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Chapter 1

1.1 INTRODUCTION

Partial differential equations arise in geometry, physics and applied mathematics when
the number of independent variables in the problem under consideration is two or
more. Under such a situation, any dependent variable will be a function of more than
one variable and hence it possesses not ordinary derivatives with respect to a single
variable but partial derivatives with respect to several independent variables. In the
present part of the book, we propose to study various methods to solve partial
differential equations.

1.2 PARTIAL DIFFERENTIAL EQUATION (P.D.E.)

Definition. An equation containing one or more partial derivatives of an unknown
function of two or more independent variables is known as a partial differential
equation.

For examples of partial differential equations, we list the following:

0z/0x +0z/ 0y =z + xy ..(1)
0z

(0z/ 0x)? + 33z/ dy3 = 2x (5) - (2)

z(0z/ 0x) +0z/ dy = x - (3)

du/ 0x +0u/ 0y +du/ 0z = xyz . (4)
0%z/ 0x? = (1 + 0z/ dy)/? ..(5)
0z

y{(8z/ 8x)? + (0z/ 0y)?} = z (@) .. (6)
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Definition. The order of a partial differential equation is defined as the order of the
highest partial derivative occurring in the partial differential equation.

Definition. The degree of a partial differential equation is the degree of the highest
order derivative which occurs in it after the equation has been rationalized, i.e., made
free from radicals and fractions so far as derivatives are concerned.

1.3 LINEAR AND NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Definitions. A partial differential equation is said to be linear if the dependent
variable and its partial derivatives occur only in the first degree and are not
multiplied. A partial differential equation which is not linear is called a non-linear
partial differential equation.

1.4 NOTATIONS

When we consider the case of two independent variables, we usually assume them to
be x and y and assume z to be the dependent variable. We adopt the following
notations throughout the study of partial differential equations

p =0z/0x, q =0z/ 0y, r =0%z/ 0x?, s = 0%z/ dx 0y and t = 0%z/ dy?

1.5 CLASSIFICATION OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Linear equation. A first order equation f(x,y,z,p,q) = 0 is known as linear if it is
linear in p, q and z, that is, if given equation is of the form

P(x,y)p +Q(x,y)q = R(x,y)z+ S(x,y)

Semi-linear equation. A first order partial differential equation f(x,y,z,p,q) =0 is
known as a semi-linear equation, if it is linear in p and g and the coefficients of p and
q are functions of x and y only i.e. if the given equation is of the form

P(x,y)p +Q(x,y)q = R(x,y,2)



Quasi-linear equation. A first order partial differential equation f(x,y,z,p,q) =0 is
known as quasi-linear equation, if itis linear in p and g, i.e., if the given equation is of
the form

P(x,y,2)p + Q(x,¥,2)q = R(x,y,2)

Non-linear equation. A first order partial differential equation f(x,y,z,p,q) = 0
which does not come under the above three types, in known as a non-liner equation.

1.6 Origin of partial differential equations. We shall now examine the interesting
question of how partial differential equations arise. We show that such equations can
be formed by the elimination of arbitrary constants or arbitrary functions.

Rule I. Derivation of a partial differential equation by the elimination of arbitrary
constants.

Consider an equation F(x,y,z,a,b) =0 ...(1)

where a and b denote arbitrary constants. Let z be regarded as function of two
independent variables x and y. Differentiating (1) with respect to x and y partially in
turn, we get

0F/0x +p(dF/dz) =0 and 8F/dy+q(0F/dz) =0 ..(2)

Eliminating two constants a and b from three equations of (1) and (2), we shall obtain
an equation of the form

f(x,y,2,p,q9) =0,..(3)

which is partial differential equation of the first order.

In a similar manner it can be shown that if there are more arbitrary constants
than the number of independent variables, the above procedure of elimination will
give rise to partial differential equations of higher order than the first.

Working rule for solving problems: For the given relation F(x,y,z,a,b) = 0 involving
variables x, y, z and arbitrary constants a, b, the relation is differentiated partially with
respect to independent variables x and y. Finally arbitrary constants a and b are
eliminated from the relations

F(x,y,z,a,b) =0, 0F/0dx =0 and 0F/dy =0

The equation free from a and b will be the required partial differential equation.
Three situations may arise:



Situation I. When the number of arbitrary constants is less than the number of
independent variables, then the elimination of arbitrary constants usually gives rise
to more than one partial differential equation of order one.

For example (Raisin), consider z=ax+y ..(1)

where a is the only arbitrary constant and x, y are two independent variables.
Differentiating (1) partially w.r.t.'x ', we get dz/dx =a ..(2)
Differentiating (1) partially w.rt.'y ', weget dz/dy =1 ..(3)

Eliminating a between (1) and (2) yields

z=x(0z/0x)+y ..(4)

Since (3) does not contain arbitrary constant, so (3) is also partial differential under
consideration. Thus, we get two partial differential equations (3) and (4).

Examp[e:



Situation 1l. When the number of arbitrary constants is equal to the number of
independent variables, then the elimination of arbitrary constants shall give rise to a
unique partial differential equation of order one.

Example (Raisin): Eliminate a and b from az+b =a’x+y ..(1)
Differentiating (1) partially w.r.t"x "and 'y ', we have

a(0z/0x) = a? ...(2) and a(dz/dy) =1 ..(3)

Eliminating a from (2) and (3), we have (0z/ dx)(0z/dy) =1

which is the unique partial differential equation of order one.

Examp[e:



Situation Ill. When the number of arbitrary constants is greater than the number of
independent variables, then the elimination of arbitrary constants leads to a partial
differential equation of order usually greater than one.

Example (Raisin): Eliminate a,b and ¢ from z = ax + by + cxy ...(1)
Differentiating (1) partially w.r.t.,, ' x "and 'y, we have

0z 0z
L= atcy ..(2) and 5—b+cx ..(3)
0%z 0%z

From (2) and (3), % =0, P 0 ..(4) and ooy~ C (5)

Now, (2) and (3) = x(0z/ dx) = ax + cxy and y(dz/ dy) = by + cxy

~ x(0z/ 0x) + y(0z/ dy) = ax + by + cxy + cxy

then "using (1) and (5) " x (Z—i) +y (2_321) =z+xy (aizazy) ..(6)

Thus, we get three partial differential equations given by (4) and (6), which are all of
order two.

Exercise: AN

- Ex x24+y%2+(z—c)?=a?
> Ex x2+y?=(z—c)*tan’a
(x—a)’+(y—b)*+z>=1
z=(x+a)(y+Db)
2z=(ax+y)>+b

6 ax*+by*+z>=1

oW

<

Quiz one:



Rule II. Derivation of partial differential equation by the elimination of arbitrary function
¢ from the equation ¢p(u, v) = 0, where u and v are functions of x, y and z.

Proof. Given ¢(u,v) =0. ...(1)

We treat z as dependent variable and x and y as independent variables so that
0z/0x =p, 0z/dy=¢q, dy/0x =0 and dx/dy =0

Differentiating (1) partially with respect to x, we get

6¢(6uax+6uay+6uaz>+6¢(6vax+6vay+6vaz>_
ou\dxox 0dydx 0zdx) o0v\dxdx Odydx 0zox)

or
3J0) ou\ Jd¢ v
au<a e ) av(a paz) 0
op ,0¢p v v u Ju
/=G rr)/Gitrs) -0
Similarly, differentiating (1) partially w.r.t.' y’, we get
dp ,0¢ v v Ju u
/=) (G +ag) B
Eliminating ¢ with the help of (2) and (3), we get
(617 N 617) (au N au) _ (617 N 617) <6u 6u>
ax P Paz)/ \ox tPa2) =5y T 9%2) /55t 952
<6u N 6u> (61} N 617) _ <6u N 6u> (617 617)
3y 95 \ax T Paz) “\ax T Paz)\5y T 15
Pp+Qq =R
Judv Jdudv Judv Jduoadv Judv Juadv

— —_ e —_ R
dy 0z azay'Q 0z0x 0x0z’ dxdy 0dyodx

Thus we obtain a linear partial differential equation of first order and of first degree in
p and q.

Note. If the given equation between x,y, z contains two arbitrary functions, then in
general, their elimination gives rise to equations of higher order.



Examp[e: Form a partia[ dﬂerenﬁa[ equation by e[iminaﬁng the arb itrary ﬁ,mcﬁons

Exercise: AN(P47)

- z=xy+f(x* +y?)
- z=x+y+ f(xy)
v z=f(5

4 z=f(x—y)
5- f(x?+y*+2%2%—-2xy) =0



The Origin of Second order Equations:
Suppose that the function Z is given by an expression of the type z = f(u) + g(v) + w ..(1) where f and

g are arbitrary functions of U and V, respectively, and U, ¥ and W are prescribed functions of X and y.

We find, on differentiating both sides of (1) w.r.t. X and , respectively, that

p=f W u+g' W vy twy>P—wy=f"u+g v
qa=fWu+3g' W) vy+twy>q-—wy,=f"u,+g -7

and hence that

r=11W) ug + (W) 'uazc +9'(V) v + 9" (V) - U,? T Wiy

DT =Wy =W U+ g V) Ve W)U+ g W) vy

S = f,(u) " Uyy +f”(u) " Uy Uy + g,(v) *Uyy + g”(v) " Uyt Uy + Wy
— §- Wyy = f’(u)uxy + g(v)vxy +f”(u) "UxUy, + g”(v) * Uy Uy
t=f"(W) uy, +f"'W- -u+g'W- v, +g" W vy+wy,

—t =Wy = f'(W) Uy, + g@) vy, + (W) - up + g" (v) - vy

We now have five equations involving the four arbitrary quantities f , f ", g’, g "

]fwe eliminate these fow quantities ﬁ’om the ﬁve equations, we obtain the relation:

p—w, U, v, O 0
q—wy, u, v, 0 0
2 2
' = Wyxx Uxx Uxx Uy Uy =0 .(2
S—Wyxy Uxy Ugy Ugly Uyl
_ 2 2
S—lyy Uyy Uyy Uy Uy

which involves on[y the derivatives p,qr,Ss,t and unknown ﬁJmcﬁons of X and Y.
It is therefore a P.D.E. of the second order.

Example : Form a partial differential equation by eliminating the arbitrary functions f and g from the relation
z=f(x+y)+ g(x —y)where @ is a constant.

Ans.P=f’+g’ —>r=f”+g”
q:f,—g,%t:f,,-l_g,,

— t =7risthe PD.E. of second order.



Examp[e 1AN: Form a parﬁa[ diﬂ%venﬁa[ equation ’oy e[im'mat'mg the arb itrary ﬁmcﬁons

1-

z=f(x+ay)+g(x—ay)

Exercise: (JAN)

fy that the partial dferential equation % — 2% = 22 i aiefed b
Verify that the partial differential equation Py a9z %2 is satisfied by

zZ = %d)(y —x)+ @' (y — x) whereisan arbitrary function.
Ifu = f(x +iy) + g(x — iy), where the functions f and g are arbitrary, show that

0%u  0%u
Py + i 0.
3- Show that if f and g ave arbitrary functions of a single variable, then
u=f(x—vt+iay)+ g(x — vt —iay) is asolution of the equation
0%u = 0%u 1 9%u )
F) O_yz = 2312 provided that a’=1- UZ/CZ.
4 fz=f (x z— y)+gx Z 4 y) where the functions f, g are arbitrary, prove that
Pz _10s_, 50%
x2  xdx dy?

5-  Avariable Z is defined in terms of variables X, ¥ as the result of eliminating t from the equations
z=tx+yf(t)+g()
0=x+yf'(t)+g'(t)

Prove that, whatever the functions f and g may be, the equation 7t — s2=0is satisfied.
Quiz two:
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Chapter 2

Partial differential equations of order one

2.1 LAGRANGE’S EQUATION

A quasi—linear partial differential equation of order one is of the form Pp + Qq = R,
where P, Q and R are functions of x, y, z. Such a partial differential equation is known
as Lagrange equation.

For example xyp + yzq = zxis a Lagrange equation.

Theorem. The general solution of Lagrange equation Pp + Qg =R ...(1)is
¢(u,v) =0 ..(2)where ¢ is an arbitrary function and u(x, y,z) = ¢; and
v(x,y,z) = c, are two independent solutions of

dx dy dz

—=—=— .03

P Q R

Here, ¢; and ¢, are arbitrary constants and at least one of u, v must contain z.
Proof. Differentiating (2) partially w.r.t. "x 'and 'y ', we get

3J0) 6u+ ou +6¢ 6v+ dv _ 0 4
505t 75) T G TP 3) =0 @
d¢ (0u+ 0u>+0¢ <0v+ av)_o .
ou \dy Taz) " v oy 1oz) = - (5)

Eliminating d¢p/ du and d¢/ dv between (5) and (6), we have

ou/0x +p(du/0z) Jv/ox+ p(dv/0dz)
du/dy +q(du/0dz) Jv/dy+ q(dv/0z)

or (Bep2) (2 eq2) - () (2 p2) =0

or (au ov ou av) (Ou v ou 617) ou dv oudv _

=0

dx dy 0y dx

dz 0y dy 0z

dx 0z 0z 0x

. <6u6v 6u6v> +(6u6v auav) _auav du dv 6
" \dy oz azayp 0z 0x axazq_axay dy 0x - (6)

Hence (2) is a solution of the equation (6)

11



Taking the differentials of u(x,y,z) = ¢; and v(x, y, z)

(55) dx + (5 )dy+( 2 dz =0 ...(7) or uydx + w,dy + u,dz = 0

and (52) dx + (5 )dy+( N)dz=0 ..

= C,, We get

(8) orvydx + vy dy + v,dz = 0

Since u and v are independent functions, solving (7) and (8) for the ratios dx: dy: dz,

gives
dx dy dz
oudv oOudv Judv Judv OJudv OJudv - (9)
dydz 020y 0z0x 0x0z 0Oxdy 9y ox
Comparing (3) and (9), we obtain
ouov 0uov Jyuov oudy Oudv OJudv
0ydz azay 9z0x _0x07 _ ox 0y ayax_k
P 0 7 , say
Judv Judv _ Judv Jdudv " g Judv Oduadv
90z 920y 0 azox oxaz 9 A 5xay T ayax

= kR

Substituting these values in (6), we get k(Pp + Qq) = kR or Pp + Qq = R, which

is the given equation (1).

Therefore, if u(x,y,z) = ¢; and v(x,y, z) = ¢, are two independent solutions of the
system of differential equations (dx)/P = (dy)/Q = (dz)/R, then ¢(u,v) =0 is a
solution of Pp + Qq = R, ¢ being an arbitrary function. This is what we wished to

prove.

12



2.2 Methods for solving Lagrange’s auxiliary equations %x =5 "F " (1)

2.2.1Typel

Suppose that one of the variables is either absent or cancels out from any two fractions
of given equations (1). Then an integral can be obtained by the usual methods. The
same procedure can be repeated with another set of two fractions of given equations

(1).

Examp[e:

13



2.2.2 Type 2

Suppose that one integral of (1) is known by using rule | explained in section 2.2.1 and
suppose also that another integral cannot be obtained by using rule | of section. 2.5.
Then one integral known to us is used to find another integral. Note that in the second
integral, the constant of integration of first integral should be removed later on.

Examp[e:

14



2.2.3 Type 3

Let P;, Q; and R, be functions of x, y and z. Then, by a well-known principle of algebra,
each fraction in (1) will be equal to
(Pldx + Qldy + Rle)
(PP + Q:Q + RyR)

(2

If PP+ Q.Q + R{R = 0, then we know that the numerator of (2) is also zero. This
gives P;dx + Q;dy + R;dz = 0 which can be integrated to give u; (x,y,z) = c;. This
method may be repeated to get another integral u,(x,y, z) = c,.P;, Q1, Ry are called
multipliers. As a special case, these can be constants also. Sometimes only one integral
is possible by use of multipliers. In such cases second integral should be obtained by
using rule | of section. 2.2.1 or rule Il of section. 2.2.2 as the case may be.

Example:

15



2.2.4Type 4

Let P;, Q; and R, be functions of x, y and z. Then, by a well-known principle of algebra,
each fraction of (1) will be equal to
(Pydx + Q,dy + R,dz) 5
(PP + Q1Q + R1R) - (2)
Suppose the numerator of (2) is exact differential of the denominator of (2). Then (2)
can be combined with a suitable fraction in (1) to give an integral. However, in some
problems, another set of multipliers P,, @, and R, are so chosen that the fraction
(P,dx + Q,dy + R,dz) 3
(PP + Q2Q + R2R) - (3)
is such that its numerator is exact differential of denominator. Fractions (2) and (3) are
then combined to given an integral. This method may be repeated in some problems
to get another integral. Sometimes only one integral is possible by using the above rule
IV. In such cases second integral should be obtained by using rule 1 of section. 2.2.1 or
rule 2 of section. 2.2.2 or rule 3 of section. 2.2.3.

Example:

16



Exercise: (IAN P55)

- z(xp —yq) = y? — x?

> px(z—2y?) = (z—qy)(z — y* — 2x°)

px(x +y) =qy(x +y) — (x —y)(2x + 2y + 2)
y?p — xyq = x(z — 2y)

(v +x2)p — (x + yz)q = x* — y?

x(x* + 3y*)p — y(3x* + y*)q = 2z(y* — x?)

> @ oY

Quiz three:
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2.3 Integral surfaces passing through a given curve.

We shall now present two methods of using such a general solution for getting the
integral surface which passes through a given curve.

2.3.1 Method I.

Let Pp + Qq = R ...(1) be the given equation. Let its auxiliary equations give the
following two independent solutions u(x,y,z) = ¢y and v(x,y,z) = ¢;. ...(2)
Suppose we wish to obtain the integral surface which passes through the curve whose
equation in parametric formis given by x = x(t),y = (t),z = z(t) ...(3)

where t is a parameter.

Then (2) may be expressed as:

ulx(),y(t), z(t)] = ¢y and v[x(t), ¥y (1), 2(t)] = c,. ...(4)

We eliminate single parameter t from the equations of (4) and get a relation involving
c; and c,. Finally, we replace ¢; and c,with help of (2) and obtain the required integral
surface.

2.3.2 Method II.

Let Pp + Qq = R ...(1) be the given equation. Let is Lagrange’s auxiliary equations give
the following two independent integrals u(x, y,z) = ¢; and v(x,y,z) = cy. ...(2)
Suppose we wish to obtain the integral surface passing though the curve which is
determined by the following two equations G(x,y,z) = 0and H(x,y,z) = 0. ...(3)
We eliminate x, y, z from four equations of (2) and (3) and obtain a relation between
c; and c,. Finally, replace ¢; by u(x,y, z) and ¢, by v(x, y, z) in that relation and obtain
the desired integral surface.

Example:
1. (IAN ex) Find the integral surface of the linear PDE x(y? + z)p-y(x? + z)q =
(x%-y2)z which contains the straight linex +y = 0,z = 1.

18



1.4 SURFACES ORTHOGONAL TO A GIVEN SYSTEM OF SURFACES

v=ulxy!

/

Let f(x,y,z) = C ...(1) represents a system of

surfaces where C is parameter.
—f=ey

We want to find a collection of surfaces which cut
each of these given surfaces (1) at right angles.

........

Let the surface F(x,y,z) = z(x,y) —z =10 ...(2)
cuts each surface of (1) at right angles.

At a point of intersection (x,y,z) , observe that ,/{--wee..._

- (L2,
Vf = (ax '3y ' o2 is the normal to the surface (1).
0z 0z

Similarly, VF = (a '3y ,—1) is the normal to the

surface (2).

: . n
Since both the surfaces intersect orthogonally, at ‘XJ/ :
point of intersection (x,y,z) their respective 6 . | -

normals are perpendicular. S =

VF.VF = fiz, + fyz, + f,(=1) =0

ot ha=1f ..(03)
Therefore, integral surface of quasi-linear P.D.E. (3) is orthogonal to the given surface (1).

Conversely, we easily verify that any solution of (3) is orthogonal to every surface of (1).

Example:
1~ (AN ex) Find the surface which intersects the surfaces of the system z(x +y) = ¢(3z+ 1)
orthogonally and which passes through the circle x <4+ y2 =1,z=1
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Exercise: (IAN57,P59)

1- Find the equation of the integral surface of the differential equation
2y(z — 3)p + (2x — z)q = y(2x — 3) which passes through the circle z = 0,x? + y? = 2x.
2- Find the general integral of the P.D.E. (2xy — 1)p + (z — 2x2)q = 2(x — yz) and also the
particular integral which passes through the line x = 1,y = 0.
3- Find the integral surface of the equation (x — y)y?p + (y — x)x%q = z(x? + y?)
through the curve xz = a3,y = 0.

4- Find the general solution of the equation 2x(y + z%)p + y(2y + z?)q = z3 and deduce that
yz(z? + yz — 2y) = x? is a solution.

5- Find the general integral of the equation (x — y)p + (¥ — x — z)q = z and the particular
solution through the circle z = 1,x2 + y? = 1.
6- Find the general solution of the differential equation
x(z+2a)p + (xz + 2yz + 2ay)q = z(z — a)
Find also the integral surfaces which pass through the curves:
(A)y =0, z% = 4ax
b)y=0z3+x(z+a)>=0

7- Find the surface which is orthogonal to the one-parameter system z = cxy (x2 + y?)and
which passes through the hyperbola x? — y? = a2,z = 0.

8- Find the equation of the system of surfaces which cut orthogonally the cones of the system
x? +y2%+ 2% = cxy.

9- Find the general equation of surfaces orthogonal to the family given by:
a) x(x?+vy%+2%) =cy* Ansdxdx +2ydy =dz

showing that one such orthogonal set consists of the family of spheres given by
b) x2+y%+2z%2=c,z

If a family exists, orthogonal to both (a) and (b), show that it must satisfy

2x(x% — z®)dx + y(3x? + y? — z2)dy + 2z(2x* + y*)dz = 0
Show that such a family in fact exists, and find its equation.

10- Show that the integral surface of (x? + y% — a®)(xp + yq) = z(x* + y*) are generated

by conics, and find the integral surface through the curve x = 2z,x2 + y? = 4a?.

Quiz fowr:

20



Chapter 3

Nonlinear Partial Differential Equations of the First Order

3.1 Charpit’s method

Let the given partial differential equation of first order and non-linear in p and g be

f(x,v,2,p,9) =0 ...(1).
We know that dz = pdx + qdy ... (2).

The next step consists in finding another relation F(x,y,z,p,q) = 0 ...(3) such that
when the values of p and g obtained by solving (1) and (3), are substituted in (2), it
becomes integrable. The integration of (2) will give the complete integral of (1).

In order to obtain (2), differentiate partially (1) and (3) with respect to x and y and
get

of Of  9fdop 0fdq _

—+ = .. (4
ox Y azP Yapax Yagax - 0 W
OF OF O0Fdp 0Fdq_ = .
ox 0z ap dx 0dq0x - (5)
0 0 af o0 af o
of [OF OT0p 0704 _ o
dy 0z dp dy 6qay
OF OF  0Fdp 0Fdq

=0 ..(7)

ay "9z apay T aq oy
Eliminating dp/ dx from (4) and (5), we get
of df df dq\0F (OF aF 6F6q af
(o SN (212 SN
dx 0z dq dx/ dp dx 0z aq dx/ 0
df 0F O0F of of 0F O0F of df OF O0F 0f\0q
or (LLOE _OFOF)  (OFOF _OFOf\,  (0/0F _0FOf %0
dxdp OxOdp dzdp 0zdp dqdp Jdqdp/dx
Similarly, eliminating dq/ dy from (6) and (7), we get

(i@_F_B_F%)_l_(afaF aFaf) <6f6F 6F6f>6p

dydq Jydq dzdq 0zdq 17 \opaq  apaq dy

3537~ 307a 0 ..(9)

Since dq/ 0x = 3%z/ d0x dy = dp/ 0y, the last term in (8) is the same as that in (9),
except for a minus sign and hence they cancel on adding (8) and (9).
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Therefore, adding (8) and (9) and rearranging the terms, we obtain

A LA R L

ap "oy T3z T\ Py " 9%q) 5z T\ ap)ax
+( af)aF—o 10
50) 3y = ..(10)

This is a linear equation of the first order to obtain the desired function F. As in
chapter 2, integral of (10) is obtained by solving the auxiliary equations

dp B dq B dz
(0f/ 0x) +p(3f/ 0z) ~ (3f/ dy) + q(df/ dz) ~ —p(df/ dp) — q(3f/ dq)
o Ay _dE
—df/dp —0f/0q O
Since any of the integrals of (11) will satisfy (10), an integral of (11) which involves p or

q (or both) will serve along with the given equation to find p and q. In practice,
however, we shall select the simplest integral.

Note. In what follows we shall use the following standard notations:

f/ 0x = f, 0f /0y = f,, 0f/ 0z = f, Of / Op = f,, Of/ 0q = fq.
Therefore, Charpit's auxiliary equations (11) may be re-written as

dp dq dz dx dy

dF
FAvh htah ph-df gy 0 0D

WORKING RULE WHILE USING CHARPIT'S METHOD

Step 1. Transfer all terms of the given equation to L.H.S. and denote the entire
expression by f.

Step 2. Write down the Charpit's auxiliary equations (11) or (11)".

Step 3. Using the value of f in step 1 write down the values of df / 0x,df1dy ..., i.e,,
fxr fy» - €TC. OCCUring in step 2 and put these in Charpit's equations (11) or (11)".

Step 4. After simplifying the step 3, select two proper fractions so that the resulting
integral may come out to be the simplest relation involving at least one of p and q.

Step 5. The simplest relation of step 4 is solved along with the given equation to
determine p and q. Put these values of p and g in dz = pdx + qdy which on
integration gives the complete integral of the given equation.
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The Singular and General integrals may be obtained in the usual manner.

Remark. Sometimes Charpit's equations give rise to p = a and q = b, where a and b
are constants. In such cases, putting p = a and g = b in the given equation will give
the required complete integral.

Special methods of solutions applicable to certain standard forms:

We have already discussed the general method (i.e., Charpit’s method). We now
discuss four standard forms to which many equations can be reduced, and for which a
complete integral can be obtained by inspection or by other shorter methods.

Standard Form I. Only p and g present (Equations involving only p and q):
Under this standard form, we consider equations of the form f(p,q) =0 ...(1).

dp _ dq _ dz __dx __ dy
fxtpfz fytafz —plp—afq —fp —fq

Charpit's auxiliary equations are

giving de = qu’ by (1)

Taking the first ratio, dp = 0 so that p = constant = a, say ...(2)

Taking the second ratio, dqg = 0 so that g =constant = b, say ...(3)
substituting (2) and (3) in (1), we get f(a,q) =0 ...(4)

Then, dz = pdx + qdy = adx + bdy, using (2) and (3).

Integrating, z=ax + by +c ..(5)

where c is an arbitrary constant. (5) together with (4) give the required solution.
Now solving (4) for b, suppose we obtain b = F(a).

Putting this value of b in (5), the complete integral of (1) is

z=ax+yF(a)+c
Examples: Find a complete integral of

1- (IAN ex71)pq = 1.
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Standard form Il. Clairaut equation:

A first order partial differential equation is said to be of Clairaut form if it can be
writtenintheform z=px+qy + f(p,q). ...(1).

let F(x,y,z,p,q) =px+qy+f(p.q) —z ..(2)

Charpit's auxiliary equations are

dp _ dq _ dz _dx dy
oF  OF 9F _ OF __OF O9F _OF _OF
ox "Paz 9yT99z “Pop 99q op ~ 0q
d_p — d_q _ dz — dx _ dy
% 0  —px—qy-p(0f/0p)-q(0f/0q)  —x—(0f/dp) —y—(9f/9q) by (1)

Then, first and second fractions = dp = 0anddq = 0= p =aandq = b.

Substituting these values in (1), the complete integral is z = ax + by + f(a, b)

Remark 1. Observe that the complete integral of (1) is obtained by merely replacing p
and g by a and b respectively. Singular and general integrals can be obtained by usual
methods.

Remark 2. Sometimes change of variables can be employed to transform a given
equation to standard form Il.

Examples: Find a complete integral of

1- (IAN ex73)(z—px —qy)(p +q) = 1.
2- (IAN6l)z=px+qy+p+q—pq

24



Standard form lll. Only p, g and z present (Not involving the independent variable):

Under this standard form we consider differential equation of the form

f,q,z) =0 ..(1)

Charpit's auxiliary equations are
dp _ dq B dz _dx _dy
of , of 9f  9f __9f __9f _of _of

axTPa; ayt93; P 93¢ “Fp " 9q
dp _ dq dz dx _ ay

" p@r/an ~ a@r/en . “p@riom-a@rien . —ersw - —orjeq S8 )
Taking the first two ratios,
(1/p)dp = (1/q)dq
Integrating, ¢ = ap, a being an arbitrary constant. ...(2)
Now, dz = pdx + qdy = pdx + apdy, using (2)
ordz = p(dx + ady) = pd(x + ay) = pdu, ...(3)
Whereu =x+ay ..(4)
Now, (3) = p =dz/du andsoby(2) gq=ap = a(Z—i)
Substituting these values of p and g in (1), we get f (Z—i, aZ—i,z) =0 ..(5)

which is an ordinary differential equation of first order. Solving (5), we get z as a
function of u. Complete integral is then obtained by replacing u by (x + ay).

Examples: Find a complete integral of
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Standard form IV. Equation of the form f(x,p) = f2(y, q) (Separable Equ.):

i.e., a form in which z does not appear and the terms containing x and p are on one
side and those containing y and g on the other side.

Let F(x,y,2,p,q) = f1i(x,p) — f2(y,q) =0 ...(1)
Then Charpit's auxiliary equations are

dp _ dq _ dz _dx dy
oF OF ~OF _ _OF~ _9F _ 9F _OF _oF
ox "Paz o9yT99z “Pop~99q “op ~Oq
dp _ dq dz dx _ady

Or by (1 - _ _ _
"oV (1) 3 e T Tonsay - Spn omta@nion) - —onjop - 304

Taking the first and the fourth ratios, we have

(0f1/ 0p)dp + (0f1/ 9x)dx = 0 or df; =0
Integrating, f; = a, a being an arbitrary constant.

~ M= ilkp) =09 =a..(2)

Now, (2) = fi(x,p) = aand f,(y,q) = a...(3)
From (3), on solving for p and q respectively, we get

p=F (x,a),andq = F,(y,a) ...(4)

Substituting these values in dz = pdx + qdy, we get dz = F,(x,a)dx + F,(y,a)dy
Integrating,

zZ = jFl(x,a)dx+jF2(y,a) dy+b

which is a complete integral containing two arbitrary constants a and b.

Examples: Find a complete integral of

1- (IAN ex72)p?y(1 + x?) = gx2.
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SOLVING EXAMPLES USING CHARPIT'S GENERAL FORMULA:
Examples: Find a complete integral of

1- (IAN ex70)z = p2x + g?y.
2- (IAN ex65)z = %(p2 +q*)+(@—-x)(q-y).

Exercise: (IAN70)

1- (p* +q*)y = qz.

2- p=(z+qy)°

3- z%2 = pqgxy.

4- xp + 3yq = 2(z — x%q?).

5- px° —4q3x? + 6x%z—2 = 0.
6- 2(y +2q) = q(xp + yq).

7- 2(z+ xp + yq) = yp?.

Exercise: (IAN73)

1- p+q =pq.

2- z=p?—q>.

3-zpq=p+q.

4- p*q(x* +y*) =p*+q.

5_ p2q2 +x2y2 — quZ(xZ +y2)

6- pqz = p*(xq +p*) + ¢*(yp + ¢%)
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