Kurdistan Regional Government-Iraq Ministry of Higher Education and Scientific Research Salahaddin University - Erbil
College of Engineering
Department of Architecture Engineering

Mathematic-I

Spring Semester
Academic year (2023-2024)
Four hours per week
Five Credits
Prepared by: Ali A. Mahmod, M.Sc.
Email: ali.mahmod@su.edu.krd

Chapter 5 Application of Definite Integral
 5.1 Area Between Curves

Definition Area Under a Curve as a Definite Integral

If $y=f(x)$ is nonnegative and integrable over a closed interval $[a, b]$, then the area under the curve $y=f(x)$ over $[a, b]$ is the integral of f from a to b,

$$
A=\int_{a}^{b} f(x) d x
$$

Example: Find the area under the line $\boldsymbol{y}=\boldsymbol{x}$ over the interval $[\mathbf{0}, \boldsymbol{b}], \boldsymbol{b}>\mathbf{0}$. Solution:
$>$ Graph the function.

$$
\begin{aligned}
d A & =h d x \\
d A & =\int_{0}^{b}\left(y_{2}-y_{1}\right) d x \\
A & =\int_{0}^{b}(x-0) d x \\
A & =\left.\frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2}-0=\frac{1}{2} b^{2}
\end{aligned}
$$

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Example: Find the area between \boldsymbol{x} - axis and the curve $\boldsymbol{y}=\mathbf{4 - \boldsymbol { x } ^ { 2 }}$ for $-\mathbf{2} \leq \boldsymbol{x} \leq \mathbf{2}$.
Solution:
$>$ Graph the function.
$>$ The Area

$$
\begin{aligned}
& d A=\left(y_{2}-y_{1}\right) d x \\
& d A=\left(4-x^{2}\right) d x
\end{aligned}
$$

$$
A=\int_{-2}^{0}\left(4-x^{2}\right) d x+\int_{0}^{2}\left(4-x^{2}\right) d x \text { or }
$$

$$
A=\int_{-2}^{2}\left(4-x^{2}\right) d x \text { or }
$$

$A=2 \int_{0}^{2}\left(4-x^{2}\right) d x$ or
$\left.A=2\left|\left[4 x-\frac{x^{3}}{3}\right]\right|_{0}^{2}|=2|\left[4(2)-\frac{2^{3}}{3}\right] \right\rvert\,=\frac{32}{3}$ unit square

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Example: Find the area between \boldsymbol{x}-axis and the curve $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}-\mathbf{4 x}$ for $-\mathbf{2} \leq \boldsymbol{x} \leq \mathbf{2}$.
Solution:
$>$ Graph the function.
$>$ The Area

$$
\begin{gathered}
d A=\left(y_{2}-y_{1}\right) d x \\
d A=\left(x^{3}-4 x\right) d x \\
A=2 \int_{0}^{2}\left(x^{3}-4 x\right) d x
\end{gathered}
$$

$$
A=2\left|\left[\frac{x^{4}}{4}-2 x^{2}\right]\right|_{0}^{2}|=2|\left[\frac{2^{4}}{4}-2(2)^{2}\right]-0| |=8 \text { unit square }
$$

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Definition Area Between Curves

If f and g are continuous with $f(x) \geq g(x)$ throughout $[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to b is the integral of $(f-g)$ from a to b :

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

NOT TO SCALE

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Example: Find the area bounded by $\boldsymbol{y}=2-\boldsymbol{x}^{\mathbf{2}}$ and $\boldsymbol{y}=-\boldsymbol{x}$.
Solution:
$>$ Find point of intersection.

$$
2-x^{2}=-x \Rightarrow x^{2}-x-2=0
$$

$$
(2,-2),(-1,1)
$$

$$
(x-2)(x+1)=0
$$

$$
x=2, \quad x=-1
$$

$>$ Points intersections: $(\mathbf{2}, \mathbf{- 2})$ and $(-\mathbf{1}, \mathbf{1})$
$>$ Graph the functions

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Solution:
$>$ The Area.

$$
\begin{aligned}
d A & =\left(y_{2}-y_{1}\right) d x \\
d A & =\left(2-x^{2}-(-x)\right) d x \\
A & =\int_{-1}^{2}\left(2-x^{2}+x\right) d x \\
\left.A=\left|2 x-\frac{x^{3}}{3}+\frac{x^{2}}{2}\right|_{-1}^{2}\right] \mid & =\left|\left[2(2)-\frac{(2)^{3}}{3}+\frac{(2)^{2}}{2}\right]-\left[2(-1)-\frac{(-1)^{3}}{3}+\frac{(-1)^{2}}{2}\right]\right| \\
& \left.=\left\lvert\, 4-\frac{8}{3}+2+2-\frac{1}{3}-\frac{1}{2}\right.\right] \left\lvert\,=\frac{9}{2}\right. \text { unit square }
\end{aligned}
$$

Chapter 5 Application of Definite Integral
 5.1 Area Between Curves

Example: Find the area bounded on the right by $\boldsymbol{y}=\boldsymbol{x}-\mathbf{2}$ on the left by $\boldsymbol{y}^{\mathbf{2}}=\boldsymbol{x}$ and below by \boldsymbol{x}-axis.

Solution:

$>$ Find point of intersection.

$$
y+2=y^{2} \Rightarrow y^{2}-y-2=0
$$

$(4,2),(1,-1)$

$$
(y-2)(y+1)=0
$$

$$
y=2, \quad y=-1
$$

$$
y=x-2
$$

$>$ Points intersections: $(\mathbf{4}, \mathbf{2})$ and $(\mathbf{1}, \mathbf{- 1})$
> Graph the functions

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

$y=x-2$

Solution:
$>$ The Area

$$
\begin{aligned}
& d A=\left(x_{2}-x_{1}\right) d y \\
& d A=\left(y+2-y^{2}\right) d y \\
& A=\int_{0}^{2}\left(y+2-y^{2}\right) d y \\
& \left.A=\left|\frac{y^{2}}{2}+2 y-\frac{y^{3}}{3}\right|_{0}^{2}\right] \mid
\end{aligned}
$$

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Example: Find the area bounded by $\boldsymbol{y}=\mathbf{3}-\boldsymbol{x}$ and $\boldsymbol{x}=\mathbf{3 y}-\boldsymbol{y}^{\mathbf{2}}$.

Solution:

$>$ Find point of intersection.

$$
\begin{gathered}
3-y=3 y-y^{2} \Rightarrow y^{2}-4 y+3=0 \\
(y-3)(y-1)=0 \\
y=3, y=1
\end{gathered}
$$

$>$ Points intersections: $(\mathbf{0}, \mathbf{3})$ and $(\mathbf{2}, \mathbf{1})$
$>$ Graph the functions

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Solution:
$>$ The Area.

$$
\begin{aligned}
& d A=\left(x_{2}-x_{1}\right) d y \\
& d A=\left(3 y-y^{2}-(3-y)\right) d y \\
& d A=\left(4 y-y^{2}-3\right) d y \\
& \begin{aligned}
A & =\int_{1}^{3}\left(4 y-y^{2}-3\right) d y \\
A & =\left|2 y^{2}-\frac{y^{3}}{3}-3 y\right|^{3}\left|=\left|\left[2(3)^{2}-\frac{(3)^{3}}{3}-3(3)\right]-\left[2(1)^{2}-\frac{(1)^{3}}{3}-3(1)\right]\right|\right. \\
& \left.=\left\lvert\, 18-9-9-2+\frac{1}{3}+3\right.\right] \left\lvert\,=\frac{4}{3}\right. \text { unit square }
\end{aligned}
\end{aligned}
$$

Chapter 5 Application of Definite Integral
 5.1 Area Between Curves

Example: Find the area bounded by $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \frac{\pi x}{2}$ and $\boldsymbol{y}=\boldsymbol{x}$.
Solution:
$>$ Find point of intersection.

$$
\begin{aligned}
& x=\sin \frac{\pi x}{2} \\
& 0=\sin \frac{\pi(0)}{2} \Rightarrow 0=0 \text { ok }
\end{aligned}
$$

$>$ at $\boldsymbol{x}=\mathbf{0}$
$>$ at $\boldsymbol{x}=0.5 \quad 0.5=\sin \frac{\pi(0.5)}{2} \Rightarrow 0.5 \neq 0.7$ not ok
$>$ at $\boldsymbol{x}=\mathbf{1}$

$$
\begin{gathered}
1=\sin \frac{\pi(1)}{2} \Rightarrow 1=1 o k \\
-1=\sin \frac{\pi(-1)}{2} \Rightarrow-1=-1 o k
\end{gathered}
$$

$>$ at $\boldsymbol{x}=\mathbf{- 1}$
$>$ Points of intersection: $(\mathbf{0}, \mathbf{0}),(\mathbf{1}, \mathbf{1})$, and $(-\mathbf{1}, \mathbf{- 1})$

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Solution:
$>$ Graph the functions.

$$
\begin{aligned}
d A & =\left(y_{2}-y_{1}\right) d x \\
d A & =2\left[\left(\sin \frac{\pi x}{2}-x\right)\right] d x \\
A & =2 \int_{0}^{1}\left(\sin \frac{\pi x}{2}-x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
\left.A=\left|2\left[\frac{-2}{\pi} \cos \frac{\pi x}{2}-\frac{x^{2}}{2}\right]\right|_{0}^{1} \right\rvert\, & \left.=\left|2\left[\left(\frac{-2}{\pi} \cos \frac{\pi(1)}{2}-\frac{(1)^{2}}{2}\right)-\left(\frac{-2}{\pi} \cos \frac{\pi(0)}{2}-\frac{(0)^{2}}{2}\right)\right]\right| \right\rvert\, \\
& =\left|2\left[0-\frac{1}{2}+\frac{2}{\pi}+0\right]\right|=\frac{4-\pi}{\pi} \text { unit square }
\end{aligned}
$$

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Example: Find the area between $\boldsymbol{y}=2 \boldsymbol{x}-\boldsymbol{x}^{2}$ and $\boldsymbol{y}=-\mathbf{3}$.

Solution:

$>$ Find point of intersection.

$$
\begin{gathered}
2 x-x^{2}=-3 \Rightarrow x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x=3, x=-1
\end{gathered}
$$

$>$ Points intersections: $(3,-3)$ and $(-1,-3)$
$>$ Graph the functions

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Solution:
$>$ The Area.

$$
\begin{aligned}
\left.A=\left|x^{2}-\frac{x^{3}}{3}+3 x\right|_{-1}^{3}\right] \mid & =\left|\left[(3)^{2}-\frac{(3)^{3}}{3}+3(3)\right]-\left[(-1)^{2}-\frac{(-1)^{3}}{3}+3(-1)\right]\right| \\
& \left.=\left\lvert\, 9-9+9-1-\frac{1}{3}+3\right.\right] \left\lvert\,=\frac{32}{3}\right. \text { unit square }
\end{aligned}
$$

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Example: Find the area bounded by $\boldsymbol{y}=\sin \boldsymbol{x}, \boldsymbol{y}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$, and $\boldsymbol{y}-\boldsymbol{a x i s}$ in the first quadrant.

Solution:
$>$ Find point of intersection.

$$
\begin{gathered}
\sin x=\cos x \Rightarrow \tan x=1 \\
x=\frac{\pi}{4}, x=\frac{5 \pi}{4} \ldots
\end{gathered}
$$

$>$ Points intersections: $\left(\frac{\pi}{4}, \mathbf{0 . 7 0 7}\right)$
$>$ Graph the functions

Chapter 5 Application of Definite Integral
 5.1 Area Between Curves

Solution:
$>$ The Area.

$$
\begin{aligned}
& d A=\left(y_{2}-y_{1}\right) d x \\
& d A=(\cos x-\sin x) d x \\
& A=\int_{0}^{\pi / 4}(\cos x-\sin x) d x
\end{aligned}
$$

$$
\begin{aligned}
A=|\sin x+\cos x|_{0}^{\pi / 4} \mid & =\left|\left[\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right]-[\sin 0+\cos 0]\right| \\
& =\left|\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-0-1\right|=0.414 \text { unit square }
\end{aligned}
$$

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Example: Find the area, on the right by $\boldsymbol{x}+\boldsymbol{y}=2$ on the left by $\boldsymbol{y}=\boldsymbol{x}^{2}$ and below by $\boldsymbol{x}-$ axis.

Solution:
$>$ Find point of intersection.

$$
2-x=x^{2} \Rightarrow x^{2}+x-2=0
$$

$$
\begin{gathered}
(x+2)(x-1)=0 \\
x=-2, x=1
\end{gathered}
$$

$>$ Points intersections: $(\mathbf{1}, \mathbf{1})$ and $(-2,4)$
$>$ Graph the functions

Chapter 5 Application of Definite Integral 5.1 Area Between Curves

Solution:
$>$ The Area.

$$
\begin{aligned}
d A & =\left(x_{2}-x_{1}\right) d y \\
d A & =(2-y-\sqrt{y}) d y \\
A & =\int_{0}^{1}\left(2-y-y^{1 / 2}\right) d y \\
\left.A=\left|2 y-\frac{y^{2}}{2}-\frac{2}{3} y^{3 / 2}\right|_{0}^{1} \right\rvert\, & =\left|\left[2(1)-\frac{(1)^{2}}{2}-\frac{2}{3}(1)^{3 / 2}\right]-\left[2(0)-\frac{(0)^{2}}{2}-\frac{2}{3}(0)^{3 / 2}\right]\right| \\
& =\left|2-\frac{1}{2}-\frac{2}{3}\right|=\frac{5}{6} \text { unit square }
\end{aligned}
$$

Chapter 5 Application of Definite Integral
 5.2 Volume Using Cross-Section

$>$ Define volumes of solids whose cross-sections are plane regions.
$>$ To find the volume of a solid \boldsymbol{S} like the one in Figure 5.1, we begin by extending the definition of a cylinder from classical geometry to cylindrical solids with arbitrary bases Figure 5.2.
$>$ The volume of cylindrical solid is:

$$
\text { Volume }=\text { area } \times \text { height }=A . h
$$

$>$ This equation is the basis for defining the volumes of many solids that are not cylindrical by the method of slicing.
$>$ If we cut the solid by a plane which is perpendicular to \boldsymbol{x}-axis, we get a cross-section of the solid \boldsymbol{S}, slice \boldsymbol{S} into thin "slabs" (like thin slices of a loaf of bread). at each point in the interval $[\boldsymbol{a}, \boldsymbol{b}]$ is a region $\boldsymbol{R}(\boldsymbol{x})$ of area $\boldsymbol{A}(\boldsymbol{x})$, and \boldsymbol{A} is a continuous function of \boldsymbol{x}.

Figure 5.1

Figure 5.2

Chapter 5 Application of Definite Integral
 5.2 Volume Using Cross-Section

Definition Volume

The volume of a solid of known integrable cross-sectional area $A(x)$ from $x=a$ to $x=b$ is the integral of A from a to b,

$$
V=\int_{a}^{b} A(x) d x
$$

Calculation the Volume of a Solid

1. Sketch the solid and a typical cross-section.
2. Find a formula for $\boldsymbol{A}(\boldsymbol{x})$, the area of a typical cross-section.
3. Find the limits of integration.
4. Integrate $\boldsymbol{A}(\boldsymbol{x})$ using the Fundamental Theorem.

Chapter 5 Application of Definite Integral
 5.2 Volume Using Cross-Section

Example: A pyramid $\mathbf{1 6 m}$ high has a rectangular base that is $\mathbf{1 2 m}$ length and $\mathbf{9 m}$ width. The cross-section of the pyramid perpendicular to the altitude $\boldsymbol{x} \boldsymbol{m}$ down from the vertex. Find the volume of the pyramid.
Solution:
1- Sketch the solid and typical cross-section
2 - the cross-section at \boldsymbol{x} is.

$$
\begin{gathered}
w=\frac{9}{16} x, \quad L=\frac{12}{16} x \\
A(x)=w \cdot L=\left(\frac{9}{16} x\right) \cdot\left(\frac{12}{16} x\right)=\frac{27}{64} x^{2}
\end{gathered}
$$

12

3- From the figure, the limit of integration from $\boldsymbol{x}=\mathbf{0}$ to $\boldsymbol{x}=\mathbf{1 6}$.
4- The volume of pyramid
$\left.V=\int_{0}^{16} A(x) d x=\int_{0}^{16} \frac{27}{64} x^{2} d x=\left|\frac{9}{64} x^{3}\right|_{0}^{16} \right\rvert\,=576 m^{3}$

Chapter 5 Application of Definite Integral
 5.2 Volume Using Cross-Section

Example: A curved wedge is cut from a cylinder of radius $\mathbf{3}$ by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.
Solution:
1- Sketch the solid and typical cross-section
2 - The cross-section at \boldsymbol{x} is rectangular.

$$
A(x)=2 x \sqrt{9-x^{2}}
$$

3- From the figure, the limit of integration from $\boldsymbol{x}=\mathbf{0}$ to $\boldsymbol{x}=3$.

$$
2 \sqrt{9-x^{2}}
$$

4- The volume of curved wedge

$$
\begin{aligned}
& V=\int_{0}^{3} A(x) d x=\int_{0}^{3} 2 x \sqrt{9-x^{2}} d x \Rightarrow \\
& \begin{array}{c}
u=9-x^{2} \\
-d u=2 x d x
\end{array} \\
& \left.=\int_{0}^{3}-\sqrt{u} d u=\left.\left|-\frac{2}{3} u^{3 / 2}\right|_{0}^{3}\right|_{0}=\left|-\frac{2}{3}\left(9-x^{2}\right)^{3 / 2}\right|_{0}^{3} \right\rvert\, \\
& =\left|-\frac{2}{3}(9)^{3 / 2}+0\right|=18 m^{3}
\end{aligned}
$$

