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Chapter 2 Derivatives

We defined the slope of a curve at a point as the limit of secant slope. This limit is called a
derivative. The process of calculating a derivative is called differentiation.

2.1 The Derivative as a Function
» The slope of a curve y = f(x) at the point where x = x is

li f(h+x1) — f(xy)
m )
h—-0 h

where h+0

» We called this limit, when it existed, the derivative of f at x4.

» The derivative of the function f(x) with respect to the variable of x is the function f’
whose value at x:

f(h+x1) — f(x1)
h

f'(x0) = lim
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Chapter 2 Derivatives
2.1 The Derivative as a Function

X
Example: Differentiate f(x)= <1
Solution:
f '(X) = lim f (h+ Xl)_ f (Xl)
h—0 h
Herewe have f (x) X and
X—1
f(x+hy=—X+Hh) o
(x+h)—1
(x+h) X
f(x) = lim (x+h)—1 x-1
h—0 h
(%) :llim (X+h)(x—1) —x(x+h-=-1)
h h—o (Xx+h—-1D(x—21
-1
(x—1)* /

~

Chapter 2 Derivatives
2.2 Notation

There are many ways to denote the derivative of a function y = f(x), where the
independent variable is x and dependent variable is y.

d d d
f’(x) :y’ :d—zzd—izaf(xo :D(f)(X) =Dxf(x)

Note:

% The symbol d/dx and D indicate the operation of differentiation and are called
differentiation operator.

« We read dy/dx as “the derivative of y with respect to x”

« The “prime” notation y" and f’ come from notation that Newton used for derivatives.

«+ A function is continuous at every point where it has a derivative.

< We can differentiate f’ to second derivative or higher order derivative, it is denoted

d%y

d d
=22 - m—ﬁ = D%(f)(x) = DX f (%)

fll(x) — yII

And soon...
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Chapter 2 Derivatives
2.3 Differentiation Rules

Rule 1 Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

Rule 2 Power Rule for Positive Integers

If n is a positive integer, then

_ -1
—x" =nx"
dx

Rule 3 Constant Multiple Rule

If u is a differentiable function of X and ¢ is a constant, then

d _ du
dx (cu)=c dx

Chapter 2 Derivatives
2.3 Differentiation Rules

Rule 4 Derivative Sum Rule

If u and vV are differentiable functions of X, then their sum U+ v is
differentiable at every point where U and v are both differentiable, At such
points,

d( N )_du+dv
dx TV T ax T dx

Rule 5 Derivative Product Rule
If u and v are differentiable at X, then so is their product uv, and
d dv du

a(uv) =ua+va
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Chapter 2 Derivatives
2.3 Differentiation Rules

Rule 6 Derivative Quotient Rule
If u and v are differentiable functions of x and if v(x) # 0, then the
quotient u/v is differentiable at x, and

du dv
d u _ Vix " Udx
=) -~

Rule 7 Power Rule for Negative Integers
If n is a negative integer and x # 0, then

d
ny — n-1
ax (x™) = nx

Chapter 2 Derivatives
2.3 Differentiation Rules

Example: Find the derivative of the followings with respect to x:
@. f(x)=3x2-8z (b). f(x) =x*+12x (¢).f(x) = (x* +1)(x%+3)

1 1 2 _ 4
(d).f(x) =—<x2 +;> (e).f(x) = % H.f(x) =3 +§x2 —5x+1

g X
Solution: 1

(a). %(3x2 —8z) = 6x

d
el OO — 443
(b).dx(x +12x) =4x3 + 12

(c).%((x2 +1) (2% + 3)) = (22 +1)(3x%) + (2% + 3)(2x) = 5x* + 3x% + 6x

@ (M2 ) o (s ) g2 2
dx\x\*F Tx) | Tax\* T 2) T x3 x3

d (x*-1\ (2+1)2x)-(x*-1)(2x)  4x
© -\t 1) - G2+ 1)2 Tz +1)2
\_ (f).%(ﬁ +gx2 —5x+ 1) = 3x? +§x— 5
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Chapter 2 Derivatives

2.4 Derivative as Rate of Change

Example: How fast does the area change with respect to diameter for diameter 10 m?

Solution:

» Area of circle:

T
A(D) = ZD2

» The rate of change of the area:
A _ 2 (Zp2)=Tp
dD dD\4 2

» When D = 10 m, the area is changed at rate 5 m?/m.

9

Chapter 2 Derivatives
2.5 Motion Along a Line

Suppose that an object is moving along a coordinate line (say an s — axis), its position.
On that line as a function of tis s = f(t).

Position at time 1 . .. and at time f + At

}. As I

= L > 5

s ==f(r) s + As = f(t + A1)

» The Displacement of the object over the time interval from tto t + Atis:

As = f(t+ AE) — f(b)

> The velocity of the object over that time interval:

_ Displacement As  f(t + At) — f(¢)

Yav = rime Travel At At
ds d
v(t) = prin af(t)

10

2/20/2024



11

12

Chapter 2 Derivatives
2.5 Motion Along a Line

» Speed is the absolute value of velocity

d = o) = ds
speed = |v(t)| = dt
> Acceleration
dv d2%s
0= = e
> Jerk
) da d?>v d3s
dt dt dt

Chapter 2 Derivatives
2.5 Motion Along a Line

Note:

«» Near the surface of the Earth, all bodies fall with the same constant acceleration.
Galileo’s experiments with free fall (there is no air resistance and closely models the fall
of dense, heavy objects, such rock or steel tool, for the first few seconds of their fall,
before air resistance starts to slow them down) lead to the equation:

1
s==gt?
2 )
Where s is distance and g is the acceleration due the Earth’s gravity

++ The value of g in the equation depends on the units used to measure t and s.
« With t in seconds

g = 32 ft/sec? (feet per second square) or

g = 9.8 m/sec? (meters per second square)

2/20/2024



13

14

Chapter 2 Derivatives
2.5 Motion Along a Line

Example: Figure below shows the free fall of a heavy ball bearing released from rest at

time t = 0 sec.
(a) How many meters does the ball fall in the first 2 sec?  (seconds)
(b) What is the instantaneous velocity, speed, acceleration then?

=0
Solution: The equation of free fall is s = %gt2

r=1
(a). During the first 2 sec

1
s(2) = 5(9. 8)(2)2=19.6m

(b). Velocity at t = 2 sec =2
v(t) =s'(t) =gt =9.8t
v(2) =(9.8)(2) = 19.6 m/sec
Acceleration at t= 2 sec
a(t) =v'(t) = 9.8 m/sec?
r=3

Speedatt = 2 sec
speed = |v(t)| = 19.6 m/sec

s (meters)

® o

40
R4

Chapter 2 Derivatives
2.5 Motion Along a Line

Example: A dynamite blast blows a heavy rock straight up with a launch velocity of

160 ft/sec (figure). It reaches a height of s = 160t — 16t? after ¢ sec.
(a) How high does the rock go?
(b) what are the velocity and speed of the rock when it is
256 ft above the ground on the way up? On the way down?
(c) what is the acceleration of the rock at any time t during its
flight (after the blast)?
() when does the rock hit the around acain?

— 256
400 s = 1607 — 1672 S
=
Z
160 |-
f
0
L60 v=% 2160 - 32
-0 dt ) s=0

Ill X [T

5
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Chapter 2 Derivatives
2.5 Motion Along a Line

Solution:
(a) To find the maximum height, all we need to do is to find when v = 0 and evaluate s at
this time.
At any Time ¢, the velczlcsity ist:l S = v=20
2 _ _ 2) — _
v=—o dt(160t 16t2) = 160 — 32t
The velocity is zero when
160—-32t=0 or t=>5sec |
The rock’s height at t = 5 secis
—_ - =
Sy = 5(5) = 160(5) — 16(5)2 = 400 ft = 20 §¥ 1=
(b) 2 |
s(t) = 160t — 16t% = 256 =
To solve this equation, we write
16t% — 160t + 256 = 0
16(t*— 10t +16) =0
t-2)(t-8)=0 |
\ t =2 sec,t=8sec. ¢ = 0l=ta /
15

Chapter 2 Derivatives
2.5 Motion Along a Line

Solution:

(b)

the explosion. The rock’s velocities at these times are

The rock is 256 ft above the ground 2 sec after the explosion and again ? sec after

‘X]H(IX [~

=0
v(2) = 160 — 32(2) = 96 ft/sec v
v(8) = 160 — 32(8) = —96 ft/sec
A
(©) w4
v ~ 256 0 =9
= —=— — = — 2=
a(t) - d (160 — 32¢) 32 ft/sec 5 |
on
(d) The rock hits the ground at positive time t for which s = 0 T
160t— 16t =0=>t=0,t = 10
The time that the rock hits the ground at t = 10 sec "
\ s = 0=sfe
16
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Chapter 2 Derivatives
2.6 Derivative of Trigonometric Functions

The Derivative of Six Trigonometric Functions

d
—(sinx) = cosx

dx

d

— (cosx) = —sinx

dx

d 2

— (tanx) = sec*x

dx

d

—(secx) = secxtanx
dx

d

—(cotx) = —csc2x
dx

d
— (cscx) = —cscxcotx
dx

17
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Chapter 2 Derivatives
2.7 Chain Rules

To differentiate a composite function like F(x) = f(g(x)) = sin(x? —4) or the
derivative of F = f o g, we use the chain rule.

Theorem 3 The Chain Rule
If f(u) is differentiable at the point # = g(x) and g(x) is differentiable at

x, then the composite function (f o g)(x) = f(g(x)) is differentiable at x,
and

fog) ™= (9(x).g'x)

In Leibniz’s notation, if y = f(u) and u = g(x), then

dy dy du

dx  du dx’
Where dy/du is evaluated at u = g(x).

18
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Chapter 2 Derivatives
2.7 Chain Rules

Example: Differentiate the followings: 1
(a). sin(x? +x)  (b). tan(5 — sin2x) (©).(5x3 — x*)7 (d). T
x —
(e).sin® x (f).(1—2x)"3 Solution:

(a). dix (sin(x? + x)) = cos(x? + x)%(xz +x) = (2x + 1) cos(x? + x)

d d
el — — 2 ) el )
(b). dx (tan(5 — sin 2x)) = sec“(5 — sin 2x) dx (5 —sin2x)

= — (cos 2x) sec?(5 — sin 2x) %(ZX)
= —2 (cos 2x) sec?(5 — sin 2x)

d d
(c).a(5x3 —x"7=7(54% - x4)ﬁa(5x3 —x*) =7 (523 — x)°(15x% — 4x3)

d( 1 d 1 d B _
(d).a(m>=a(3x—2) 1= —(3x-2) Za(Bx—Z) =-3(3x—-2)2

d d
- 5 — - 4_ . — - 4_
(e).—dx (sin” x) = 5(sin x)—dxsmx 5(cosx)sin* x

\_ (f).%u -2x)3=-3(1- Zx)“‘%(l —2x)=6(1-2x)"*

19
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Chapter 2 Derivatives
2.8 Parametric Equation
Used to describe the curve by expressing both coordinates as functions of third variable t.
For example x = f(t), and y = g(t) over an interval of t — value, then the set of points
(x,y) = (f(t), g(t)) defined by these equations is a parametric curve.

Parametric Formula for dy/dx
If all three derivatives existand dx/dt # 0,
dy dy/dt

dx _ dx/dt

2.9 Linearization
We can approximate complicated functions with simpler ones that the accuracy we want
for specific applications and are easier to work with by linearization L.

DEFINITION Linearization, Standard Linear Approximation
If f is differentiable at X = @, then the approximating function

Lx)=fl@) +f(@(x—a)
is the linearization of f at @. The approximation f(x) ~ L(x) of f by L is the
Standard Linear Approximation of f at a. the point X = @ is the center of

\ the approximation. /
20
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Chapter 2 Derivatives

Problem: Use the following information to graph the function Y = f (X) for[—1,6]
i. The graph of f is made of line segments joined end to end.

ii. The graph starts at the point (-1, 0).

iii. The derivative of f, where defined, agrees with the step function shown here.

Solution: Y

(1,0) N\

(6-1)

(1.-2) /

Chapter 2 Derivatives

Example: Find the linearizationof f(x) =v1+x at x =0
Solution:

The standard linear approximation equation
is:

L(x) = f(a) + f(a)(x—a)

1 _1
f=50+072

fO)=vi+o=1

b=

1 1
f(0)=5(1+0) 2

Il
N =

1
~Lx) =1 +Ex

0.9

-0.1 0 0.1 0.2 /

11
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Chapter 2 Derivatives

Approximation True value

| True value — approximation

V1.2 =] +%=I.IO

: 1005445
V105 ~ 1+ 295 -y g5 1024695
V1005 = 1+ 295 00250 1002497

<107
<1073

<107?

23

Chapter 2 Derivatives
2.10 Differential

» The function graphed y = f(x) in the j
figure, let x = a, and set dx = Ax

» Geometrically, the differential dy is the
change AL in the linearization of f when
changes by an amount dx = Ax.

Ay = f(a+ dx) — f(a)

> The corresponding change in the tangent | "

ta. fla))

Ay = fla + dx) = flo)
fladdx

1 ]
: } When v is a small change in x,
1 | the corresponding change
: } the lincarization is precisely oy,
I 1
|

line L is: 0

AL=L,—L =L, =f(),L,=f(@)+ f (a)dx

AL =L(a+dx)—L(a)

=f@Q)+ f'()[(a+dx)—a]— f(a)

L (a+dx)

AL = f'(a)dx

— 5
L(a)

24
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Chapter 2 Derivatives
2.10 Differential

DEFINITION Differential

Let y = f(x) be a differentiable function. The differential dx is an
independent variable.The differential dy is

dy = f'(x)dx

Example: Find the value of dy when x = 1, anddx = 0.2 if y = x5 + 37x
Solution:

dy 4 4

T = 5% +37=>dy=(5x*+37)dx = 8.4

Example: Find differential of functions

a. d(tan2x) = sec? 2xd(2x) = 2sec? 2xdx

b. d(i) _(x+Ddx—xd(x+1) (x+Ddx—xdx  dx
x+1" — (x+1)2 T (41?2 (x+1)2

25
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Chapter 2 Derivatives
2.11 Estimating with Differential

If f(x)is a differentiable at a point a and want to predict how much this value will change
if we move to a nearby point a + dx. If dx is small, then we can see from Figure, that Ay
is approximately equal to the differential dy. Since

f(a+dx)= f(a)+ Ay
The differential approximation gives
f(a+dx) = f(a)+dy

P V= £l

where dx = Ax . Thus the
approximation Ay = dy can be used to
calculate f(a+dx) when f(x) is
known and dx is small.

Av = fla + dv) — fla)

AL = fla)dx

(e flan Y

’/ dv = Ax
1
I
I

Tangent
line |
I
1

1

: When ¢x is a small change in x,
1 the corresponding change in

: the lingarization 1s precisely dy,
1

Ry

|
0 a a + dx /

26
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Chapter 2 Derivatives
2.11 Estimating with Differential

Example: The radius r of a circle increases from a = 10 m to 10.1 m (Figure). Use dA
to estimate the increase in the circle’s area A. Estimate the area of the enlarged circle and

compare your estimate to the true area. dr = 0.1
Solution:

A=ar?> = dA= A(r)dr

A'(r) =2ar and

dr=r,—r, =10.1-10=0.1

dA=27(10)*0.1=2x
Thus the approximated area .
A(rl -+ Ar) =~ A(lO) + dA ) AA =dA = 27a dr

~ 7(10)* + 27 =1027 m?
The true area
A(10.1) = 7(10.1)* =102.01z m?

The error of our estimate

— — — = 2
\_ AA—dA =102.017 —1027z = 0.0z m J
27
- N

Chapter 2 Derivatives
2.12 Implicit Differentiation

Implicit Differentiation

1. Differentiate both sides of the equation with respect to X, treating y as a
differentiable function of x.

2. Collect the terms with dy/dx on one side of the equation.

3. Solve for dy/dx.

Example: Find dy/dxif y* = x
Solution:
1

2 =—
ydx dx 2y

Example: Find the slope of the circle xZ + y% = 25 at the point (3, —4).

Solution:
2x+2yﬂ:o:>ﬂ:_§zslope
The slope at (3, —4) __3_3
peats —4 4

28
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Chapter 2 Derivatives
2.12 Implicit Differentiation

Example: Find dy/dx if y*> = x% + sinxy

Solution:
2yd—y=2x+cosxy(xd—y+ y
dx dx
= Zy% = 2X + X COS Xy dy

dy dy
= 2y —= — XCOS Xy —= =
ydx ydx

:>d_y_ 2X — y Ccos Xy
dx 2y+ xcosxy

)

—=—+ Yy COS X
dx y Yy
2X + Yy COSs Xy

= (2y—xcosxy)%=2x+ Yy COS Xy

29

Chapter 2 Derivatives
2.12 Implicit Differentiation

_ X? —2tx+2t> =4, 2y®> —-3t° =4, t=2
Solution:
X2 —2tx+2t> =4

Problem: Find the slope of the curve x = f(t), y = g(t) at the given value of t.

dx  y2(x—2t)

2y® —3t* =4
—2x X 2t X _oxiat-0 — 6y” Y g0 _t
dt dt T at
= 2(x —t)% =2(x—2t) Att=2
dx x—2t 2y® —-3(2)?=4=y*=8
> — =
dt X—t y=2
~dy dy dx t X —t
At t=2 ..—=—+—=—2><
x? —2(2)x+2(2)% = 4 dx dt dt y® x-—2t
dy  t(x—1t)
— x> —4x+4=0 = =,

— (x—2)(x—2)=0=>x=2 =¥ __2(2-2) _
\Z dx _ 2°(2—2(2)

2/20/2024
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Chapter 2 Derivatives
2.13 Related Rate

The problem of finding a rate you cannot measure easily from some other rates that you
can is called a related rates problem.

Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use t for time.
Assume that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you
have chosen).

3. Write down what you are asked to find (usually a rate, expressed as a
derivative).

4. Write an equation that relates the variables. You may have to combine
two or more equations to get a single equation that relates the variable
whose rate want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms
of'the rate and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

31
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Chapter 2 Derivatives
2.13 Related Rate Class C

Example: How rapidly will the fluid level inside a vertical cylindrical tank of radius 1-
meter drop if we pump the fluid out at the rate of 3000 L /min?

Solution:
> Let r is the radius of the tank and h is the height and AN
V is the volume of the fluid in the tank. O
» At time passes, r remains constant, and h and V
change.
» dh/dt =? |
, _ dh _ s
V = zr<h (risaconstant) o T
dv . 3 .
—— =—3000L /min =-3m~/min h
dt l
dv > dh dh -3 . w
—=ar’—=—=——m/min
dt dt dt 7r AV
i —3000 L/min

if r=1m, % ~—0.95m/ min

32
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" Chapter 2 Derivatives
2.13 Related Rate

Example: A hot air balloon rising straight up from a level field is tracked by a range finder
500 ft from the liftoff point. At the moment the range finder’s elevation angle is 7t/4, the
angle is increasing at the rate of 0.14 rad/min. How fast is the balloon rising at that
moment?

Solution: 2
» Let @ is the angle in radians the range finder makes with the . |
Balloon

ground, y is the height in feet of the balloon.

&4

tan @ = ??/O = y =500tan @ ? = 0.14 rad/min

when 8 = 7/4 dy _
ﬂ_SOOsec ng 7_3
dt dt |
When
g=%, ?j—f=0.14rad/min Range [

finder 500 ft
% — 500sec? (%)(0.14) —140 ft/ min
\_ /

33
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2.13 Related Rate Class B

Example: A police cruiser, approaching a right-angled intersection from the north, is
chasing a speeding car that has turned the corner and is now moving straight east. When
the cruiser is 0. 6 mi north of the intersection and the car is 0.8 mi to the east, the police
determine with radar that the distance between them and the car is increasing at 20 mph.
If the cruiser is moving at 60 mph at the instant of measurement, What is the speed of the
car?
Solution:
> We picture the car and cruiser in the coordinate plane,

using the positive x — axis as the eastbound highway

and the positive y — axis as the southbound highway. % _ _
» Let x is the position of the car at time ¢, y is the

position of the cruiser at time t and s is the distance

Situation when
r=08yv=006

ds

— )
drf“D

between them. d)é” ' dy
ey ds - a2 ar
s?=x’+y’=s= x2+y2:E= t2 t
dx 1 P 2ds _dy 2\/X +y°
:>—=—[ y——1]
dt dt 4
X
- = 2 2 — —_—
L= dt 5 L J0.82 4 0.62(20) — 0.6 x ( 60)] = — = 70mph

34
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Chapter 2 Derivatives
2.13 Related Rate Class A

Example: Water runs into a conical tank at the rate of 9 ft3/min. The tank stands point
down and has a height of 10 ftand a base radius of 5 ft. How fast is the water level
rising when the water is 6 ft deep?

. dv 3 i
Solution: S =9 ft/min
» Let V is the volume of the water in the tank at time =
t, x is the radius of the surface of the water tank at %”
time t, and y is the depth of water in tank at time ¢t. ‘ /
|
! 4
dy —_ 1 L[' - ;7 "r' '/_
>E_? V == ax’y Ti‘/=7 =/ [ 10 ft
3 wheny = 6 ft ‘ /’ \
> In the similar triangle  y y y ‘ /
2 =2 /
5 10 2 ; =
1 V3 dv T d
V=saX)yry=Toy'= ="y
3 2 12 dt 4 dt
d 9% 4 .
_y:—z ~ 0.32 ft / min
dt =z(6)

~
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