Question one

In each of the following; first state whether each given statement is true or false. Explain your answer:
(a) Every bounded sequence is convergent.
(b) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are monotonic sequence then $\left\{a_{n} b_{n}\right\}$ is monotonic sequence.

Question two

Determine whether the given series are convergent or not. Explain your answer:
(a) $a_{n}=\sum_{n=3}^{\infty} \frac{n}{n^{2}+4}$
(b) $b_{n}=\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
(c) $c_{n}=\sum_{n=1}^{\infty} \frac{3^{n}}{n^{5}}$

Question three

Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n(n+1)}$.

Question four

Find interval of convergence and the sum of the power series as a function of x of $\sum_{n=0}^{\infty}\left(\frac{x^{2}+1}{3}\right)^{n}$.

Question five

(a) Use power series to evaluate $\int_{-1}^{0} \frac{\ln (x+1)}{x} d x$.
(b) Use power series to evaluate $\int_{0}^{1} \frac{e^{x^{2}}}{x} d x$.

Question six

Find and sketch the domain of the function $\psi(x, y)=\ln (x y+x-y-1)$.

Question seven

Consider the function $\psi: D(\psi) \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\psi(x, y)=\frac{1}{\sqrt{144-4 x^{2}-9 y^{2}}}$:
(a) Find and sketch the domain of $\psi(x, y)$.
(b) Find the interior and the boundary of $\psi(x, y)$.
(c) Is the domain an open region, a closed region, a neither ?
(d) Is the domain bounded or unbounded?.

Question eight

Show that the following limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (2 x)-2 x+y}{x^{3}+y}
$$

does not exists:

Question nine

Consider the function $\psi: D(\psi) \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $\psi(x, y)=x^{2}+2 y$ then prove that $\lim _{(x, y) \rightarrow(1,2)} \psi(x, y)=$ 5.

Question ten

If $\psi(x, y)=\tan ^{-1}\left(\frac{2 x}{x^{2}-y^{2}}\right)$, then show that

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

Question eleven

Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $\psi(x, y)=-x^{3}+y^{3}-3 x-12 y+20$. Find all critical points of ψ and classify them.

Question tweleve

Show that the function $u(x, y)=\ln \left(x^{2}+y^{2}\right)$ satisfies Laplace equation $u_{x x}+u_{y y}=0$.

Question thirteen

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=\left\{\begin{array}{ll}\frac{(x-1)^{2}(y-2)}{\sqrt{(x-1)^{2}+(y-2)^{2}}} & \text { for }(x, y) \neq(1,2) \\ 0 & \text { for }(x, y)=(1,2) .\end{array}\right.$.
Show that the partial derivative $f_{x}(1,2)$ and $f_{y}(1,2)$ are exists but $f(x, y)$ is not differentiable at $(1,2)$.

Question fourteen

Consider the function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\phi(x, y)=\left\{\begin{array}{ll}\frac{x^{2}+y^{2}}{|x|+|y|} & \text { for }(x, y) \neq 0 \\ 0 & \text { for }(x, y)=0 .\end{array}\right.$ Show that $\phi(x, y)$ is continuous at $(0,0)$, but it is not differentiable at $(0,0)$.

Question fifteen

Consider the function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\phi(x, y)=\left\{\begin{array}{ll}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { for }(x, y) \neq 0 \\ 0 & \text { for }(x, y)=0 .\end{array}\right.$ Show that the partial derivative $\phi_{x}(0,0)$ and $\phi_{y}(0,0)$ are exists but $\phi_{x}(x, y)$ is not differentiable at $(0,0)$.

Question sixteen

Compute the directional derivative of $\pi(x, y)=5 y-10 x+\cos (x)$, at the point $(0,1)$ in the direction of $-3 \hat{i}+4 \hat{j}$ vector.

Question seventeen

Compute the directional derivative of $\pi(x, y, z)=\frac{x e^{y}}{3 z^{2}+1}$, at the point $(2,-1,0)$ in the direction parallel to the vector $\hat{i}-2 \hat{j}+3 \hat{k}$.

Question eighteen

Consider the function $f: D(f) \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=x^{2}-4 x+y^{2}-4 y+16$
(a) Find and classify the critical points of $f(x, y)$.
(b) Find the maximum and minimum values of $f(x, y)$ subject to $x^{2}+y^{2}=18$.

Question ninteen

Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $\psi(x, y)=x^{3}+3 x y+y^{3}$. Find all critical points of ψ.

Question tweny

Consider the function $\tau(x, y)=x^{2}+x y-e^{y}$. Find the gradient of the function $\tau(x, y)$ and then compte the directional derivative of the function $\tau(x, y)$ at the point $P(1,0)$ in the direction of the vector $\vec{u}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Question tweny one

Compute the directional derivative of $\pi(x, y, z)=x^{2}-y^{2}+x y z$, at the point $(1,2,-1)$ in the direction of the vector $v=3 \hat{i}+4 \hat{j}+12 \hat{k}$.

Question tweny two

Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $\psi(x, y)=x^{3}-3 x+y^{3}-3 y$. Find all critical points of ψ. For each critical point, use the second derivative test to classify it as either a local minimum, a local maximum, or a saddle point.

Question tweny three

Find the maximum and minimum values of the function $\phi(x, y)=x e^{y}$ subject to $x^{2}+y^{2}=2$.

Question tweny four

Find the maximum and minimum values of the function $\phi(x, y)=x^{2}-y^{2}$ subject to $4 x^{2}+y^{2}=1$.

Question tweny five

Consider the function $\phi: D(\psi) \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $\psi(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ then compute $D_{u} \phi(1,1,1)$ if $u=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

