
Chapter Four 

Partial Derivatives 

4.1 Recall: ordinary derivatives  

If y is a function of x then !"!"
 is the derivative meaning the gradient (slope of the graph) or the rate of change 

with respect to x.  

4.2 Functions of 2 or more variables  

Functions which have more than one variable arise very commonly. Simple examples are  
• formula for the area of a triangle ! = !

! !ℎ is a function of the two variables,  base b and height h.   
• formula for electrical resistors in parallel:  ︎  

 

 
 
 

 is a function of three variables R1, R2 and R3, the resistances of the individual  resistors.   
Let’s talk about functions of two variables here. You should be used to the notation y = f(x) for a function of 
one variable, and that the graph of y = f(x) is a curve. For functions of two variables the notation simply 
becomes  

z = f(x,y) 
Where the two independent variables are x and y, while z is the dependent variable. The graph of 

something like z = f (x, y) is a surface in three-dimensional space. Such graphs are usually quite difficult to 
draw by hand. Since z = f(x,y) is a function of two variables, if we want to differentiate we have to decide 
whether we are differentiating with respect to x or with respect to y (the answers are different). A special 
notation is used. We use the symbol ∂ instead of d and introduce the partial derivatives of z, which are:  

• !"
!"is read as “partial derivative of z (or f) with respect to x”, and means differentiate with respect to y 
holding x constant. 

• !"
!" means differentiate with respect to y holding x constant 

Another common notation is the subscript notation:  

!! !"#$% !"!" 

 

!! !"#$% !"!" 

 
 

0.1 Recall: ordinary derivatives

If y is a function of x then dy
dx is the derivative meaning the gradient (slope of the

graph) or the rate of change with respect to x.

0.2 Functions of 2 or more variables

Functions which have more than one variable arise very commonly. Simple examples
are

• formula for the area of a triangle A = 1
2bh is a function of the two variables,

base b and height h

• formula for electrical resistors in parallel:

R =
µ

1

R1
+

1

R2
+

1

R3

∂°1

is a function of three variables R1, R2 and R3, the resistances of the individual
resistors.

Let’s talk about functions of two variables here. You should be used to the notation
y = f(x) for a function of one variable, and that the graph of y = f(x) is a curve.
For functions of two variables the notation simply becomes

z = f(x, y)

where the two independent variables are x and y, while z is the dependent variable.
The graph of something like z = f(x, y) is a surface in three-dimensional space. Such
graphs are usually quite di±cult to draw by hand.
Since z = f(x, y) is a function of two variables, if we want to diÆerentiate we have
to decide whether we are diÆerentiating with respect to x or with respect to y (the
answers are diÆerent). A special notation is used. We use the symbol @ instead of d
and introduce the partial derivatives of z, which are:

• @z
@x is read as “partial derivative of z (or f) with respect to x”, and means
diÆerentiate with respect to x holding y constant

• @z
@y means diÆerentiate with respect to y holding x constant

Another common notation is the subscript notation:

zx means
@z

@x

zy means
@z

@y

Note that we cannot use the dash 0 symbol for partial diÆerentiation because it would
not be clear what we are diÆerentiating with respect to.
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Note that we cannot use the dash ′ symbol for partial differentiation because it would not be clear what we are 
differentiating with respect to.  
  
 
Example 1  
 

 
Example 2  
 
 

 
 

4.3 Functions of 3 or more variables  

 
 
 
 

0.3 Example

Calculate @z
@x and @z

@y when z = x2 + 3xy + y ° 1.

Solution. To find @z
@x treat y as a constant and diÆerentiate with respect to x. We

have z = x2 + 3xy + y ° 1 so
@z

@x
= 2x + 3y

Similarly
@z

@y
= 3x + 1

0.4 Example

Calculate @z
@x and @z

@y when z = 1 ° x ° 1
2y. Interpret your answers and draw the

graph.
Solution. The graph of z = 1°x° 1

2y is a plane passing through the points (x, y, z) =
(1, 0, 0), (0, 2, 0) and (0, 0, 1). The partial derivatives are:

@z

@x
= °1,

@z

@y
= °1

2

Interpretation: @z
@x is the slope you will notice if you walk on the surface in a direction

keeping your y coordinate fixed. @z
@y is the slope you will notice if you walk on the

surface in such a direction that your x coordinate remains the same. There are, of
course, many other directions you could walk, and the slope you will notice when

walking in some other direction can be worked out knowing both @z
@x and @z

@y . It’s

like when you walk on a mountain, there are many directions you could walk and
each one will have its own slope.

0.5 Other examples of evaluating partial derivatives

(i) z = ln(x2 ° y). Then @z
@x = 2x

x2 ° y
and @z

@y = °1
x2 ° y

. [To deduce these results

we used the fact that if y = ln f(x) then dy
dx =

f 0(x)
f(x)

].

(ii) z = x cos y + yex. Then @z
@x = cos y + yex and @z

@y = °x sin y + ex.

(iii) z = y sin xy. Then @z
@x = y(y cos xy) = y2 cos xy and @z

@y = yx cos xy + sin xy.

For the second result we used the product rule.

(iv) If x2 + y2 + z2 = 1 find the rate at which z is changing with respect to y at

the point (2
3 ,

1
3 ,

2
3). Solution. We have z = (1° x2 ° y2)1/2. We want @z

@y when

3
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(x, y) = (2
3 ,

1
3). But

@z

@y
= 1

2(1° x2 ° y2)°1/2(°2y) = ° y

(1° x2 ° y2)1/2

Putting in (x, y) = (2
3 ,

1
3) gives

@z

@y
= ° 1/3

(1° (2/3)2 ° (1/3)2)1/2
= °1

2 .

0.6 Functions of 3 or more variables

The general notation would be something like

w = f(x, y, z)

where x, y and z are the independent variables. For example, w = x sin(y + 3z).
Partial derivatives are computed similarly to the two variable case. For example,
@w/@x means diÆerentiate with respect to x holding both y and z constant and so,
for this example, @w/@x = sin(y + 3z). Note that a function of three variables does
not have a graph.

0.7 Second order partial derivatives

Again, let z = f(x, y) be a function of x and y.

• @2z
@x2 means the second derivative with respect to x holding y constant

• @2z
@y2 means the second derivative with respect to y holding x constant

• @2z
@x@y means diÆerentiate first with respect to y and then with respect to x.

The “mixed” partial derivative @2z
@x@y is as important in applications as the others.

It is a general result that
@2z

@x@y
=

@2z

@y@x

i.e. you get the same answer whichever order the diÆerentiation is done.

0.8 Example

Let z = 4x2 ° 8xy4 + 7y5 ° 3. Find all the first and second order partial derivatives
of z.
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4.4 Second order partial derivatives  
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4

Solution.

@z

@x
= 8x° 8y4

@z

@y
= °8x(4y3) + 35y4 = °32xy3 + 35y4

@2z

@x2
=

@

@x

√
@z

@x

!

= 8

@2z

@y2
=

@

@y

√
@z

@y

!

=
@

@y
(°32xy3 + 35y4) = °32x(3y2) + 140y3

= °96xy2 + 140y3

@2z

@x@y
=

@

@x

√
@z

@y

!

=
@

@x
(°32xy3 + 35y4) = °32y3

@2z

@y@x
=

@

@y

√
@z

@x

!

=
@

@y
(8x° 8y4) = °32y3

0.9 Example

Find all the first and second order partial derivatives of the function z = sin xy.
Solution.

@z

@x
= y cos xy

@z

@y
= x cos xy

@2z

@x2
= °y2 sin xy

@2z

@y2
= °x2 sin xy

@2z

@x@y
=

@

@x

√
@z

@y

!

=
@

@x
(x cos xy) = x(°y sin xy) + cos xy = °xy sin xy + cos xy

@2z

@y@x
=

@

@y

√
@z

@x

!

=
@

@y
(y cos xy) = y(°x sin xy) + cos xy = °xy sin xy + cos xy

0.10 Subscript notation for second order partial derivatives

If z = f(x, y) then

• zxx means @2z
@x2

• zyy means @2z
@y2
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Example 4  
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Solution.  
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4.6 Important point  

Unlike ordinary derivatives, partial derivatives do not behave like fractions, in particular  
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=
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@x2

• zyy means @2z
@y2

5
• zxy means @2z

@x@y or @2z
@y@x

0.11 Important point

Unlike ordinary derivatives, partial derivatives do not behave like fractions, in par-
ticular

@x

@z
6= 1

@z/@x

0.12 Small changes

Let
z = f(x, y)

Imagine we change x to x + ±x and y to y + ±y with ±x and ±y very small. We ask:
what is the corresponding change in z? The answer is that the change is ±z, given by

±z º @z

@x
±x +

@z

@y
±y (0.1)

This formula requires ±x and ±y to be very small and even then the formula is only an
approximate one. However, it becomes more and more exact as ±x! 0 and ±y ! 0.
This fact is sometimes expressed by saying

dz =
@z

@x
dx +

@z

@y
dy

where dx, dy and dz are infinitesimal increments.
Let’s give some idea where formula (0.1) comes from. Let’s recall the analogous result
for a function of one variable and its derivation. For a function of one variable the
notation would be y = g(x) and the graph of this is a curve with a gradient dy/dx
at each point x. If consider two points on this curve, (x, y) and a neighbouring point
(x + ±x, y + ±y) then if this neighbouring point is su±ciently close the line joining
the two points, which has gradient ±y/±x, is a good approximation to the tangent
line at (x, y) which has gradient dy/dx. This means that ±y/±x º dy/dx so that
±y º (dy/dx)±x.
We want to generalise this idea to a function z = f(x, y) of two variables, whose
graph will be a surface.
In the (x, y) plane let A be the point with coordinates (x, y), let B be the point with
coordinates (x + ±x, y), and C the point with coordinates (x + ±x, y + ±y).
The overall change in height, ±z, from A to C is given by

±z = (change in height A to B) + (change in height B to C)

In calculating the change in height from A to B we are travelling across the surface
from A to B along a curve in which y is held fixed, so by the result for curves,

change in height A to B º @z

@x
±x
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4.7 Chain rule for partial derivatives  

 

 
 
Example 1  
 

 

 

 

0.17 Chain rule for partial derivatives

Recall the chain rule for ordinary derivatives:

if y = f(u) and u = g(x) then
dy

dx
=

dy

du

du

dx

In the above we call u the intermediate variable and x the independent variable.
For partial derivatives the chain rule is more complicated. It depends on how many
intermediate variables and how many independent variables are present. Below three
formulae are given which it is hoped indicate the general points. Essentially, every
intermediate variable has to have a term corresponding to it in the right hand side
of the chain rule formula. For example in the second one below there are three
intermediate variables x, y and z and three terms in the RHS.
Formula 3 below illustrates a case when there are 2 intermediate and 2 independent
variables.

(1) if z = f(x, y) and x and y are functions of t (x = x(t) and y = y(t)) then z is
ultimately a function of t only and

dz

dt
=

@z

@x

dx

dt
+

@z

@y

dy

dt

(2) if w = f(x, y, z) and x = x(t), y = y(t), z = z(t) then w is ultimately a function
of t only and

dw

dt
=

@w

@x

dx

dt
+

@w

@y

dy

dt
+

@w

@z

dz

dt

(3) if z = f(x, y) and x = x(u, v), y = y(u, v) then z is a function of u and v and

@z
@u = @z

@x
@x
@u + @z

@y
@y
@u

@z
@v = @z

@x
@x
@v + @z

@y
@y
@v

0.18 Example

Let z = x2y, x = t2 and y = t3. Calculate dz/dt by (a) the chain rule, (b) expressing
z as a function of t and finding dz/dt directly.
Solution. (a) by the chain rule

dz

dt
=

@z

@x

dx

dt
+

@z

@y

dy

dt

= (2xy)(2t) + (x2)(3t2)

= 4xyt + 3x2t2

= 4t2t3t + 3t4t2

= 7t6

(b) z = x2y and x = t2, y = t3 so z = t4t3 = t7. DiÆerentiating gives dz/dt = 7t6.
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Formula 3 below illustrates a case when there are 2 intermediate and 2 independent
variables.

(1) if z = f(x, y) and x and y are functions of t (x = x(t) and y = y(t)) then z is
ultimately a function of t only and

dz

dt
=

@z

@x

dx

dt
+

@z

@y

dy

dt

(2) if w = f(x, y, z) and x = x(t), y = y(t), z = z(t) then w is ultimately a function
of t only and
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=

@w

@x

dx
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+

@w

@y
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dt
+

@w

@z
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(3) if z = f(x, y) and x = x(u, v), y = y(u, v) then z is a function of u and v and

@z
@u = @z

@x
@x
@u + @z

@y
@y
@u

@z
@v = @z

@x
@x
@v + @z

@y
@y
@v

0.18 Example

Let z = x2y, x = t2 and y = t3. Calculate dz/dt by (a) the chain rule, (b) expressing
z as a function of t and finding dz/dt directly.
Solution. (a) by the chain rule
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dt
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@z

@x
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@z

@y

dy
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= 7t6

(b) z = x2y and x = t2, y = t3 so z = t4t3 = t7. DiÆerentiating gives dz/dt = 7t6.

9

0.17 Chain rule for partial derivatives

Recall the chain rule for ordinary derivatives:

if y = f(u) and u = g(x) then
dy

dx
=

dy

du

du

dx

In the above we call u the intermediate variable and x the independent variable.
For partial derivatives the chain rule is more complicated. It depends on how many
intermediate variables and how many independent variables are present. Below three
formulae are given which it is hoped indicate the general points. Essentially, every
intermediate variable has to have a term corresponding to it in the right hand side
of the chain rule formula. For example in the second one below there are three
intermediate variables x, y and z and three terms in the RHS.
Formula 3 below illustrates a case when there are 2 intermediate and 2 independent
variables.

(1) if z = f(x, y) and x and y are functions of t (x = x(t) and y = y(t)) then z is
ultimately a function of t only and

dz

dt
=

@z

@x

dx

dt
+

@z

@y

dy

dt

(2) if w = f(x, y, z) and x = x(t), y = y(t), z = z(t) then w is ultimately a function
of t only and

dw

dt
=

@w

@x

dx

dt
+

@w

@y

dy

dt
+

@w

@z

dz

dt

(3) if z = f(x, y) and x = x(u, v), y = y(u, v) then z is a function of u and v and

@z
@u = @z

@x
@x
@u + @z

@y
@y
@u

@z
@v = @z

@x
@x
@v + @z

@y
@y
@v

0.18 Example

Let z = x2y, x = t2 and y = t3. Calculate dz/dt by (a) the chain rule, (b) expressing
z as a function of t and finding dz/dt directly.
Solution. (a) by the chain rule

dz

dt
=

@z

@x

dx

dt
+

@z

@y

dy

dt

= (2xy)(2t) + (x2)(3t2)

= 4xyt + 3x2t2

= 4t2t3t + 3t4t2

= 7t6

(b) z = x2y and x = t2, y = t3 so z = t4t3 = t7. DiÆerentiating gives dz/dt = 7t6.

9


