Question one

(a) Let $\left(\mathrm{e}_{j}\right)_{j=1}^{n}$ be the standard basis for \mathbb{R}^{n}. Verify that $\left\|\sum_{j=1}^{n} \lambda_{j} \mathrm{e}_{j}\right\|=\sum_{j=1}^{n}\left|\lambda_{j}\right|$ is norm.
(b) Let $\left(\mathrm{e}_{j}\right)_{j=1}^{n}$ be the standard basis for \mathbb{R}^{n}. Verify that $\left\|\sum_{j=1}^{n} \lambda_{j} \mathrm{e}_{j}\right\|=\sup _{1 \leq j \leq n}\left|\lambda_{j}\right|$ is norm.

Question Two

(a) Let $\ell^{p}(\mathbb{N})$ be the set of all sequences $\left(a_{k}\right)$ in the field \mathbb{C} such that $\sum_{k=1}^{\infty}\left|a_{j}\right|^{p}<\infty$, with norm $\left\|\left(a_{k}\right)\right\|=\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\right)^{1 / p}$, where $1 \leq p \leq \infty$. Show that $\left(\ell^{2},\left\|\left(a_{k}\right)\right\|\right)$ is complete space.
(b) Let $\ell^{\infty}(\mathbb{N})$ be the set of all bounded sequences $\left(a_{k}\right)$ in the field \mathbb{C} with norm $\left\|\left(a_{1}, a_{2}, \cdots\right)\right\|_{\ell \infty}=\sup _{n}\left|a_{n}\right|$. Show that $\left(\ell^{\infty},\left\|\left(a_{1}, a_{2}, \cdots\right)\right\|\right)$ is complete space.

Question Three

(a) Suppose \mathcal{V} is an inner product space over the field \mathbb{F} and that $x, y \in \mathcal{V}$. Prove that $|\langle x, y\rangle| \leq\|x\|\|y\|$.
(b) Let $\phi: H \mapsto \mathbb{C}$ be the linear operator on a complex Hilbert space H define by $\phi_{u}(x)=\langle x, u\rangle$. Show that ϕ_{u} is a bounded linear operator with $\|\phi\|=\|u\|$.

Question Four

(a) Let $\left\{v_{k}\right\}_{k=1}^{\infty}$ be a sequence of unit vector in a complex Hilbert space H, define an operator $\phi: H \mapsto \mathbb{C}$ as $\phi(v)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}\left\langle v, v_{k}\right\rangle$. Show that ϕ is a bounded linear operator.
(b) Show that $\int_{0}^{\pi / 2} e^{x} \cos (x) d x \leq \frac{\sqrt{\pi}}{2 \sqrt{2}}\left(e^{x}-1\right)^{1 / 2}$.
(c) Show that $\int_{0}^{\pi} 3 t \sqrt{\sin (t)} d t \leq \pi \sqrt{6 \pi}$.

Question Five

(a) State the definition of equivalent norm. Let $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$ and $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$ be two norms on $C([0,1] ; \mathbb{R})$. Show that they are not equivalent.
(b) State the definition of equivalent norm. Show that $\|x\|_{\infty}=\max _{i=1,2, \cdots, n}\left|x_{i}\right|$ is equivalent to $\|x\|_{1}=$ $\sum_{i=1}^{n}\left|x_{i}\right|$.

Question Six

(a) Show that a linear operator $\varphi: D(\varphi) \subset C[0,1] \mapsto C[0,1]$, where $D(\varphi)=C^{1}[0,1]$ given by $=f^{\prime}$ is unbounded.
(b) Let $A: \ell^{2} \mapsto \ell^{2}$ be a linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(a_{2}, \sqrt[3]{2} a_{3}, \sqrt[3]{3} a_{4}, \cdots\right)$. is unbounded.

Question Seven

(a) Let $A: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(0, a_{1}, a_{2} / 2, a_{3} / 3, \cdots\right)$. State the definition of adjoint A^{*} of A and compute the adjoint of A
(b) Show that A is not self-adjoint operator.

Question Eight

(a) Let $A: H \mapsto H$ be a bounded linear operator on a complex Hilbert space H. such that . State the definition of an orthogonal projection. Show that $P=\frac{1}{2}(I-A)$ is an orthogonal projection if and only if $A^{2}=I$ and $A^{*}=A$ where I is the identity operator
(b) Let $A: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(\frac{a_{1}+a_{2}}{2}, \frac{a_{3}+a_{4}}{2}, \cdots\right)$. State the definition of compact operator.

Question Nine

(a) Let $A: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(\frac{a_{1}+a_{2}}{2}, \frac{a_{3}+a_{4}}{2}, \cdots\right)$. Show that A is not self-adjoint and compute $\left\|A A^{*}\right\|$.
(b) Show that A is not compact operator.

Question Ten

(a) Let $A: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(0, a_{1}, a_{2} / 2, a_{3} / 3, \cdots\right)$. Show that the spectrum of A is equal to zero. $\sigma(A)=\{\lambda \in \mathbb{C} \| \lambda \mid \leq 1\}$.
(b) Let $S: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $S_{r}\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(0, \frac{a_{1}}{3}, \frac{a_{2}}{3}, \frac{a_{3}}{3}, \cdots\right)$. Determine the operator norm $\left\|S_{r}\right\|$. Show that S_{r} has no eigenvalue. Show that the spectrum of S_{r} is equal to $[-1,1]$.

Question Tweleve

(a) Let $A: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(\left(a_{1}, 0,\left(a_{2}, 0,\left(a_{3}, 0, \cdots\right)\right.\right.\right.$. Show that A is not compact . $A^{*} A=I$.
(b) Let $A: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(a_{1}, a_{2} / 2, a_{3} / 3, \cdots\right)$. Show that the operator A is self-adjoint operator.

Question Thirteen

(a) Assume that E is finite dimensional vector space and that $A: E \mapsto E$ is a linear operator. Then show that the continuous spectrum of A is equal to empt set.
(b) Assume that E is finite dimensional vector space and that $A: E \mapsto E$ is a linear operator. Then show that the residual spectrum of A is equal to empt set.

Question Fourteen

(a) Let H be a complex Hilbert space. If $u \in H$ and $f(v)=<v, u>$ for each $v \in H$, then show that f is a bounded linear functional.
(b) If f is a bounded linear functional on H, then prove that there exist $u \in H$ such that $f(v)=<$ $v, u>$ for each $v \in H$ and $\|f\|=\|u\|$.

Question Fifteen

(a) Let $H=\ell^{2}(\mathbb{N})$ and let $m=\left\{x \in \ell^{2}(\mathbb{N}) \mid x_{1}=0=x_{3}\right\}$. Find the orthogonal complement of m.
(b) Define the Banach space. Let $C[a, b]$ be the set of all real valued continuous functions defined on interval $[a, b]$, with the norm $\|f\|_{\infty}=\max _{t \in[0,1]}|f(t)|$. Show that $\left(C[a, b],\|\cdot\|_{\infty}\right)$ is a Banach space.

Question Sixteen

(a) Define the complete normed linear space. Let $C[-1,1]$ be the set of all real valued continuous functions defined on interval $[-1,1]$, with the norm $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$ Show that $\left(C[-1,1],\|\cdot\|_{\infty}\right)$ is not a complete space.
(b) State the definition of bounded linear operator. Let $A: \ell^{p} \mapsto \ell^{p}$ given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=$ $\left(a_{1}, a_{1}, a_{2}, a_{3} \cdots\right)$. Show that $A: \ell^{p} \mapsto \ell^{p}$ is a bounded linear operator, and compute $\|A\|$.

Question Seventeen

(a) Let $\ell^{2}(\mathbb{N})$ be the set of all sequences $\left(a_{k}\right)$ in the complex number such that $\sum_{k=1}^{\infty}\left|a_{j}\right|^{2}<\infty$, with inner product $\left\langle\left(a_{j}\right)_{j=1}^{\infty},\left(b_{j}\right)_{j=1}^{\infty}\right\rangle=\sum_{j=1}^{\infty} a_{j} \bar{b}_{j}$. Show that $\left(\ell^{2},\langle.,\rangle.\right)$ is a Hilbert space.
(b) Let $\left(e_{k}\right)$ be an orthonormal sequence in an inner product space X, show that for any $x, y \in X$ $\sum_{j=1}^{\infty}\left|\left\langle x, e_{j}\right\rangle\left\langle y, e_{j}\right\rangle\right| \leq\|x\|\|y\|$.

Question Eighteen

(a) For any x belongs to the Hilbert space H. Let $u=\sum_{j=1}^{n}\left\langle e_{j}, x\right\rangle e_{j}$ where $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is an orthonormal set. Prove that $\|u\|^{2}=\sum_{j=1}^{n}\left|\left\langle e_{j}, x\right\rangle\right|^{2}$.
(b) Let $A: \ell^{2} \mapsto \ell^{2}$ be the linear operator given by $A\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(a_{1}, 0, a_{2}, 0, a_{3}, \cdots\right)$.

- State the definition of adjoint A^{*} of A and compute the adjoint of A
- Show that A is not self-adjoint operator.

Question Ninteen

(a) State the definition of equivalent norm. Let $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$ and $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$ be two norms on $C([0,1] ; \mathbb{R})$. Show that they are not equivalent.
(b) State the definition of bounded operator. Define $A: C[0,1] \mapsto C[0,1]$ by $(A f)(t)=t \int_{0}^{t} f(s) d s$. Prove that this is a bounded linear operator, and compute $\|A\|$.

Question Twenty Let A be a bounded self-adjoint linear operator on a complex Hilbert space H :
(a) Prove that $\|A\|=\sup _{\|u\|=1}|<A u, u>|$, for each $u \in H$.
(b) If $<A u, u>=0$ then $A=0$.
(c) Prove that $\|A u\|=\left\|A^{*} u\right\|$ for each $u \in H$.
(d) Eigenvectors corresponding to eigenvalues are orthogonal to each other.

Question Twenty one $\quad[0.5+6$ marks $]$ Let S be a closed subspace of the Hilbert space H then:
(a) State the definition of projection operator $P_{S}: H \mapsto S$.
(b)Show that projection operator is bounded.
(c)Show that $P_{R}+P_{S}$ is projection operator if $P_{R} P_{S}=0$.
(d)Show that projection operator is positive operator.

Question Twenty two

(a) Let X and Y are Banach spaces, and let $T: \mathcal{D}(T) \mapsto Y$ be closed where $\mathcal{D}(T) \subseteq X$. Show that if $\mathcal{D}(T)$ is closed then T is bounded operator.
(b) Let T be an operator acting on the Banach space $X=C[0,1]$ defined by $A u=u^{\prime}$ with domain $\mathcal{D}(T)=C^{1}[0,1]$. Show that T is closed operator. Show that T is unbounded operator. Show that $\mathcal{D}(T)$ is not closed operator.

Question Twenty Three

(a) State bounded inverse mapping theorem. Let $\left(X_{1},\|.\|_{1}\right)$ and $\left(X_{2},\|\cdot\|_{2}\right)$ are Banach spaces, if there is a constant α such that $\|x\|_{1} \leq \alpha\|x\|_{2}$. Show that there is a constant β such that $\|x\|_{2} \leq \beta\|x\|_{1}$.
(b) Consider $A: C[0,1] \mapsto C[0,1]$ defined by

$$
(A f)(x)=\int_{0}^{1} \sinh (x-t) f(t) d t
$$

where $\sinh (x-t):[0,1] \times[0,1] \mapsto C$ and $\sinh (x-t) \in C([0,1] \times[0,1])$

- Show that A is a compact self-adjoint operator.
- Compute the spectral radius $r(A)$ of A.

Question Twenty four

(a) Let $X \neq\{0\}$ be a complex Banach space and let $T \in B(X)$ define the spectrum $\sigma(T)$ and point spectrum $\sigma_{p}(T)$ of the operator T. Let $K(X, X)$ be the set of all compact operator. Consider $T \in K(X, X)$ then show that $\sigma(T)=\sigma_{p}(T) \cup\{0\}$.
(b) Let $B: \ell^{2} \mapsto \ell^{2}$ be a bounded linear operator given by $B\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(0, a_{1} / 2, a_{2} / 3, \cdots\right)$. Compute the spectrum $\sigma(T)$ of the operator B.
Consider $T: L_{2}(0,1) \mapsto L_{2}(0,1)$ defined by

$$
(T f)(t)=e^{t} f(t)
$$

where $e^{t} \in C[0,1]$ and $f \in L_{2}(0,1)$;

- Compute the operator norm $\|T\|$ of T.
- Show that the resolvent set $\rho(T)=(-\infty, 1) \cup(e, \infty)$.

Question Twenty five

Let $A: C[a, b] \mapsto C[a, b]$ be the bounded linear operator given by

$$
(A f)(x)=\int_{a}^{b} k(x, t) f(t) d t
$$

where $k:[0,1] \times[0,1] \mapsto C$ and $k \in([0,1] \times[0,1])$ State the definition of compact operator. Prove that A is a compact operator.

