College of Administration and Economy
Department of Statistics and Informatics

Chapter Five

Higher Diploma
First Semester
By
Dr. Alan Ghafur Rahim
2023-2024

Chapter Five

Random Variables

Def' : A random variable X is a real valued function defined sample space, which takes values from the sample space (S) to a space real numbers R is a random experiment.

$X: S \rightarrow R$

The r.v. X may be either discrete or continuous, as with sample space.

Types of Random variables :

1- Discrete Random Variable:
Def' : If (X) be (r.v.) then (X) is said to be a discrete (r.v.) if then range of $(X)(R(x))$ (sample space) is countable set, whether finite or infinite set.

For Example: The number of students in statistics dept., then $S=\{x: x=1,2,3, \ldots, 400\}$
For Example: A coin is a tossed until a head occur then. $S=\{x: x=1,2, \ldots\}$

Probability (mass or density) function:

If (x) be a discrete r.v. with different values ($x_{1}, x_{2}, \ldots, x_{n}$), then the function

$$
P(x)=\left\{\begin{array}{cc}
P(X=x i) & \text { if } i=1,2,3, \ldots, n \\
0 & \text { o. } w \text { (other wise })
\end{array}\right\}
$$

is defined to be probability mass function of x (p.m.f).
and it is a real - value function, and satisfies following properties :-
1- $0 \leq \mathrm{P}(\mathrm{x}) \leq 1 \quad$, For all x
2- $\sum_{\forall x} P(x)=1$

Ex1/ Let three coins are tossed, let x be the number of heads that occur then,
1 - find $P(x)$ of each value of (x).
2 - check $P(x)$ is (p.m.f) of (x).
3 - Graph P(x).
Ex2/ Two dice are tossed, let x be sum of the two number shown by the two dice.
1 - find $P(x)$ of each value of (x).
2 - check $P(x)$ is (p.m.f) of (x).
3 - Graph $P(x)$.
Ex3/ A coin is tossed three times, a coin weighted so that $p(H)=2 / 3$ and $p(T)=1 / 3$. let x be the number of heads that occur then, 1 - find $P(x)$ of each value of (x).
2 - check $P(x)$ is (p.m.f) of (x).
3 - Graph P(x).

Cumulative distribution function: (C.d.f)

Let be X a discrete (r.v.) , then the cumulative distribution function (c.d.f)

Of $x(F(x))$ is defined by :

$$
F(X)=P(X \leq x)
$$

If r.v. (x) is discrete .Then
$\boldsymbol{F}(x)=\sum_{x=-\infty}^{x} \boldsymbol{P}(x)$

Properties of (c.d.f):

1- $F(a) \leq F(b)$ if $a \leq b$
i.e $\mathrm{F}(\mathrm{x})$ is increasing function

2- $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=$ zero
$\begin{aligned} & \text { Point \& interval (Discrete r.v.) } \\ & \text { Without point \& interval } \\ & \operatorname{Pr}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a}-1) \\ & \operatorname{Pr}(\mathrm{a}<\mathrm{x} \leq \mathrm{b})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a}) \\ & \operatorname{Pr}(\mathrm{a} \leq \mathrm{x}<\mathrm{b})=\mathrm{F}(\mathrm{b}-1)-\mathrm{F}(\mathrm{a}-1) \\ & \operatorname{Pr}(\mathrm{a}<\mathrm{x}<\mathrm{b})=\mathrm{F}(\mathrm{b}-1)-\mathrm{F}(\mathrm{a})\end{aligned}$
$\operatorname{Pr}(2 \leq x \leq 4)=F(4)-F(1)=\frac{10}{15}-\frac{1}{15}=\frac{9}{15}$
$\operatorname{Pr}(2<x \leq 4)=F(4)-F(2)=\frac{10}{15}-\frac{3}{15}=\frac{7}{15}$
$\operatorname{Pr}(2 \leq x<4)=F(3)-F(1)=\frac{6}{\frac{1}{15}}-\frac{1}{15}=\frac{5}{15}$
$\frac{6}{\frac{6}{15}}$
$\operatorname{Pr}(2<x<4)=F(3)-F(2)=\frac{6}{\frac{6}{15}}-\frac{3}{3}-\frac{3}{10}$

Ex4/ Let three coins are tossed, let x be the number of heads that occur then,
1 - find $P(x)$ of each value of (x).
2 - check $P(x)$ is (p.m.f) of (x).
3 - Graph P(x).

2- continuous Random Variable:

Def' if (x) be a continuous r.v., defined on an interval, then the function $\mathrm{f}(\mathrm{x})$ is defined to be probability density function (P.d.f)of (x), and it is a mathematical f^{n}, and satisfies, the following properties :
$1-0 \leq f(X) \leq 1$
2- $\int_{-\infty}^{\infty} f(x) d x=1$
3- For any interval (a, b) , $\mathrm{p}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b})=\int_{a}^{b} f(x) d x$
Ex5/ Let X be a r.v. with p.d.f $f(x)$ is:
$f(x)=\left\{\begin{array}{cc}\frac{1}{x^{2}} & 1<x<\infty \\ 0 & \text { ow }\end{array}\right.$
Find 1 - check of $f(X)$ is a p.d.f of (x).

$$
\text { 2- } A=p(1<x<2) \text {. }
$$

$$
\text { 3- } B=p(4<x<5) \text {. }
$$

properties of C.d.f :
$1-F(x)=\int_{-\infty}^{X} f(t) d t$
2- $f(x)=\frac{\partial F(x)}{\partial x}$
3- $\mathrm{P}(\mathrm{a}<\mathrm{x}<\mathrm{b})=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})=\int_{a}^{b} f(x) d x$

Ex7/ Let X be a r.v. with p.d.f $f(x)$ is:

$$
f(x)=\left\{\begin{array}{lc}
3(1-x)^{2} & 0<x<1 \\
0 & o . w
\end{array}\right.
$$

Find the C.d.f \& graphical?

Ex8/ Let

$$
\begin{aligned}
& F(x)= \begin{cases}0 & x \leq 0 \\
1-e^{-5 x} & 0<x<\infty \\
1 & x \rightarrow \infty\end{cases} \\
& \text { 1) find the p.d.f. of } x .
\end{aligned}
$$

Ex9/ Let X be a r.v. with p.d. $f(x)$ is:

$$
f(x)=\left\{\begin{array}{lr}
\frac{1}{6} x+k & 0 \leq x \leq 3 \\
0 & o . w
\end{array}\right.
$$

Find: 1-value of k.

$$
2-\operatorname{pr}(1 \leq x \leq 2) .
$$

Questions about (p.m.f) , (p.d.f) , (c.d.f) for (D.r.v. \& C.r.v.)

Q1/ Find the probability distribution of the D.r.v. (the number of sixes) in two tosses of a die. Find graph of (x).
Q2/ 3 bad articles are mixed with 7 good ones. Find the probability distribution of the number of the bad articles if 3 articles are drawn at random without replacement?
Q3/ Find the probability distribution of the number of boys in a family of three children. Then find c.d.f and graphical of (p.mf) and (c.d.f)?
Q4/ Let x a r.v. with p.d.f :
$p(x)=\frac{2}{x^{3}}$
$1<x<\infty$
Find 1- check the p.d.f . 2- c.d.f and graphical.
Q5/ Let x a r.v. with p.d.f :
$f(x)=c x e^{-x} \quad 0<x<\infty$
0
O.W

Find value of the constant c ?

Q6/ Let x a r.v. with p.d.f :

$$
\begin{array}{cc}
f(x)=e^{-x} & x>0 \\
0 & \text { o.w }
\end{array}
$$

Find the c.d.f and graphical?

Q7/ Let x be a r.v. is p .m.f. of $\mathrm{P}(\mathrm{x})$;
$P(x)=\frac{c x}{5} \quad x=1,2,3,4,5$

$$
0 \quad \text { o.w }
$$

Find 1 - the value of the constant c ?
2-c.d.f and graph?

3- Mathematical Expectation:

Let x be a random variables and let $\mathrm{g}(\mathrm{x})$ be a function of x , then the mathematical expectation of $\mathrm{g}(\mathrm{x})$ is denoted by $\mathrm{E}[\mathrm{g}(\mathrm{x})]$,

$$
E[g(x)]= \begin{cases}\sum_{\forall x} g(x) P(X) & \text { if } x \text { is discrete r.v. } \\ \int_{-\infty}^{\infty} g(x) f(x) d(x) & \text { if } x \text { is continuous r.v. }\end{cases}
$$

properties:

1) $E a=a$
if a is a cons tant (real number), then
2) If a is a constant, and $Q(x)$ is a fun.of x, then $E[a\{Q(x)\}]=a E[Q(x)]$
3) If $a_{1} \& a_{2}$ are two cons $\tan t s$, then;

$$
\begin{aligned}
& E\left(a_{1} x+a_{2}\right)=E a_{1} \cdot E(x)+E a_{2} \\
& E\left(a_{1} x+a_{2}\right)=a_{1} E x+a_{2}
\end{aligned}
$$

4)If $a_{1} \& a_{2}$ are two constants, and $Q_{1}(x) \& Q_{2}(x)$ are two functions of x then; a) $E\left[Q_{1}(x) \mp Q_{2}(x)\right]=E\left[Q_{1}(x)\right] \mp E\left[Q_{2}(x)\right]$ b) $E\left[a Q_{1}(x) \mp b Q_{2}(x)\right]=a E\left[Q_{1}(x)\right] \mp b E\left[Q_{2}(x)\right]$
5) If $y=x_{1}+x_{2}+x_{3} \Rightarrow E y=E x_{1}+E x_{2}+E x_{3}$
6) If x and y are two random variables then;

$$
\begin{array}{ll}
E(x y)=E(x) \cdot E(y) & \text { if } x \& y \text { are independent } \\
E(x y) \neq E(x) \cdot E(y) & \text { if } x \& y \text { are dependent }
\end{array}
$$

7) Let $y=\sum x_{i} \Rightarrow E(y)=\sum E\left(x_{i}\right) \Rightarrow E(y)=n E(x)$

Ex10/ Let x have the p.m.f:
$P(x)=\left\{\begin{array}{lr}\frac{x}{6} & x=1,2,3 \\ 0 & o . w\end{array}\right.$
Find $1-E(X)$? $\quad 2-E\left(X^{2}\right)$?

Ex11/ Let x be ar.v. with $f(X)=2(1-X) \quad 0<X<1$
Find : 1-M1. 2-M2. $3-E\left(6 X+3 x^{2}\right)$

Ex12/ let x be a r.v. of $f(x)$ is a p.d.f ;
$f(x)=\frac{1}{2}(x+1) \quad-1<x<1$
Find mean of this dist. Of x ?

4- Variance \& Standard Deviation of the r.v.:

It's denoted by σ^{2}, S^{2} and is given by :
$S^{2}(x)=\operatorname{Var}(x)=E\left(x^{2}\right)-(E(X))^{2}=E\left(x^{2}\right)-\mu^{2}$
Variance of the r.v. is:

$$
\begin{aligned}
& S^{2}(x)=\sum^{2} x^{2} P(x)-\left[\sum x P(x)\right]^{2} \quad \ldots . \text { Discrete r.v. } \\
& S^{2}(x)=\int_{-\infty}^{\infty} x^{2} f(x) d x-\left[\int_{-\infty}^{\infty} x f(x) d x\right]^{2} \text {... Continuous r.v. }
\end{aligned}
$$

The standard deviation of X , denoted by σ, s is the (non negative) square root of $\operatorname{Var}(x)$:

$$
S(x)=\sqrt{S^{2}(x)} \quad \text {...Standard Deviation of the r.v. }
$$

Ex13/ Find Variance and standard deviation of Example(10) ? Ex14/ Find Variance and standard deviation of Example(11) ?

* $* *$

5- Moment:

i-Non - Central Moment :

In special case of non - central moment is the moment about the origin i.e (when $a=0$, then the r-th non - central moment about origin is $a=0$)
$M_{r}=E(x)^{r}= \begin{cases}\sum x^{r} P(x) & x \text { is disc.r.v. } \\ \int x^{r} f(x) d x & x \text { is cont.r.v }\end{cases}$

ii- Central Moment :

let x be a r.v. with p.d.f $f(x)$, then the r-th central moment of x about mean (M) is denoted by, and is defined as:

$$
\begin{aligned}
& M r^{\prime}=E(x-m)^{r}= \begin{cases}\sum_{\forall x}(x-m)^{r} p(x) & \text { for dis. } r \text { v. } \\
\int_{R_{x}}(x-m)^{r} f(x) d x & \text { for cont.ry. }\end{cases} \\
& r=2 \rightarrow M_{2}^{\prime}=E(x-M)^{2}=\sigma_{x}^{2} \Rightarrow \text { variance } \\
& r=3 \rightarrow M_{3}^{\prime}=E(x-M)^{3}=\text { Skewnes } \\
& r=4 \rightarrow M_{4}^{\prime}=E(x-M)^{4}=\text { kurtosis }
\end{aligned}
$$

Relation between non -central moment (Mr) \& central moment ($M r^{\prime}$)

$$
\begin{aligned}
& r=2 \Rightarrow M_{2}^{\prime}=E(x-M)^{2}=\sigma^{2} \\
& M_{2}^{\prime}=E(x)^{2}-2 M E(x)+M^{2} \\
& M_{2}^{\prime}=E(x)^{2}-M^{2} \\
& M_{2}^{\prime}=M_{2}-M_{1}^{2} \\
& \therefore M_{2}=M_{2}^{\prime}+M_{1}^{2}
\end{aligned}
$$

Ex15/ Let x be a r.v. with

$$
f(x)=\left\{\begin{array}{cc}
2(1-x) & 0<x<1 \\
0 & o . w
\end{array}\right.
$$

Find: $M_{1}, M_{2}, E\left(3 x+5 x^{2}\right)$ and σ^{2}, σ ?
Ex16/ Let x be a r.v. with $p(x)=\left\{\begin{array}{cc}\frac{x}{6} & x=1,2,3 \\ 0 & o . w\end{array}\right.$
Find: $M_{1}, M_{2}, E\left(2 x+3 x^{2}\right)$ and σ^{2}, σ ?

6- The Moment Generating function (m.g.f):

Let x be a r.v. with p.d.f of $f(x)$, the moment generating function (m.g.f) of x denoted by [], and is defined for all real value of [where h is a positive number]. Such that the mathematical expectation exist, thus ;

$$
M_{x}(t)=E e^{t x}= \begin{cases}\sum e^{t x} P(x) & x \text { is disc.r. } v \\ \int e^{t x} f(x) d x & x \text { is cont.r. } v\end{cases}
$$

Definition : - Let be the moment generation function of a r.v. x that is existed. Then the moment of r-th order about origin at $(t=0)$ is define as;

$$
\begin{aligned}
& E x^{r}=M_{x}^{r}(0) \\
& M_{x}(t)=E e^{t x}
\end{aligned}
$$

Ex17/ Let x be a r.v. with $f(x)=\left\{\begin{array}{cc}\frac{1}{\theta} & 0<x<\theta \\ 0 & o . w\end{array}\right.$
Find: 1- (m.g.f) of X ? $\quad 2-M_{x}, \sigma^{2}$?
Ex18/ A fair coin is tossed twic let X be the number of heads the occur Find: 1- (m.g.f) of X ? $\quad 2-M_{x}, \sigma^{2}$?

Ex19/ Let x be a r.v. with $f(x)=\left\{\begin{array}{cc}2 e^{-2 x} & x \geq o \\ 0 & o . w\end{array}\right.$
Find: 1- (m.g.f) of X ? $\quad 2-M_{x}, \sigma^{2}$?

7- Joint Probability Distribution Function (J.p.d.f) :

Joint Distribution:

IF are r.v's defined on the sample probability space , then the is called p-dimensional r.vs .

Joint probability density function [J.p.d.f] :

Defn: IF are a p-dimensional r.v's ; Then the Joint pro.density fun. Of $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ is defined to be:
$f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\mathrm{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{p}=x_{p}\right)$ Or

Def ${ }^{\mathrm{f}}$.: IF p=2, let x and y are two rv's then

$$
\begin{array}{rlrl}
f(x, y) & =p(X=x, Y=y) & \\
& =\sum_{\forall x} \sum_{\forall y} p(x, y) & \text { if } x \& y \text { are discrete r.v's } \\
& =\int_{R x R y} f(x, y) d y d x & & \text { if } x \& y \text { are continuous r.v's } \\
\text { 1) } \quad & 0 \leq f(x, y) \leq 1 & \forall x, y
\end{array}
$$

$$
\sum_{\forall x} \sum_{\forall y} f(x, y)=1
$$

$$
\iint_{R x R y} f(x, y) d y d x=1
$$

Ex20/ Let the j.pd.f of two r.v's x_{1} and x_{2} is definded
$p(x)=\left\{\begin{array}{cc}\frac{x_{1}+x_{2}}{21} & x_{1}=1,2,3 . \\ 0 & x_{2}=1,2 \\ & \text { o. } w\end{array}\right.$
Find: 1- (j.p.d.f) for each values of X_{1} and X_{2} ? 2- $p\left(X_{1}=2, X_{2}=1\right)$? 3- prove $p\left(X_{1}, X_{2}\right)$ is j.p.d.f of $\left(X_{1}, X_{2}\right)$?

Ex21/ Let $f(x, y)=\left\{\begin{array}{cl}e^{-(x+y)} & x, y>0 \\ 0 & o . w\end{array}\right.$
Find 1- $P(X=3, Y=4) . \quad 2-P(0<X<2,1<Y<3)$
3- check of the j.p.d.f of (x, y) ?
Ex22/ $f(x)=\left\{\begin{array}{rc}6 x^{2} y & 0<x<1,0<y<1 \\ 0 & \text { o.w }\end{array}\right.$
Find: $p\left(o<x<\frac{3}{4}, \frac{1}{3}<y<2\right)$.

Ex23/ A certain market has both an express checkout line and a super express checkout line. Let X denote the number of customers in line at the express checkout line at a particular time of day and let Y denote the number of customers in line at the super express checkout at the same time. Suppose the joint p.m.f of X and Y is as given in the following table:

Find:

X	0	1	2	3
0	0.08	0.07	0.04	0.00
1	0.06	0.15	0.05	0.04
2	0.05	0.04	0.10	0.06
3	0.00	0.03	0.04	0.07
4	0.00	0.01	0.05	0.06

1-What is $P(X=1 ; Y=1)$, that is, the probability that there is exactly one customer in each line?
2-What is $P(X=Y)$, that is, the probability that the number of customers in the two lines are identical?

3-Let A denote the event that there are at least two more customers in one line than in the other line. Express A in terms of X and Y and calculate the probability of this event
4-What is the probability that the total number of customers in the two lines is exactly four? At least four?
Ex24/ Let X and Y have the joint probability density function given by:

$$
f(x, y)=\left\{\begin{array}{cc}
k(1-y) & 0 \leq x \leq y \leq 1 \\
0 & o . w
\end{array}\right.
$$

Find the value of k that makes this a probability density function?

8- Marginal Probability Distribution Function (m.p.d.f) :

Defn.: let $x \& y$ are two r.v's with (j.p.d.f) , then are called the marginal p.d.f of $x \& y$ respectively, which can be defined as follows:If (m.p.d.f) for $f(X)$:
$f(x)= \begin{cases}\sum_{\forall y} P(x, y) & \text { if } X \& y \text { are D.r.v. } \\ \int_{R y} f(x, y) d y & \text { if } X \& y \text { are C.r.v. }\end{cases}$
If (m.p.d.f) for $f(y)$:

$$
f(y)= \begin{cases}\sum_{\forall x} P(x, y) & \text { if } X \& y \text { are D.r.v. } \\ \int_{R x} f(x, y) d x & \text { if } X \& y \text { are C.r.v. }\end{cases}
$$

Note: X and Y are independent iff $f(x, y)=f(x) \times f(y)$

Ex25/ Let X and Y have the joint probability density function given by:

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & 0<x<1,0<y<1 \\
0 & o . w
\end{array}\right.
$$

Find:1- The marginal p.d.f of X ? 2- The marginal p.d.f of y ?
3- Are X and Y are independent? 4- $E(X)$ and $E(y)$?
Ex26/ Let X and Y have the joint probability density function given by:
$P(x, y)=\left\{\begin{array}{r}\frac{x y^{2}}{30} \\ 0\end{array}\right.$

$$
x=1,2,3 . \quad, y=1,2
$$

o.w

Find: 1-m.p.d.f of X ? 2- m.p.d.f of y ? 3- Are X and Y are independent?
4- $E(X)$ and $E(y)$?
Ex27/If $X \& Y$ having the j.p.d.f as:
$P(x, y)=\left\{\begin{array}{cc}\frac{x y}{96} & o<x<4,1<y<5 . \\ 0 & o . w\end{array}\right.$
Find? 1- $f(X)$? 2- $f(y)$? 3- $F(X)$ and $F(y)$? 4- $\operatorname{Var}(X)$ and $\operatorname{Var}(y)$?

Questions about chapter Five

Q9/ Two refills for a ballpoint pen are selected at random from a box that contains 3 blue refills, 2 red refills and 3 green refills. If X is the number of blue refill and Y is the number of red refills selected, find
1-The joint probability mass function $p(x, y)$?
2-If $\{(X, y) \in A\}$, where A is the region $\{(X, Y): X+Y \leq 1\}$?
3-Var(X) and $\operatorname{Var}(\mathrm{Y})$? 4- C.d.f for (X) and (Y) ?

Q10/ Find $g(X)$ and $h(Y)$ for the joint density function :

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{2}{5}(2 x+3 y), & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Q11/ For example (23) find:

1-Determine the marginal p.m.f of X and then calculate the expected number of customers in line at the express checkout?
2-Determine the marginal p.m.f of Y ?
3-By inspection of the probabilities $P(X=4), P(Y=0)$, and $P(X=4 ; Y=0)$ are X and Y independent random variables? Explain.
Q12/ Two components of a minicomputer have the following joint p.d.f for their useful lifetimes X and Y :
$f(x, y)=\left\{\begin{array}{cc}x e^{[-x(1+y)]} & x \geq 0, y \geq 0 \\ o & o . w\end{array}\right.$
1-What is the probability that the lifetime X for the first component exceeds 3? 2-What are the marginal pdf's of X and Y ? Are the two lifetimes independent?
3- What is the probability that the lifetime of at least one component exceeds 3?

Q13/ A fair coin is tossed three times independently: let X denote the number of heads on the first toss and Y denote the total number of heads. Find the joint probability mass function of X and Y ?And find marginal mass function of X and y ?
Q14/ Consider the pdf for X and Y :
$f(x, y)=K\left(x^{2}+x y\right) \quad 0 \leq x \leq 1,0 \leq y \leq 1$
Find : 1- The value of K ? 2- $P(X>Y)$? $3-f(x)$ and $g(y)$?

