Chapter 5

Introduction to Factorial Experimental

Factorial Experiments

- In some experiments we want to draw conclusions about more than one factor.
\bigcirc The factorial experiments are an experiment whose design consists of two or more factors, each factor taking two or more levels.
- The term factorial is used because the experimental conditions include all possible combinations of the factors.
\circ In factorial experiments they studying the effect of each factor alone and the interaction between them.

Note :

○ The factorial experiments is not design ,but it experiment which used with all design .

Notation

- 1) Factor: The factor denote by capital letters .

For example A,B,C

- 2) Levels: The levels denote by small letters, and putting the digit (number) with the letter.

For example ($a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}$).
\circ 3) Treatment Combination: Consist the combinations of various level for the factors. For example ($a_{0} b_{0}, a_{0} b_{1}$, $a_{0} b_{2}$).

An Example Factorial Experiment

- If we were looking at Gender and Time of Exam.
1)We have two factor : Gender denoted by (A), and Time of Exam denoted by (B).

2) Gender would only have two levels: Male or Female $\left(a_{0}, a_{1}\right)$
3) Time of Exam might have multiple levels, morning, noon , and night $\left(b_{0}, b_{1}, b_{2}\right)$
4) Number of Treatment multiplicative result of Combination(T.C.) =The experiment $=(2 * 3)=6$

Example

\mathbf{B}	\mathbf{b}_{0}	\mathbf{b}_{1}	\mathbf{b}_{2}
\mathbf{a}_{0}	$\mathbf{a}_{0} \mathbf{b}_{0}$	$\mathbf{a}_{0} \mathbf{b}_{1}$	$\mathbf{a}_{0} \mathbf{b}_{2}$
\mathbf{a}_{1}	$\mathbf{a}_{1} \mathbf{b}_{0}$	$\mathbf{a}_{1} \mathbf{b}_{1}$	$\mathbf{a}_{1} \mathbf{b}_{2}$

Effects in Factorial Experiments

1) Simple effect :The difference between two levels of factors under a fixed level of another factor .

	B	b_{0}
y_{1}	b_{1}	
	a_{0}	$a_{0} b_{0}$
a_{1}	$a_{0} b_{1}$	$\left(a_{1} b_{0}\right.$
$\left(a_{0} b_{1}-a_{0} b_{0}\right)$		
$\left(a_{1} b_{1}-a_{1} b_{0}\right)$		

2) Main effect: The additive average of two simple effect.

$$
\begin{aligned}
& =\left(\left(\mathbf{a}_{\mathbf{0}} \mathbf{b}_{\mathbf{1}}-\mathbf{a}_{\mathbf{0}} \mathbf{b}_{\mathbf{0}}\right)+\left(\mathbf{a}_{\mathbf{1}} \mathbf{b}_{\mathbf{1}}-\mathbf{a}_{\mathbf{1}} \mathbf{b}_{\mathbf{0}}\right)\right) / \mathbf{2} \\
& =\left(\left(\mathrm{a}_{1} \mathrm{~b}_{0}-\mathrm{a}_{0} \mathrm{~b}_{0}\right)+\left(\mathrm{a}_{1} \mathrm{~b}_{1}-\mathrm{a}_{0} \mathrm{~b}_{1}\right)\right) / 2
\end{aligned}
$$

3) Interaction: The difference average of two simple effect.

$$
\begin{aligned}
& =\left(\left(a_{0} b_{1}-a_{0} b_{0}\right)-\left(a_{1} b_{1}-a_{1} b_{0}\right)\right) / 2 \\
& =\left(\left(a_{1} b_{0}-a_{0} b_{0}\right)-\left(a_{1} b_{1}-a_{0} b_{1}\right)\right) / 2
\end{aligned}
$$

Factorial experiment: investigate all possible combinations of the levels for the factors

	Factor \boldsymbol{B}	
Factor \boldsymbol{A}	$B_{\text {low }}$	$B_{\text {high }}$
$A_{\text {low }}$	10	20
$A_{\text {high }}$	30	40

Main effect: the change in the response produced by a change in the level of the factor.

- Main effect of $\mathrm{A}(\mathrm{B})$: the difference between the average response at the high level of A (B) and the average response at the low level of A (B)

$$
A=\frac{30+40}{2}-\frac{10+20}{2}=20, B=\frac{20+40}{2}-\frac{10+30}{2}=10
$$

- Interaction: the dependency between factors. The difference in response between the levels of one factor is not the same at all level of the other factors.

	Factor \boldsymbol{B}	
Factor \boldsymbol{A}	$B_{\text {low }}$	$B_{\text {high }}$
$A_{\text {low }}$	10	20
$A_{\text {high }}$	30	0

- At low level of B , the A effect is $A=30-10=20$
- At high level of B , the A effect is $\mathrm{A}=0-20=-20$

- When an interaction is large, the corresponding main effects have very little meaning.

$$
A=\frac{30+0}{2}-\frac{10+20}{2}=0 \quad \text { There is no factor } \mathrm{A} \text { effect }
$$

- At different level of B, we can see the different effect of A.

Factorial Experiment in a CRD

- The factorial CRD used when we have two or more than two factors and when the experimental units are homogenous
- In the factorial CRD treatment combination randomly distributed on the experimental units .
- When an interaction is large, the corresponding main effects have little practical meaning.
- A significant interaction will often mask(Hidden) the significance of main effects.

Fixed Effects Model

Factor A: Effects are fixed constants and sum to 0
Factor B: Effects are fixed constants and sum to 0
Interaction: Effects are fixed constants and sum to 0 over all levels of factor B, for each level of factor A, and vice versa

- Error Terms: Random Variables that are assumed to be independent and normally distributed with mean 0 , variance σ^{2}

$$
\sum_{i=1}^{a} A_{i}=0, \quad \sum_{j=1}^{b} \beta_{j}=0 \quad \sum_{i=1}^{a} A \beta_{i j}=0 \forall j \quad \sum_{j=1}^{b} A \beta_{i j}=0 \forall i \quad \varepsilon_{i j k} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)
$$

Completely Randomized in a Factorial Experiments

Statistical (Effects) Model:

$y_{i j k}: \mu+A_{i}+B_{j}+A B_{i j}+\varepsilon_{i j k} \quad i=1, \ldots, a \quad j=1, \ldots, b \quad k=1, \ldots, r$
$y_{i j k}$: the value of experiment al unit that take(ith) level at Factors A, (jth) level at B
μ :Overall Mean
$A_{i}:$ (Factor A effect) orEffect of $i^{\text {th }}$ level of factor A
B_{j} : (Factor B effect) or Effect of $j^{\text {th }}$ level of factor B
$A B_{\mathrm{ij}}$: Interaction effect whe $\mathrm{n} i^{\text {th }}$ level of A and $j^{\text {th }}$ level of B are combined
$\varepsilon_{\mathrm{ijk}}:$ Random error terms

Testing Hypotheses:

$H_{0}: A_{1}=\cdots=A_{a}=0$ v.s. H_{1} : at least one $A_{i} \neq 0$
$H_{0}: \beta_{1}=\cdots=\beta_{b}=0$ v.s. H_{1} : at least one $\beta_{j} \neq 0$
$H_{0}:(A \beta)_{i j}=0 \forall i, j$ v.s. $H_{1}:$ at least one $(A \beta)_{i j} \neq 0$

- Model depends on whether all levels of interest for a factor are included in experiment:
- Fixed Effects: All levels of factors A and B included
- Random Effects: Subset of levels included for factors A and B
- Mixed Effects: One factor has all levels, other factor a subset

Completely randomized design: a levels of factor A, b levels of factor $\mathbf{B}, \boldsymbol{r}$ replicates

Table
General Arrangement for a Two-Factor Factorial Design
Factor B

Factor A	1	1	2	...	b
		y_{111}, y_{12}, $\ldots, y_{11 n}$	$\begin{aligned} & y_{121}, y_{122}, \\ & \ldots, y_{12 n} \end{aligned}$		$\begin{aligned} & y_{1 b 1}, y_{1 b 2}, \\ & \ldots, y_{1 b n} \end{aligned}$
	2	$\begin{aligned} & y_{211}, y_{212}, \\ & \ldots, y_{21 n} \end{aligned}$	$\begin{aligned} & y_{221}, y_{222}, \\ & \ldots, y_{22 n} \end{aligned}$		$\begin{aligned} & y_{2 b 1}, y_{2 b 2}, \\ & \ldots, y_{2 b n} \end{aligned}$
	.				
	a	$\begin{aligned} & y_{a 11}, y_{a 12}, \\ & \ldots, y_{a 1 n} \end{aligned}$	$\begin{aligned} & y_{a 21}, y_{a 22}, \\ & \ldots, y_{a 2 n} \end{aligned}$		$y_{a b 1}, y_{a b 2}$, $\ldots, y_{a b n}$

The ANOVA table

- Total Variation (SST) is partitioned into 4 components:
- Factor A: Variation in means among levels of A
- Factor B: Variation in means among levels of B
- Interaction: Variation in means among combinations of levels of A and B that are not due to A or B alone
- Error: Variation among subjects within the same combinations of levels of A and B (Within SS)

Source	df	SS	MS	F
Treat. Comb.	ab-1	STITeal-AB-C.	MStrealSStreat(ab-1)	FTreatMSTteedMSE
Fartor A	a. 1	SSA A C.	MSASSM(a-1)	$F_{A}=1 / 2 M M S E$
Factor B	b-1	SSBEB-CF	MSESSE(b-1)	$\mathrm{F}_{\mathrm{B}}=\mathrm{MSBMSE}$
Interaction	(a-1)(b-1)	SSAB $=A B \cdot A \cdot B+C \cdot F$	MSAB=SSAB] $(a-1)(6-1)]$	$\mathrm{F}_{\text {AB }}=\mathrm{MSABMSE}$
Error	ab(r-1)	SSEERAB-AB	MSEESSE[[bl(r-1)]	
Total	abr-1	SST $=$ RAB.C.E.		

$$
\begin{aligned}
& C . F .=\frac{\left(Y_{. .}\right)^{2}}{a b r} \\
& A=\frac{\sum_{i=1}^{a} Y_{i . .}^{2}}{b r} \\
& B=\frac{\sum_{j=1}^{b} Y_{. j}^{2}}{a r}
\end{aligned}
$$

$$
\begin{array}{r}
A B=\frac{\sum_{i, j=1}^{a b} Y_{i j}^{2}}{r} \\
R A B=\sum Y_{i j k}^{2}
\end{array}
$$

Test for Interaction :
$H_{0}: A \beta_{11}=\ldots=A \beta_{a b}=0$
$H_{a}:$ Not all $A \beta_{i j}=0$
$T S: F_{A B}=\frac{M S A B}{M S E}$
$R R: F_{A B} \geq F_{\alpha,(a-1)(b-1), a b(r-1)}$

Test for Factor A
Test for Factor B
$H_{0}: A_{1}=\ldots=A_{a}=0 \quad H_{0}: \beta_{1}=\ldots=\beta_{b}=0$
$H_{a}:$ Not all $A_{i}=0 \quad H_{a}:$ Not all $\beta_{j}=0$
$T S: F_{A}=\frac{M S A}{M S E}$
$T S: F_{B}=\frac{M S B}{M S E}$
$R R: F_{A} \geq F_{\alpha,(a-1), a b(r-1)}$

Blocking in a Factorial Design

2-Factor ANOVA can be conducted in a Randomized Block Design, where each block is made up of $a b$ experimental units. Analysis is direct extension of RCBD with 1-factor ANOVA

- Factorial Experiments can be conducted with any number of factors. Higher order interactions can be formed (for instance, the $A B$ interaction effects may differ for various levels of factor C).
- When experiments are not balanced, calculations are immensely messier and you must use statistical software packages for calculations

Completely Randomized Block Design in a Factorial Experiments

Statistical (Effects) Model:

$y_{i j k}: \mu+A_{i}+B_{j}+A B_{i j}+R_{k}+\varepsilon_{i j k} \quad i=1, \ldots, a \quad j=1, \ldots, b \quad k=1, \ldots, r$
$y_{i j k}$: the value of experiment al unit that take(ith) level at Factors A,(jth) level at B
μ :Overall Mean
A_{i} : (Factor A effect) or Effect of $i^{\text {th }}$ level of factor A
B_{j} : (Factor B effect) or Effect of $j^{\text {th }}$ level of factor B
$A B_{\mathrm{ij}}$: Interactio n effect whe $\mathrm{n} i^{\text {th }}$ level of A and $j^{\text {th }}$ level of B are combined
R_{k} : Effect of Blocks
$\varepsilon_{\mathrm{ijk}}:$ Random error terms

The ANOVA table

Source	df	SS	MS	F
Blocks	$\mathrm{r}-1$	SSILR.C.F	MSt $=$ SStr (r-1)	$\mathrm{Fr}=\mathrm{MSTMSE}$
Treat Comb.	ab-1	$S_{S}^{\text {med }}$ =AB-C.	$M S_{\text {maxd }}=$ SStreat($(\mathrm{db}-1)$	$\mathrm{F}_{\text {Tred }}=$ MSTreatMSE
Factor A	a-1	SSA $=\mathrm{A}-\mathrm{CF}$	MSAESSM $(\mathrm{a}-1)$	$\mathrm{F}_{\mathrm{A}}=\mathrm{MSAMSE}$
Factor B	b-1	SSE=B-C.	MSBESSB/(b-1)	$\mathrm{F}_{\mathrm{B}}=\mathrm{MSBMSE}$
Interaction	(a-1)(b-1)	SSAB $=\mathrm{AB}-\mathrm{A}-\mathrm{B}+\mathrm{C} \cdot \mathrm{F}$	MSAB=SSABE[(a-1)(b-1)]	$\mathrm{F}_{4 \mathrm{AB}}=\mathrm{MSABMSE}$
Error	(r-1) ${ }^{\text {ab-1 }}$ -	SSE=RAB-R-AB+C.F	$\mathrm{MSE}=\mathrm{SSE}[(\mathrm{r}-1)(\mathrm{ab-1}-1)]$	
Total	abr-1	SST $=$ RABC.C.		

$$
\begin{aligned}
& C . F .=\frac{(Y . .)^{2}}{a b r} \\
& A=\frac{\sum_{i=1}^{a} Y_{i . .}^{2}}{b r} \\
& B=\frac{\sum_{j=1}^{b} Y_{. j}^{2}}{a r}
\end{aligned}
$$

$$
\begin{aligned}
& R=\frac{\sum Y_{. . k}^{2}}{a b} \\
& A B=\frac{\sum_{i, j=1}^{a b} Y_{i j}^{2}}{r} \\
& R A B=\sum Y_{i j k}^{2}
\end{aligned}
$$

Latin Square in a Factorial Experiments

$$
\begin{aligned}
& \text { Mathematical model: } \\
& \mathrm{Y}_{\mathrm{ijkl}}=\mu+\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{j}}+\mathrm{AxB}_{\mathrm{ij}}+\mathrm{R}_{\mathrm{k}}+\mathrm{C}_{1}+\mathrm{e}_{\mathrm{ij} \mathrm{k}}
\end{aligned}
$$

Examples: of a 2×3 factorial arrangement of A and B (2 levels of A and 3 levels of B):

In a Latin Square with 6 rows and 6 columns:
Source df

Total	35	$\mathrm{tr}-1$
Treatment	(5)	$\mathrm{t}-1$

A
B
Ax B
$2(\mathrm{a}-1)(\mathrm{b}-1)$
Row
$5 \quad \mathrm{r}-1$ Same as block in RCBD
Column
Error (BxT) $20 \quad(\mathrm{t}-1)(\mathrm{r}-2)$ Column takes another 5 df from Error
Total and Treatment df are same for all designs.

