SALAHUDDIN SALAHADDIN UNIVERSITY – HAWLER (SUH) College of Administration and Economy Department of Statistics and Informatics

Random Variable

Chapter Five

Higher Diploma First Semester By Dr. Alan Ghafur Rahim 2023 - 2024

Chapter Five

Random Variables

Def': A random variable X is a real valued function defined sample space, which takes values from the sample space (S) to a space real numbers R is a random experiment.

 $X:S \rightarrow R$

The r.v. X may be either discrete or continuous , as with sample space. **Types of Random variables :**

1- Discrete Random Variable:

Def': If (X) be (r.v.) then (X) is said to be a discrete (r.v.) if then range of (X) (R(x)) (sample space) is countable set, whether finite or infinite set.

For Example: The number of students in statistics dept., then

S={ x: x= 1,2,3, ... , 400 }

For Example: A coin is a tossed until a head occur then. S={x:x=1,2,...}

Probability (mass or density) function:

If (x) be a discrete r.v. with different values (x_1 , x_2 , ..., x_n), then the function

$$P(x) = \begin{cases} P(X = xi) & \text{if } i = 1, 2, 3, \dots, n \\ 0 & \text{o. } w \text{ (other wise)} \end{cases}$$

is defined to be probability mass function of x (p.m.f). and it is a real – value function, and satisfies following properties : - $1 - 0 \le P(x) \le 1$, For all x $2 - \sum_{\forall x} P(x) = 1$ **Ex1/** Let three coins are tossed , let x be the number of heads that occur then,

- 1 find P(x) of each value of (x).
- 2 check P(x) is (p.m.f) of (x).
- 3 Graph P(x).

Ex2/ Two dice are tossed , let x be sum of the two number shown by the two dice.

- 1 find P(x) of each value of (x).
- 2 check P(x) is (p.m.f) of (x).
- 3 Graph P(x).

Ex3/ A coin is tossed three times, a coin weighted so that p(H)=2/3 and p(T)=1/3. let x be the number of heads that occur then,

- 1 find P(x) of each value of (x).
- 2 check P(x) is (p.m.f) of (x).
- 3 Graph P(x).

Cumulative distribution function: (C.d.f)

Let be X a discrete (r.v.), then the cumulative distribution function (c.d.f)

Of x (F(x)) is defined by :

 $F(X) = P(X \le x)$ If r.v. (x) is discrete .Then $F(x) = \sum_{x = -\infty}^{x} P(x)$

Properties of (c.d.f):

1- F(a) ≤ F(b) if a ≤ b

i.e F(x) is increasing function

2-
$$\lim_{x \to \infty} F(x) = 1$$
 and $\lim_{x \to -\infty} F(x) = zero$

Ex4/ Let three coins are tossed , let x be the number of heads that occur then,

- 1 find P(x) of each value of (x).
- 2 check P(x) is (p.m.f) of (x).
- 3 Graph P(x).

2- continuous Random Variable:

Def' if (x) be a continuous r.v., defined on an interval, then the function f(x) is defined to be probability density function (P.d.f)of (x), and it is a mathematical f^n , and satisfies, the following properties : 1- $0 \le f(X) \le 1$

$$2-\int_{-\infty}^{\infty}f(x)dx=1$$

3- For any interval (a,b) , $p(a \le x \le b) = \int_a^b f(x) dx$

Ex5/ Let X be a r.v. with p.d.f f(x) is:

$$f(x) = \begin{cases} \frac{1}{x^2} & 1 < x < \infty \\ 0 & ow \end{cases}$$

Find 1- check of f(X) is a p.d.f of (x).

properties of C.d.f :

$$1 - F(x) = \int_{-\infty}^{X} f(t)dt$$
$$2 - f(x) = \frac{\partial F(x)}{\partial x}$$

3- P(a < x < b) = F(b) - F(a) =
$$\int_{a}^{b} f(x) dx$$

Ex7/Let X be a r.v. with p.d.f f(x) is: $f(x) = \begin{cases} 3(1-x)^2 & 0 < x < 1 \\ 0 & 0.w \end{cases}$

Find the C.d.f & graphical?

Ex8/Let

$$F(x) = \begin{cases} 0 & x \le 0\\ 1 - e^{-5x} & 0 < x < \infty\\ 1 & x \to \infty \end{cases}$$
1) find the p.d.f. of x.

Ex9/ Let X be a r.v. with p.d.f f(x) is:

$$f(x) = \begin{cases} \frac{1}{6}x + k & 0 \le x \le 3\\ 0 & 0.w \end{cases}$$

Find: 1- value of k.

2- pr
$$(1 \le x \le 2)$$
.

Questions about (p.m.f), (p.d.f), (c.d.f) for (D.r.v. & C.r.v.)

Q1/ Find the probability distribution of the D.r.v. (the number of sixes) in two tosses of a die. Find graph of (x) .

Q2/ 3 bad articles are mixed with 7 good ones. Find the probability distribution of the number of the bad articles if 3 articles are drawn at random without replacement?

Q3/ Find the probability distribution of the number of boys in a family of three children. Then find c.d.f and graphical of (p.mf) and (c.d.f)?

Q4/Let x a r.v. with p.d.f:

$$p(x) = \frac{2}{x^3} \qquad 1 < x < \infty$$
Find 1- check the p.d.f. 2- c.d.f and graphical.
Q5/Let x a r.v. with p.d.f:

$$f(x) = c x e^{-x} \qquad 0 < x < \infty$$
0 o.w
Find value of the constant c ?

Q6/ Let x a r.v. with p.d.f: $f(x) = e^{-x}$ x > 00 o.w Find the e d f and graphics

Find the c.d.f and graphical?

Q7/Let x be a r.v. is p.m.f. of P(x);

$$P(x) = \frac{cx}{5}$$
 $x = 1,2,3,4,5$
0 o.w

Find 1- the value of the constant c?

2-c.d.f and graph?

3- Mathematical Expectation:

Let x be a random variables and let g(x) be a function of x, then the mathematical expectation of g(x) is denoted by E[g(x)],

$$E[g(x)] = \begin{cases} \sum_{\substack{\forall x \\ \infty \\ -\infty}} g(x)P(X) & \text{if } x \text{ is discrete } r.v. \\ \int_{\infty} g(x)f(x) d(x) & \text{if } x \text{ is continuous } r.v. \end{cases}$$

properties :

1) Ea = a

if a is a constant (real number),then

2) If a is a constant, and Q(x) is a fun.of x, then $E[a{Q(x)}] = a E[Q(x)]$

3) If $a_1 \& a_2$ are two constants, then; $E(a_1x + a_2) = E a_1 . E(x) + E a_2$ $E(a_1x + a_2) = a_1 E x + a_2$

4) If a₁ & a₂ are two constants, and Q₁(x) & Q₂(x) are two functions of xthen;
a) E[Q₁(x) ∓ Q₂(x)] = E[Q₁(x)] ∓ E[Q₂(x)]
b) E[aQ₁(x) ∓ bQ₂(x)] = a E[Q₁(x)] ∓ b E[Q₂(x)]

5) If
$$y = x_1 + x_2 + x_3 \implies E y = E x_1 + E x_2 + E x_3$$

6) If x and y are two random variables then; E(xy) = E(x).E(y) if x & y are independent $E(xy) \neq E(x).E(y)$ if x & y are dependent

7) Let $y = \sum x_i \implies E(y) = \sum E(x_i) \implies E(y) = nE(x)$

Ex10/ Let x have the p.m.f:

 $P(x) = \begin{cases} \frac{x}{6} & x = 1,2,3 \\ 0 & 0.w \end{cases}$ Find 1- E(X) ? 2- E(×²)?

Ex11/ Let x be ar.v. with f(X) = 2(1-X) 0 < X < 1Find : 1- M1 . 2- M2 . 3- E(6X + 3×²)

Ex12/ let x be a r.v. of f(x) is a p.d.f;

$$f(x) = \frac{1}{2} (x + 1) - 1 < x < 1$$
Find mean of this dist. Of x?

4- Variance & Standard Deviation of the r.v.:

It's denoted by σ^2 , S^2 and is given by : $S^2(x) = Var(x) = E(x^2) - (E(X))^2 = E(x^2) - \mu^2$ Variance of the r.v. is:

$$S^{2}(x) = \sum x^{2}P(x) - \left[\sum x P(x)\right]^{2} \dots Discrete \ r.v.$$
$$S^{2}(x) = \int_{-\infty}^{\infty} x^{2} f(x) dx - \left[\int_{-\infty}^{\infty} x f(x) dx\right]^{2} \dots Continuous \ r.v.$$

The standard deviation of X, denoted by σ , s is the (non negative) square root of Var(x):

 $S(x) = \sqrt{S^2(x)}$... Standard Deviation of the r.v.

Ex13/ Find Variance and standard deviation of Example(10) ?
Ex14/ Find Variance and standard deviation of Example(11) ?

5- Moment:

i-Non - Central Moment :

In special case of non – central moment is the moment about the origin i.e (when a=0, then the r-th non – central moment about origin is a=0)

$$M_{r} = E(x)^{r} = \begin{cases} \sum x^{r} P(x) & x \text{ is disc. } r.v. \\ \int x^{r} f(x) dx & x \text{ is cont. } r.v \end{cases}$$

ii- Central Moment :

let x be a r.v. with p.d.f f(x), then the r-th central moment of x about mean (M) is denoted by , and is defined as:

$$Mr' = E(x - m)^{r} = \begin{cases} \sum_{\forall x} (x - m)^{r} p(x) & \text{for } dis.rv. \\ \\ \int_{\exists R_{x}} (x - m)^{r} f(x) dx & \text{for cont.}rv. \end{cases}$$

$$r = 2 \rightarrow M_{2}' = E(x - M)^{2} = \sigma_{x}^{2} \Rightarrow \text{var} \, iance$$

$$r = 3 \rightarrow M_{3}' = E(x - M)^{3} = Skewnes$$

$$r = 4 \rightarrow M_{4}' = E(x - M)^{4} = kurtosis$$

Relation between non –central moment (Mr) & central moment (Mr')

$$r = 2 \implies M_{2}' = E(x - M)^{2} = \sigma^{2}$$

$$M_{2}' = E(x)^{2} - 2M E(x) + M^{2}$$

$$M_{2}' = E(x)^{2} - M^{2}$$

$$M_{2}' = M_{2} - M_{1}^{2}$$

$$\therefore M_{2} = M_{2}' + M_{1}^{2}$$

Ex15/ Let x be a r.v. with

$$f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & 0.w \end{cases}$$

Find: M_1 , M_2 , $E(3x + 5x^2)$ and σ^2 , σ ?
Ex16/Let x be a r.v. with $p(x) = \begin{cases} \frac{x}{6} & x = 1,2,3 \\ 0 & 0.w \end{cases}$

Find: M_1 , M_2 , $E(2x + 3x^2)$ and σ^2 , σ ?

6- The Moment Generating function (m.g.f):

Let x be a r.v. with p.d.f of f(x), the moment generating function (m.g.f) of x denoted by [], and is defined for all real value of [where h is a positive number]. Such that the mathematical expectation exist, thus ;

$$M_{x}(t) = Ee^{tx} = \begin{cases} \sum e^{tx} P(x) & x \text{ is disc.r.v.} \\ \int e^{tx} f(x) dx & x \text{ is cont.r.v} \end{cases}$$

Definition : - Let be the moment generation function of a r.v. x that is existed. Then the moment of r-th order about origin at (t = 0) is define as ;

$$E x^{r} = M_{x}^{r}(0) = \frac{\partial^{r} M_{x}(t)}{\partial t^{r}} \Big|_{t=0} = M_{r} \qquad r = 0, 1, 2, \dots$$

$$M_x(t) = E e^{tx}$$

Ex17/ Let x be a r.v. with $f(x) = \begin{cases} \frac{1}{\theta} & 0 < x < \theta \\ 0 & 0.w \end{cases}$ Find: 1- (m.g.f) of X ? 2- M_{γ} , σ^2 ? **Ex18** A fair coin is tossed twic let X be the number of heads the occur Find: 1- (m.g.f) of X ? 2- M_{χ} , σ^2 ? **Ex19/** Let x be a r.v. with $f(x) = \begin{cases} 2e^{-2x} & x \ge 0 \\ 0 & 0.w \end{cases}$ Find: 1- (m.g.f) of X ? 2- M_x , σ^2 ?

7- Joint Probability Distribution Function (J.p.d.f) :

Joint Distribution:

IF are r.vs defined on the sample probability space , then the is called p-dimensional r.vs .

Joint probability density function [J.p.d.f] :

Defⁿ: IF are a p-dimensional r.vs ; Then the Joint pro.density fun. Of $(x_1, x_2, ..., x_p)$ is defined to be: $f(x_1, x_2, ..., x_p) = P(X_1 = x_1, X_2 = x_2, ..., X_p = x_p)$ Or

$$f(x_1, x_2, \dots, x_p) = \begin{cases} \sum_{\forall x_1} \sum_{\forall x_2} \dots \sum_{\forall x_p} P(x_1, x_2, \dots, x_p) & disc. r. v's \\ \\ \int_{Rx_1} \int_{Rx_2} \dots \int_{Rx_p} f(x_1, x_2, \dots, x_p) dx_p \dots dx_2 dx_1 \end{cases}$$

Defⁿ.: IF p=2, let x and y are two r.v's then

$$f(x, y) = p(X = x , Y = y)$$

= $\sum_{\forall x} \sum_{\forall y} p(x, y)$ if $x \& y$ are discrete $r.v.s$
= $\iint_{RxRy} f(x, y) dy dx$ if $x \& y$ are continuous $r.v.s$

1)
$$0 \le f(x, y) \le 1$$
 $\forall x, y$

$$\sum_{\forall x} \sum_{\forall y} f(x, y) = 1$$
$$\iint_{RxRy} f(x, y) dy dx = 1$$

24

2)

Ex20/ Let the j.pd.f of two r.v's $x_1 and x_2$ is definded

$$p(x) = \begin{cases} \frac{x_1 + x_2}{21} & x_1 = 1,2,3. \\ 0 & 0.W \end{cases} x_2 = 1,2$$

Find: 1- (j.p.d.f) for each values of X₁ and X₂? 2- p(X₁=2,X₂=1)?

3- prove p(X₁,X₂) is j.p.d.f of (X₁,X₂)?

Ex21/Let
$$f(x, y) = \begin{cases} e^{-(x+y)} & x, y > 0 \\ 0 & 0. w \end{cases}$$

Find 1- P(X=3, Y=4). 2-P(0
3- check of the j.p.d.f of (x, y) ?
Ex22/ $f(x) = \begin{cases} 6x^2y & 0 < x < 1, 0 < y < 1 \\ 0 & 0.w \end{cases}$
Find: $p(o < x < \frac{3}{4}, \frac{1}{3} < y < 2)$.

Ex23/ A certain market has both an express checkout line and a super express checkout line. Let X denote the number of customers in line at the express checkout line at a particular time of day and let Y denote the number of customers in line at the super express checkout at the same time. Suppose the joint p.m.f of X and Y is as given in the

following table:

X Y	0	1	2	3
0	0.08	0.07	0.04	0.00
1	0.06	0.15	0.05	0.04
2	0.05	0.04	0.10	0.06
3	0.00	0.03	0.04	0.07
4	0.00	0.01	0.05	0.06

Find:

1-What is P (X = 1; Y = 1), that is, the probability that there is exactly one customer in each line?

2-What is P (X = Y), that is, the probability that the number of customers in the two lines are identical?

3-Let A denote the event that there are at least two more customers in one line than in the other line. Express A in terms of X and Y and calculate the probability of this event

4-What is the probability that the total number of customers in the two lines is exactly four? At least four?

Ex24/ Let X and Y have the joint probability density function given by:

$$f(x,y) = \begin{cases} k(1-y) & 0 \le x \le y \le 1 \\ 0 & 0.w \end{cases}$$

Find the value of k that makes this a probability density function?

8- Marginal Probability Distribution Function (m.p.d.f) :

Defⁿ.: let x & y are two r.vs with (j.p.d.f), then are called the marginal p.d.f of x & y respectively, which can be defined as follows:-If (m.p.d.f) for f(X):

$$f(x) = \begin{cases} \sum_{\forall y} P(x, y) & \text{if } X \& y \text{ are } D.r.v. \\ \\ \int_{Ry} f(x, y) dy & \text{if } X \& y \text{ are } C.r.v. \end{cases}$$

If (m.p.d.f) for f(y):

$$f(y) = \begin{cases} \sum_{\forall x} P(x, y) & \text{if } X \& y \text{ are } D.r.v. \\ \int_{Rx} f(x, y) dx & \text{if } X \& y \text{ are } C.r.v. \end{cases}$$

Note: X and Y are independent iff $f(x, y) = f(x) \times f(y)$

Ex25/ Let X and Y have the joint probability density function given by: $f(x,y) = \begin{cases} x+y & 0 < x < 1, 0 < y < 1 \\ 0 & 0.w \end{cases}$

Find:1- The marginal p.d.f of X? **2-** The marginal p.d.f of y?

3- Are X and Y are independent? **4-** E(X) and E(y) ?

Ex26/ Let X and Y have the joint probability density function given by:

$$P(x,y) = \begin{cases} \frac{xy^2}{30} & x = 1,2,3. \\ 0 & 0.w \end{cases}$$

Find: 1-m.p.d.f of X? 2- m.p.d.f of y? 3- Are X and Y are independent? 4- E(X) and E(y) ?

Ex27/If X & Y having the j.p.d.f as:

$$P(x,y) = \begin{cases} \frac{xy}{96} & o < x < 4 \ , 1 < y < 5. \\ 0 & o.w \end{cases}$$

Find: 1-f(X)? 2- f(y)? 3- F(X) and F(y)? 4- Var(X) and Var(y

Questions about chapter Five

- Q9/ Two refills for a ballpoint pen are selected at random from a box that contains 3 blue refills, 2 red refills and 3 green refills. If X is the number of blue refill and Y is the number of red refills selected, find
- **1**-The joint probability mass function p(x, y)?
- **2-**If $\{(X,y) \in A\}$, where A is the region $\{(X,Y) : X+Y \le 1\}$?
- **3**-Var(x) and Var(Y)? **4** C.d.f for (x) and (Y)?

Q10/ Find g(X) and h(Y) for the joint density function :

$$f(x, y) = \begin{cases} \frac{2}{5}(2x+3y), & 0 \le x \le 1, 0 \le y \le 1\\ 0, & \text{elsewhere} \end{cases}$$

Q11/ For example (23) find:

1-Determine the marginal p.m.f of X and then calculate the expected number of customers in line at the express checkout?

- **2-**Determine the marginal p.m.f of Y ?
- **3-**By inspection of the probabilities P (X = 4), P (Y = 0), and P(X = 4;Y =0) are X and Y independent random variables? Explain.
- **Q12/** Two components of a minicomputer have the following joint p.d.f for their useful lifetimes X and Y :

$$f(x,y) = \begin{cases} xe^{[-x(1+y)]} & x \ge 0, y \ge 0\\ 0 & 0.W \end{cases}$$

1-What is the probability that the lifetime X for the first component exceeds 3? **2**-What are the marginal pdf 's of X and Y ? Are the two lifetimes independent?

3- What is the probability that the lifetime of at least one component exceeds 3?

- Q13/ A fair coin is tossed three times independently: let X denote the number of heads on the first toss and Y denote the total number of
- heads. Find the joint probability mass function of X and Y ?And find marginal mass function of X and y?
- Q14/ Consider the pdf for X and Y:
- $f(x, y) = K(x^2 + xy)$ $0 \le x \le 1, 0 \le y \le 1$
- Find : 1- The value of K? 2- P(X>Y)? 3- f(x) and g(y)?