Question one

- (a) Let $(e_j)_{j=1}^n$ be the standard basis for \mathbb{R}^n . Verify that $\left\|\sum_{j=1}^n \lambda_j e_j\right\| = \sum_{j=1}^n |\lambda_j|$ is norm.
- (b) Let $(e_j)_{j=1}^n$ be the standard basis for \mathbb{R}^n . Verify that $\left\|\sum_{j=1}^n \lambda_j e_j\right\| = \sup_{1 \le j \le n} |\lambda_j|$ is norm.

Question Two

- (a) Let $\ell^p(\mathbb{N})$ be the set of all sequences (a_k) in the field \mathbb{C} such that $\sum_{k=1}^{\infty} |a_j|^p < \infty$, with norm $||(a_k)|| = (\sum_{k=1}^{\infty} |a_k|^p)^{1/p}$, where $1 \le p \le \infty$. Show that $(\ell^2, ||(a_k)||)$ is complete space.
- (b) Let $\ell^{\infty}(\mathbb{N})$ be the set of all bounded sequences (a_k) in the field \mathbb{C} with norm $||(a_1, a_2, \cdots)||_{\ell^{\infty}} = \sup_n |a_n|$. Show that $(\ell^{\infty}, ||(a_1, a_2, \cdots)||)$ is complete space.

Question Three

- (a) Suppose \mathcal{V} is an inner product space over the field \mathbb{F} and that $x, y \in \mathcal{V}$. Prove that $|\langle x, y \rangle| \leq ||x|| ||y||$.
- (b) Let $\phi : H \mapsto \mathbb{C}$ be the linear operator on a complex Hilbert space H define by $\phi_u(x) = \langle x, u \rangle$. Show that ϕ_u is a bounded linear operator with $\|\phi\| = \|u\|$.

Question Four

- (a) Let $\{v_k\}_{k=1}^{\infty}$ be a sequence of unit vector in a complex Hilbert space H, define an operator $\phi: H \mapsto \mathbb{C}$ as $\phi(v) = \sum_{k=1}^{\infty} \frac{1}{k^2} \langle v, v_k \rangle$. Show that ϕ is a bounded linear operator.
- (b) Show that $\int_0^{\pi/2} e^x \cos(x) \, dx \le \frac{\sqrt{\pi}}{2\sqrt{2}} (e^x 1)^{1/2}$.
- (c) Show that $\int_0^{\pi} 3t \sqrt{\sin(t)} dt \le \pi \sqrt{6\pi}$.

Question Five

- (a) State the definition of equivalent norm. Let $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$ and $||f||_1 = \int_0^1 |f(x)| dx$ be two norms on $C([0,1];\mathbb{R})$. Show that they are not equivalent.
- (b) State the definition of equivalent norm. Show that $||x||_{\infty} = \max_{i=1,2,\dots,n} |x_i|$ is equivalent to $||x||_1 = \sum_{i=1}^n |x_i|$.

Question Six

- (a) Show that a linear operator $\varphi : D(\varphi) \subset C[0,1] \mapsto C[0,1]$, where $D(\varphi) = C^1[0,1]$ given by f' is unbounded.
- (b) Let $A: \ell^2 \mapsto \ell^2$ be a linear operator given by $A(a_1, a_2, a_3, \cdots) = (a_2, \sqrt[3]{2}a_3, \sqrt[3]{3}a_4, \cdots)$. is unbounded.

Question Seven

- (a) Let $A : \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $A(a_1, a_2, a_3, \cdots) = (0, a_1, a_2/2, a_3/3, \cdots)$. State the definition of adjoint A^* of A and compute the adjoint of A
- (b) Show that A is not self-adjoint operator.

Question Eight

- (a) Let $A : H \mapsto H$ be a bounded linear operator on a complex Hilbert space H. such that . State the definition of an orthogonal projection. Show that $P = \frac{1}{2}(I A)$ is an orthogonal projection if and only if $A^2 = I$ and $A^* = A$ where I is the identity operator
- (b) Let $A: \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $A(a_1, a_2, a_3, \cdots) = (\frac{a_1+a_2}{2}, \frac{a_3+a_4}{2}, \cdots)$. State the definition of compact operator.

Question Nine

- (a) Let $A : \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $A(a_1, a_2, a_3, \cdots) = (\frac{a_1+a_2}{2}, \frac{a_3+a_4}{2}, \cdots)$. Show that A is not self-adjoint and compute $||AA^*||$.
- (b) Show that A is not compact operator.

Question Ten

- (a) Let $A: \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $A(a_1, a_2, a_3, \cdots) = (0, a_1, a_2/2, a_3/3, \cdots)$. Show that the spectrum of A is equal to zero. $\sigma(A) = \{\lambda \in \mathbb{C} | |\lambda| \leq 1\}$.
- (b) Let $S: \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $S_r(a_1, a_2, a_3, \cdots) = (0, \frac{a_1}{3}, \frac{a_2}{3}, \frac{a_3}{3}, \cdots)$. Determine the operator norm $||S_r||$. Show that S_r has no eigenvalue. Show that the spectrum of S_r is equal to [-1, 1].

Question Tweleve

- (a) Let $A : \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $A(a_1, a_2, a_3, \cdots) = ((a_1, 0, (a_2, 0, (a_3, 0, \cdots)))$. Show that A is not compact. $A^*A = I$.
- (b) Let $A : \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $A(a_1, a_2, a_3, \cdots) = (a_1, a_2/2, a_3/3, \cdots)$. Show that the operator A is self-adjoint operator.

Question Thirteen

- (a) Assume that E is finite dimensional vector space and that $A : E \mapsto E$ is a linear operator. Then show that the continuous spectrum of A is equal to empt set.
- (b) Assume that E is finite dimensional vector space and that $A : E \mapsto E$ is a linear operator. Then show that the residual spectrum of A is equal to empt set.

Question Fourteen

- (a) Let H be a complex Hilbert space. If $u \in H$ and $f(v) = \langle v, u \rangle$ for each $v \in H$, then show that f is a bounded linear functional.
- (b) If f is a bounded linear functional on H, then prove that there exist $u \in H$ such that $f(v) = \langle v, u \rangle$ for each $v \in H$ and ||f|| = ||u||.

Question Fifteen

- (a) Let $H = \ell^2(\mathbb{N})$ and let $m = \{x \in \ell^2(\mathbb{N}) | x_1 = 0 = x_3\}$. Find the orthogonal complement of m.
- (b) Define the Banach space. Let C[a, b] be the set of all real valued continuous functions defined on interval [a, b], with the norm $||f||_{\infty} = \max_{t \in [0,1]} |f(t)|$. Show that $(C[a, b], ||.||_{\infty})$ is a Banach space.

Question Sixteen

- (a) Define the complete normed linear space. Let C[-1, 1] be the set of all real valued continuous functions defined on interval [-1, 1], with the norm $||f||_1 = \int_0^1 |f(x)| dx$ Show that $(C[-1, 1], ||.||_{\infty})$ is not a complete space.
- (b) State the definition of bounded linear operator. Let $A : \ell^p \mapsto \ell^p$ given by $A(a_1, a_2, a_3, \cdots) = (a_1, a_1, a_2, a_3, \cdots)$. Show that $A : \ell^p \mapsto \ell^p$ is a bounded linear operator, and compute ||A||.

Question Seventeen

- (a) Let $\ell^2(\mathbb{N})$ be the set of all sequences (a_k) in the complex number such that $\sum_{k=1}^{\infty} |a_j|^2 < \infty$, with inner product $\langle (a_j)_{j=1}^{\infty}, (b_j)_{j=1}^{\infty} \rangle = \sum_{j=1}^{\infty} a_j \overline{b}_j$. Show that $(\ell^2, \langle ., . \rangle)$ is a Hilbert space.
- (b) Let (e_k) be an orthonormal sequence in an inner product space X, show that for any $x, y \in X$ $\sum_{j=1}^{\infty} |\langle x, e_j \rangle \langle y, e_j \rangle| \le ||x|| ||y||.$

Question Eighteen

- (a) For any x belongs to the Hilbert space H. Let $u = \sum_{j=1}^{n} \langle e_j, x \rangle e_j$ where $\{e_1, e_2, \dots, e_n\}$ is an orthonormal set. Prove that $||u||^2 = \sum_{j=1}^{n} |\langle e_j, x \rangle|^2$.
- (b) Let $A : \ell^2 \mapsto \ell^2$ be the linear operator given by $A(a_1, a_2, a_3, \dots) = (a_1, 0, a_2, 0, a_3, \dots)$.
 - State the definition of adjoint A^* of A and compute the adjoint of A
 - Show that A is not self-adjoint operator.

Question Ninteen

- (a) State the definition of equivalent norm. Let $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$ and $||f||_1 = \int_0^1 |f(x)| dx$ be two norms on $C([0,1];\mathbb{R})$. Show that they are not equivalent.
- (b) State the definition of bounded operator. Define $A : C[0,1] \mapsto C[0,1]$ by $(Af)(t) = t \int_0^t f(s) ds$. Prove that this is a bounded linear operator, and compute ||A||.

Question Twenty Let A be a bounded self-adjoint linear operator on a complex Hilbert space H:

- (a) Prove that $||A|| = \sup_{||u||=1} |\langle Au, u \rangle|$, for each $u \in H$.
- (b) If $\langle Au, u \rangle = 0$ then A = 0.
- (c) Prove that $||Au|| = ||A^*u||$ for each $u \in H$.
- (d) Eigenvectors corresponding to eigenvalues are orthogonal to each other.

Question Twenty one [0.5+6 marks] Let S be a closed subspace of the Hilbert space H then:

(a) State the definition of projection operator $P_S : H \mapsto S$.

(b)Show that projection operator is bounded.

(c)Show that $P_R + P_S$ is projection operator if $P_R P_S = 0$.

(d)Show that projection operator is positive operator.

Question Twenty two

- (a) Let X and Y are Banach spaces, and let $T : \mathcal{D}(T) \mapsto Y$ be closed where $\mathcal{D}(T) \subseteq X$. Show that if $\mathcal{D}(T)$ is closed then T is bounded operator.
- (b) Let T be an operator acting on the Banach space X = C[0, 1] defined by Au = u' with domain $\mathcal{D}(T) = C^1[0, 1]$. Show that T is closed operator. Show that T is unbounded operator. Show that $\mathcal{D}(T)$ is not closed operator.

Question Twenty Three

- (a) State bounded inverse mapping theorem. Let $(X_1, ||.||_1)$ and $(X_2, ||.||_2)$ are Banach spaces, if there is a constant α such that $||x||_1 \leq \alpha ||x||_2$. Show that there is a constant β such that $||x||_2 \leq \beta ||x||_1$.
- (b) Consider $A: C[0,1] \mapsto C[0,1]$ defined by

$$(Af)(x) = \int_0^1 \sinh(x-t) f(t)dt$$

where $\sinh(x-t) : [0,1] \times [0,1] \mapsto C$ and $\sinh(x-t) \in C([0,1] \times [0,1])$

- Show that A is a compact self-adjoint operator.
- Compute the spectral radius r(A) of A.

Question Twenty four

- (a) Let $X \neq \{0\}$ be a complex Banach space and let $T \in B(X)$ define the spectrum $\sigma(T)$ and point spectrum $\sigma_p(T)$ of the operator T. Let K(X, X) be the set of all compact operator. Consider $T \in K(X, X)$ then show that $\sigma(T) = \sigma_p(T) \cup \{0\}$.
- (b) Let $B : \ell^2 \mapsto \ell^2$ be a bounded linear operator given by $B(a_1, a_2, a_3, \cdots) = (0, a_1/2, a_2/3, \cdots)$. Compute the spectrum $\sigma(T)$ of the operator B. Consider $T : L_2(0, 1) \mapsto L_2(0, 1)$ defined by

$$(Tf)(t) = e^t f(t)$$

where $e^t \in C[0, 1]$ and $f \in L_2(0, 1)$;

- Compute the operator norm ||T|| of T.
- Show that the resolvent set $\rho(T) = (-\infty, 1) \cup (e, \infty)$.

Question Twenty five

Let $A: C[a, b] \mapsto C[a, b]$ be the bounded linear operator given by

$$(Af)(x) = \int_{a}^{b} k(x,t)f(t)dt$$

where $k : [0,1] \times [0,1] \mapsto C$ and $k \in ([0,1] \times [0,1])$ State the definition of compact operator. Prove that A is a compact operator.