝑑𝑝 = 0  so that  𝑝 = constant = 𝑎, say ...(2) 
Taking the second ratio,  𝑑𝑞 = 0  so that  𝑞 =constant = b, say ...(3) 
substituting (2) and (3) in (1), we get  𝑓(𝑎, 𝑞) = 0 … (4) 
Then,  𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 𝑎𝑑𝑥 + 𝑏𝑑𝑦, using (2) and (3). 
Integrating,  𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐  … (5) 
where 𝑐 is an arbitrary constant. (5) together with (4) give the required solution. 
Now solving (4) for 𝑏, suppose we obtain 𝑏 = 𝐹(𝑎). 
Putting this value of 𝑏 in (5), the complete integral of (1) is 

𝑧 = 𝑎𝑥 + 𝑦𝐹(𝑎) + 𝑐 

Examples: Find a complete integral of  

1- (IAN ex71)𝑝𝑞 = 1. 
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Standard form II. Clairaut equation: 

A first order partial differential equation is said to be of Clairaut form if it can be 
written in the form   𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑓(𝑝, 𝑞). … (1). 

Let  𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) ≡ 𝑝𝑥 + 𝑞𝑦 + 𝑓(𝑝, 𝑞) − 𝑧 … (2) 

 Charpit's auxiliary equations are 

𝑑𝑝

∂𝐹
∂𝑥

+ 𝑝
∂𝐹
∂𝑧

=
𝑑𝑞

∂𝐹
∂𝑦

+ 𝑞
∂𝐹
∂𝑧

=
𝑑𝑧

−𝑝
∂𝐹
∂𝑝

− 𝑞
∂𝐹
∂𝑞

=
𝑑𝑥

−
∂𝐹
∂𝑝

=
𝑑𝑦

−
∂𝐹
∂𝑞

 

or  
𝑑𝑝

0
=

𝑑𝑞

0
=

𝑑𝑧

−𝑝𝑥−𝑞𝑦−𝑝(∂𝑓/∂𝑝)−𝑞(∂𝑓/∂𝑞)
=

𝑑𝑥

−𝑥−(∂𝑓/∂𝑝)
=

𝑑𝑦

−𝑦−(∂𝑓/∂𝑞)
, by (1) 

Then, first and second fractions ⇒ 𝑑𝑝 = 0 and 𝑑𝑞 = 0 ⇒ 𝑝 = 𝑎 and 𝑞 = 𝑏. 

Substituting these values in (1), the complete integral is  𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑓(𝑎, 𝑏) 

Remark 1. Observe that the complete integral of (1) is obtained by merely replacing 𝑝 
and 𝑞 by 𝑎 and 𝑏 respectively. Singular and general integrals can be obtained by usual 
methods. 

Remark 2. Sometimes change of variables can be employed to transform a given 
equation to standard form II. 

 

Examples: Find a complete integral of  

1- (IAN ex73)(𝑧 − 𝑝𝑥 − 𝑞𝑦)(𝑝 + 𝑞) = 1. 
2- (IAN61)𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑝 + 𝑞 − 𝑝𝑞 
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Standard form III. Only p, q and z present (Not involving the independent variable): 

Under this standard form we consider differential equation of the form 

𝑓(𝑝, 𝑞, 𝑧) = 0 … (1) 

Charpit's auxiliary equations are 

𝑑𝑝

∂𝑓
∂𝑥

+ 𝑝
∂𝑓
∂𝑧

=
𝑑𝑞

∂𝑓
∂𝑦

+ 𝑞
∂𝑓
∂𝑧

=
𝑑𝑧

−𝑝
∂𝑓
∂𝑝

− 𝑞
∂𝑓
∂𝑞

=
𝑑𝑥

−
∂𝑓
∂𝑝

=
𝑑𝑦

−
∂𝑓
∂𝑞

 

or  
𝑑𝑝

𝑝(∂𝑓/∂𝑧)
=

𝑑𝑞

𝑞(∂𝑓/∂𝑧)
=

𝑑𝑧

−𝑝(∂𝑓/∂𝑝)−𝑞(∂𝑓/∂𝑞)
=

𝑑𝑥

− ∂𝑓/∂𝑝
=

𝑑𝑦

− ∂𝑓/∂𝑞
, using (1) 

Taking the first two ratios, 
(1/𝑝)𝑑𝑝 = (1/𝑞)𝑑𝑞 
Integrating, 𝑞 = 𝑎𝑝, 𝑎 being an arbitrary constant.   … (2) 

Now,  𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 𝑝𝑑𝑥 + 𝑎𝑝𝑑𝑦, using (2) 
or 𝑑𝑧 = 𝑝(𝑑𝑥 + 𝑎𝑑𝑦) = 𝑝𝑑(𝑥 + 𝑎𝑦) = 𝑝𝑑𝑢,   … (3)  

Where 𝑢 = 𝑥 + 𝑎𝑦   … (4) 

Now, (3) → 𝑝 = 𝑑𝑧/𝑑𝑢   and so by (2)   𝑞 = 𝑎𝑝 = 𝑎(
𝑑𝑧

𝑑𝑢
)  

Substituting these values of 𝑝 and 𝑞 in (1), we get 𝑓 (
𝑑𝑧

𝑑𝑢
, 𝑎

𝑑𝑧

𝑑𝑢
, 𝑧) = 0 … (5) 

which is an ordinary differential equation of first order. Solving (5), we get 𝑧 as a 
function of 𝑢. Complete integral is then obtained by replacing 𝑢 by (𝑥 + 𝑎𝑦). 

 

Examples: Find a complete integral of  

1- (IAN ex72)𝑝2𝑧2 + 𝑞2 = 1. 
2- (IAN60)𝑧2(𝑝2 + 𝑞2 + 1) = 1. 

3- (IAN61)𝑧 =
1

𝑝
+

1

𝑞
. 

4- (IAN66)𝑧 = 𝑝𝑞. 
5- (IAN66)(1 + 𝑞2)𝑧 = 𝑝𝑥. 
6- (IAN66)𝑧 = 𝑝2 − 𝑞2. 
7- (IAN66)𝑝2 + 𝑞2 = 4𝑧. 
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Standard form IV. Equation of the form 𝒇𝟏(𝒙, 𝒑) = 𝒇𝟐(𝒚, 𝒒) (Separable Equ.): 

i.e., a form in which 𝑧 does not appear and the terms containing 𝑥 and 𝑝 are on one 
side and those containing 𝑦 and 𝑞 on the other side. 

Let 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑓1(𝑥, 𝑝) − 𝑓2(𝑦, 𝑞) = 0 … (1) 
Then Charpit's auxiliary equations are 

𝑑𝑝

∂𝐹
∂𝑥

+ 𝑝
∂𝐹
∂𝑧

=
𝑑𝑞

∂𝐹
∂𝑦

+ 𝑞
∂𝐹
∂𝑧

=
𝑑𝑧

−𝑝
∂𝐹
∂𝑝

− 𝑞
∂𝐹
∂𝑞

=
𝑑𝑥

−
∂𝐹
∂𝑝

=
𝑑𝑦

−
∂𝐹
∂𝑞

 

Or by (1)  
𝑑𝑝

∂𝑓1/∂𝑥
=

𝑑𝑞

− ∂𝑓2/∂𝑦
=

𝑑𝑧

−𝑝(∂𝑓1/∂𝑝)+𝑞(∂𝑓2/∂𝑞)
=

𝑑𝑥

− ∂𝑓1/∂𝑝
=

𝑑𝑦

∂𝑓2/∂𝑞
  

Taking the first and the fourth ratios, we have  
(∂𝑓1/ ∂𝑝)𝑑𝑝 + (∂𝑓1/ ∂𝑥)𝑑𝑥 = 0  or  𝑑𝑓1 = 0 
Integrating,  𝑓1 = 𝑎, 𝑎 being an arbitrary constant. 

 ∴  (1) ⇒  𝑓1(𝑥, 𝑝) = 𝑓2(𝑦, 𝑞) = 𝑎 … (2)  

Now, (2) ⇒  𝑓1(𝑥, 𝑝) = 𝑎 and 𝑓2(𝑦, 𝑞) = 𝑎 … (3) 
From (3), on solving for 𝑝 and 𝑞 respectively, we get 
𝑝 = 𝐹1(𝑥, 𝑎), and 𝑞 = 𝐹2(𝑦, 𝑎) … (4) 

Substituting these values in 𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦, we get 𝑑𝑧 = 𝐹1(𝑥, 𝑎)𝑑𝑥 + 𝐹2(𝑦, 𝑎)𝑑𝑦 
Integrating, 

𝑧 = ∫ 𝐹1(𝑥, 𝑎) 𝑑𝑥 + ∫ 𝐹2(𝑦, 𝑎) 𝑑𝑦 + 𝑏 

which is a complete integral containing two arbitrary constants 𝑎 and 𝑏. 

 

Examples: Find a complete integral of  

1- (IAN ex72)𝑝2𝑦(1 + 𝑥2) = 𝑞𝑥2. 
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SOLVING EXAMPLES USING CHARPIT'S GENERAL FORMULA: 

Examples: Find a complete integral of  

1- (IAN ex70)𝑧 = 𝑝2𝑥 + 𝑞2𝑦. 

2- (IAN ex65)𝑧 =
1

2
(𝑝2 + 𝑞2) + (𝑝 − 𝑥)(𝑞 − 𝑦). 

 

Exercise: (IAN70) 

1- (𝑝2 + 𝑞2)𝑦 = 𝑞𝑧. 
2- 𝑝 = (𝑧 + 𝑞𝑦)2. 
3- 𝑧2 = 𝑝𝑞𝑥𝑦. 
4- 𝑥𝑝 + 3𝑦𝑞 = 2(𝑧 − 𝑥2𝑞2). 
5- 𝑝𝑥5 − 4𝑞3𝑥2 + 6𝑥2𝑧 − 2 = 0. 
6- 2(𝑦 + 𝑧𝑞) = 𝑞(𝑥𝑝 + 𝑦𝑞). 
7- 2(𝑧 + 𝑥𝑝 + 𝑦𝑞) = 𝑦𝑝2. 

Exercise: (IAN73) 

1- 𝑝 + 𝑞 = 𝑝𝑞. 
2- 𝑧 = 𝑝2 − 𝑞2. 
3- 𝑧𝑝𝑞 = 𝑝 + 𝑞. 
4- 𝑝2𝑞(𝑥2 + 𝑦2) = 𝑝2 + 𝑞. 
5- 𝑝2𝑞2 + 𝑥2𝑦2 = 𝑥2𝑞2(𝑥2 + 𝑦2). 
6- 𝑝𝑞𝑧 = 𝑝2(𝑥𝑞 + 𝑝2) + 𝑞2(𝑦𝑝 + 𝑞2) 

 

 


