Chapter 5

Introduction to Factorial Experimental

Factorial Experiments

- In some experiments we want to draw conclusions about more than one factor.
- The factorial experiments are an experiment whose design consists of two or more factors, each factor taking two or more levels.
- The term factorial is used because the experimental conditions include all possible combinations of the factors.
- In factorial experiments they studying the effect of each factor alone and the interaction between them.

<u>Note</u> :

• The factorial experiments is not design ,but it experiment which used with all design .

Notation

- 1) Factor: The factor denote by capital letters . For example A,B,C
- 2) Levels: The levels denote by small letters, and putting the digit (number) with the letter .

For example $(a_0, a_1, a_2, b_0, b_1, b_2)$.

• 3) Treatment Combination: Consist the combinations of various level for the factors. For example (a_0b_0, a_0b_1, a_0b_2) .

An Example Factorial Experiment

- If we were looking at Gender and Time of Exam.
 1)We have two factor : Gender denoted by (A), and Time of Exam denoted by (B).
 - 2) Gender would only have two levels: Male or Female (a₀,a₁)
 - 3) Time of Exam might have multiple levels, morning, noon ,and night(b_0, b_1, b_2)
- 4) Number of Treatment Combination(T.C.) =The multiplicative result of the levels in the experiment=(2*3)=6

Example

A	b ₀	b ₁	\mathbf{b}_2
a.	a ₀ b ₀	a ₀ b ₁	$\mathbf{a}_0\mathbf{b}_2$
a ₁	$\mathbf{a}_1\mathbf{b}_0$	$\mathbf{a}_1\mathbf{b}_1$	$\mathbf{a}_1\mathbf{b}_2$

Effects in Factorial Experiments

1) Simple effect :The difference between two levels of factors under a fixed level of another factor .

	b ₁	b ₀	A B
(a ₀ b ₁ -a ₀ b ₀)	$\mathbf{a}_0\mathbf{b}_1$	$\mathbf{a}_0\mathbf{b}_0$	\mathbf{a}_{0}
(a ₁ b ₁ -a ₁ b ₀)	a ₁ b ₁	a_1b_0	a ₁

 $(a_1b_0-a_0b_0) (a_1b_1-a_0b_1)$

2) Main effect: The additive average of two simple effect.

$$=((a_0b_1-a_0b_0)+(a_1b_1-a_1b_0))/2$$

=((a_1b_0-a_0b_0)+(a_1b_1-a_0b_1))/2

3) Interaction: The difference average of two simple effect.

$$=((a_0b_1-a_0b_0)-(a_1b_1-a_1b_0)) /2$$
$$=((a_1b_0-a_0b_0)-(a_1b_1-a_0b_1)) /2$$

Factorial experiment: investigate all possible combinations of the levels for the factors

	Factor B		
Factor A	$B_{\rm low}$	$B_{ m high}$	
$A_{\rm low}$	10	20	
A_{high}	30	40	

Main effect: the change in the response produced by a change in the level of the factor.

• Main effect of A (B) : the difference between the average response at the high level of A (B) and the average response at the low level of A (B)

$$A = \frac{30+40}{2} - \frac{10+20}{2} = 20, B = \frac{20+40}{2} - \frac{10+30}{2} = 10$$

Interaction: the dependency between factors. The difference in response between the levels of one factor is not the same at all level of the other factors.

	Factor B		
Factor A	$B_{\rm low}$	$B_{\rm high}$	
$A_{\rm low}$	10	20	
A_{high}	30	0	

- At low level of B, the A effect is A=30-10=20
- At high level of B, the A effect is A=0-20=-20 Very different depends on the level of B
- When an interaction is large, the corresponding main effects have very little meaning. $A = \frac{30+0}{2} - \frac{10+20}{2} = 0$ There is no factor A effect
- At different level of B, we can see the different effect of A.

The knowledge of AB interaction is more useful than the main effect

Factorial Experiment in a CRD

- The factorial CRD used when we have two or more than two factors and when the experimental units are homogenous
- In the factorial CRD treatment combination randomly distributed on the experimental units .
- When an interaction is large, the corresponding main effects have little practical meaning.
- A significant interaction will often mask(Hidden) the significance of main effects.

Fixed Effects Model

- Factor A: Effects are fixed constants and sum to 0
- Factor B: Effects are fixed constants and sum to 0
- Interaction: Effects are fixed constants and sum to 0 over all levels of factor B, for each level of factor A, and vice versa
- \circ Error Terms: Random Variables that are assumed to be independent and normally distributed with mean 0, variance σ^2

$$\sum_{i=1}^{a} A_{i} = 0, \quad \sum_{j=1}^{b} \beta_{j} = 0 \quad \sum_{i=1}^{a} A \beta_{ij} = 0 \quad \forall j \quad \sum_{j=1}^{b} A \beta_{ij} = 0 \quad \forall i \quad \varepsilon_{ijk} \sim N(0, \sigma_{\varepsilon}^{2})$$

Completely Randomized in a Factorial Experiments

Statistical (Effects) Model:

 $y_{ijk}: \mu + A_i + B_j + AB_{ij} + \varepsilon_{ijk}$ i = 1,...,a j = 1,...,b k = 1,...,r

 y_{ijk} : the value of experiment al unit that take(ith) level at Factors A, (jth) level at B

 μ : Overall Mean

 A_i : (Factor A effect) or Effect of i^{th} level of factor A

 B_i : (Factor B effect) or Effect of j^{th} level of factor B

 AB_{ij} : Interaction effect when i^{th} level of A and j^{th} level of B are combined

 ε_{ijk} : Random error terms

Testing Hypotheses:

 $H_0: A_1 = \cdots = A_a = 0$ v.s. $H_1:$ at least one $A_i \neq 0$

 $H_0: \beta_1 = \dots = \beta_b = 0$ v.s. $H_1:$ at least one $\beta_j \neq 0$

$$H_0: (A\beta)_{ij} = 0 \ \forall i, j \text{ v.s. } H_1: \text{ at least one } (A\beta)_{ij} \neq 0$$

- Model depends on whether all levels of interest for a factor are included in experiment:
 - Fixed Effects: All levels of factors A and B included
 - **Random Effects:** Subset of levels included for factors A and B
 - Mixed Effects: One factor has all levels, other factor a subset

Completely randomized design: *a* levels of factor A, *b* levels of factor B, *r* replicates

	Factor B						
		1	2		b		
	1	$y_{111}, y_{112}, \dots, y_{11n}$	$y_{121}, y_{122}, \dots, y_{12n}$		$y_{1b1}, y_{1b2}, \\ \ldots, y_{1bn}$		
Factor A	2	y ₂₁₁ , y ₂₁₂ , , y _{21n}	<i>y</i> ₂₂₁ , <i>y</i> ₂₂₂ , , <i>y</i> _{22n}		<i>Y</i> 2 <i>b</i> 1, <i>Y</i> 2 <i>b</i> 2, , <i>Y</i> 2 <i>b</i> n		
	• • •						
	а	$y_{a11}, y_{a12}, \\ \dots, y_{a1n}$	<i>y</i> _{a21} , <i>y</i> _{a22} , , <i>y</i> _{a2n}		Yab1, Yab2, •••• Yabn		

The ANOVA table

- Total Variation (SST) is partitioned into 4 components:
 - Factor A: Variation in means among levels of A
 - Factor B: Variation in means among levels of B
 - Interaction: Variation in means among combinations of levels of A and B that are not due to A or B alone
 - Error: Variation among subjects within the same combinations of levels of A and B (Within SS)

Source	df	SS	MS	F
Treat. Comb.	ab-1	SSTreat=AB-C.F	MStreat=SStreat/(ab-1)	FTreat=MStreat/MSE
Factor A	a-1	SSA=A-C.F	MSA=SSA/(a-1)	F _a =MSA/MSE
Factor B	b-1	SSB=B-C.F	MSB=SSB/(b-1)	F _B =MSB/MSE
Interaction	(a-1)(b-1)	SSAB=AB-A-B+C.F	MSAB=SSAB/[(a-1)(b-1)]	F _{ab} =MSAB/MSE
Error	ab(r-1)	SSE=RAB-AB	MSE=SSE/[ab(r-1)]	
Total	abr-1	SST=RAB-C.F.		
	$(V)^{2}$			

$$C.F. = \frac{(Y_{..})^2}{abr}$$

$$A = \frac{\sum_{i=1}^{a} Y_{i..}^{2}}{br}$$
$$B = \frac{\sum_{j=1}^{b} Y_{.j}^{2}}{ar}$$

$$AB = \frac{\sum_{i,j=1}^{ab} Y_{ij}^2}{r}$$

$$RAB = \sum Y_{ijk}^2$$

Test for Interaction :Test for Factor ATest for Factor B $H_0: A\beta_{11} = \dots = A\beta_{ab} = 0$ $H_0: A_1 = \dots = A_a = 0$ $H_0: \beta_1 = \dots = \beta_b = 0$ $H_a:$ Not all $A\beta_{ij} = 0$ $H_a:$ Not all $A_i = 0$ $H_a:$ Not all $\beta_j = 0$ $TS: F_{AB} = \frac{MSAB}{MSE}$ $TS: F_A = \frac{MSA}{MSE}$ $TS: F_B = \frac{MSB}{MSE}$ $RR: F_{AB} \ge F_{\alpha,(a-1)(b-1),ab(r-1)}$ $RR: F_A \ge F_{\alpha,(a-1),ab(r-1)}$ $RR: F_B \ge F_{\alpha,(a-1),ab(r-1)}$

Blocking in a Factorial Design

- 2-Factor ANOVA can be conducted in a Randomized Block Design, where each block is made up of *ab* experimental units. Analysis is direct extension of RCBD with 1-factor ANOVA
- Factorial Experiments can be conducted with any number of factors. Higher order interactions can be formed (for instance, the *AB* interaction effects may differ for various levels of factor *C*).
- When experiments are not balanced, calculations are immensely messier and you must use statistical software packages for calculations

Completely Randomized Block Design in a Factorial Experiments

Statistical (Effects) Model:

 $y_{ijk}: \mu + A_i + B_j + AB_{ij} + R_k + \varepsilon_{ijk}$ i = 1,...,a j = 1,...,b k = 1,...,r

 y_{ijk} : the value of experiment al unit that take(ith) level at Factors A, (jth) level at B

- μ : Overall Mean
- A_{i} : (Factor A effect) or Effect of i^{th} level of factor A
- B_i : (Factor B effect) or Effect of j^{th} level of factor B
- AB_{ij} : Interaction effect when i^{th} level of A and j^{th} level of B are combined
- R_k : Effect of Blocks
- ε_{ijk} : Random error terms

The ANOVA table

Source	df	SS	MS	F
Blocks	r-1	SSr=R-C.F	MSr =SSr/(r-1)	Fr = MSr/MSE
Treat. Comb.	ab-1	SS _{Treat} =AB-C.F	MS _{treat} =SStreat/(ab-1)	F _{Treat} =MStreat/MSE
Factor A	a-1	SSA=A-C.F	MSA=SSA/(a-1)	F _A =MSA/MSE
Factor B	b-1	SSB=B-C.F	MSB=SSB/(b-1)	F _B =MSB/MSE
Interaction	(a-1)(b-1)	SSAB=AB-A-B+C.F	MSAB=SSAB/[(a-1)(b-1)]	F _{AB} =MSAB/MSE
Error	(r-1)(ab-1)	SSE=RAB-R-AB+C.F	MSE=SSE/[(r-1)(ab-1)]	
Total	abr-1	SST=RAB-C.F.		

$$C.F. = \frac{(Y_{..})^2}{abr}$$
$$A = \frac{\sum_{i=1}^{a} Y_{i..}^2}{A = \frac{Y_{i..}^2}{abr}}$$

br

 $\sum^{b} Y_{.j}^2$

ar

 $B = \frac{j=1}{2}$

$$R = \frac{\sum Y_{..k}^2}{ab}$$
$$AB = \frac{\sum_{i,j=1}^{ab} Y_{ij}^2}{r}$$

$$RAB = \sum Y_{ijk}^2$$

Latin Square in a Factorial Experiments

Mathematical model:

$$Y_{ijkl} = \mu + A_i + B_j + AxB_{ij} + R_k + C_l + e_{ijk}$$

Examples : of a 2 x 3 factorial arrangement of A and B (2 levels of A and 3 levels of B):

In a Latin Square with 6 rows and 6 columns:

Source	df	
Total	35	tr - 1
Treatment	(5)	t - 1
А	1	a - 1
В	2	b - 1
A x B	2	(a - 1)(b - 1)
Row	5	r - 1 Same as block in RCBD
Column	5	c - 1
Error (BxT)	20	(t - 1)(r - 2) Column takes another 5 df from Error
Total and Treat	ment df	are same for all designs.