$$
\begin{aligned}
& y(t)=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}+d_{1} u_{1}+\ldots+d_{r} u_{r} \\
& y_{1}=c_{11} x_{1}+c_{12} x_{2}+\ldots+c_{1 n} x_{n}+d_{11} u_{1}+\ldots+d_{1 r} u_{r} \\
& y_{2}=c_{21} x_{1}+c_{22} x_{2}+\ldots+c_{2 n} x_{n}+d_{21} u_{1}+\ldots+d_{2 r} u_{r} \\
& \vdots \quad \vdots \\
& y_{m}=c_{m 1} x_{1}+c_{m 2} x_{2}+\ldots+c_{m n} x_{n}+d_{m 1} u_{1}+\ldots+d_{m r} u_{r} \\
& {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & & & \vdots \\
c_{m 1} & c_{m 2} & \ldots & c_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{ccc}
d_{11} & \ldots & d_{1 r} \\
d_{21} & & d_{2 r} \\
\vdots & & \vdots \\
d_{m 1} & \ldots & d_{m r}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{r}
\end{array}\right]} \\
& \mathrm{y}=\mathrm{Cx}+\mathrm{Du}
\end{aligned}
$$

where y is a column vector of the output variables $y_{i}(t), C$ is an $m \times n$ matrix of the constant coefficients c_{ij} that weight the state variables, and D is an $\mathrm{m} \times \mathrm{r}$ matrix of the constant coefficients d_{ij} that weight the system inputs. For many physical systems the matrix D is the null matrix, and the output equation reduces to a simple weighted combination of the state variables:

$$
\mathrm{y}=\mathrm{Cx}
$$

Definition:-
State Space model for ageneric Ind Oder ODE:-

$$
\begin{aligned}
& k u=a \frac{d y^{2}}{d t}+b \frac{d y}{d t}+c y \\
& x_{1}=y, \dot{x}_{1}=x_{2}=\frac{d y}{d t}, \quad \dot{x}_{2}=\frac{d y^{2}}{d t_{2}} \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{-b}{a} & \frac{c}{a}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
\frac{k}{a} \\
0
\end{array}\right] u} \\
& \dot{x} \quad X \quad B u
\end{aligned}
$$

$$
\begin{aligned}
& K u=a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\cdots+a_{3} \frac{d^{x} y}{d t^{3}}+a_{0} y \\
& X_{n+1} \\
& k u=a_{n} \dot{x}_{n}+\cdots \cdots a_{3} \\
& x_{3} \dot{x}_{3}+a_{2} \dot{x}_{2}+a_{1} \dot{x}_{1}+a_{0} x_{1}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{i} \\
\dot{x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 0 & \cdots \\
0 & 0 & 1 & 0 \\
\vdots & & \\
\dot{\theta} & 0 & 0 & - \\
\vdots & 1 \\
\frac{a_{1}}{a_{n}} \frac{-\frac{a_{2}}{a_{n}}}{} & +\frac{a_{n}}{a_{n}}
\end{array}\right]\left[\begin{array}{l}
x_{5} \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
{\left[\frac{b}{a_{n}}\right.} \\
-\frac{z}{a_{n}}
\end{array}\right] u
$$

Ex: $4^{\text {th }}$ order state space model.

$$
\begin{aligned}
& \left.k u=\frac{a d^{4} y}{d t^{4}}+\frac{8 d d^{3}}{d t^{3}}+\frac{a d^{2} y}{d t^{2}}+\frac{a d y}{d t}+a\right) \\
& x_{1}=y \\
& x_{2}=\frac{d x_{1}}{d t}=\dot{X}_{1} \\
& K_{4}=a_{4} \dot{x}_{4}+a_{3} x_{4}+a_{2} x_{3}+a_{1} x_{2}+a x_{1} \\
& x_{3}-\frac{d x_{2}}{d t}=x_{2} \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{a}{a_{4}} & -\frac{a_{1}}{a_{4}} & -\frac{a_{2}}{a_{4}} & -\frac{a_{3}}{a_{4}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{k}{a_{4}}
\end{array}\right]^{x_{4}=\frac{d x^{3}}{d t}} \dot{x}_{3}} \\
& y=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right] \\
& x
\end{aligned}
$$

Ex:- Obtain the 5.S.E Sarthe shwon System.

$$
\begin{aligned}
& F_{s}=k y \uparrow \\
& F_{d}=B y \uparrow \\
& \Sigma F=m \cdot a
\end{aligned}
$$

$u(t)-k y-B \dot{y}=m \ddot{y}$

$$
\therefore \quad m \ddot{y}+B \dot{y}+k \dot{y}=u(t)
$$

step one:

$$
\frac{d^{2} y}{d t}+\frac{B d y}{m d t}+\frac{k}{m} y=\frac{1}{m} u(t)\left(\begin{array}{l}
\text { the shape should } \\
\text { the equation bein }
\end{array}\right.
$$

*step two:.

$$
\begin{aligned}
& x_{1}=y \quad, x_{2}=\dot{y} \\
& x_{2}=\dot{x}_{1} \quad x \quad x_{2}=\dot{x}_{2} \quad \dot{x}_{2}=\ddot{y}
\end{aligned}
$$

For the input. $X=A X+B u$

$$
\begin{align*}
& \dot{x}_{2}+\frac{B}{m} x_{2}+\frac{k}{m} X_{1}=\frac{1}{m} U(t) \\
& \dot{x}_{2}=\frac{-B}{m} x_{2}-\frac{k}{m} X_{1}+\frac{1}{m} U(t) \\
& \dot{x}_{1}=X_{2} \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{B}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right] U(t)}
\end{align*}
$$

Sarthe out put $y=C X+D u$

$$
\begin{aligned}
\text { from } & \Rightarrow x_{1}=y \\
y(t) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] \text { ut }
\end{aligned}
$$

