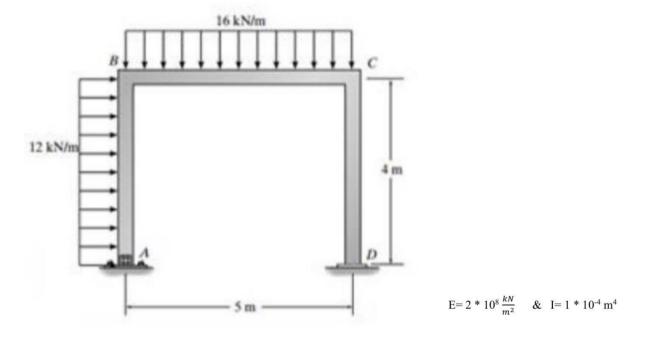
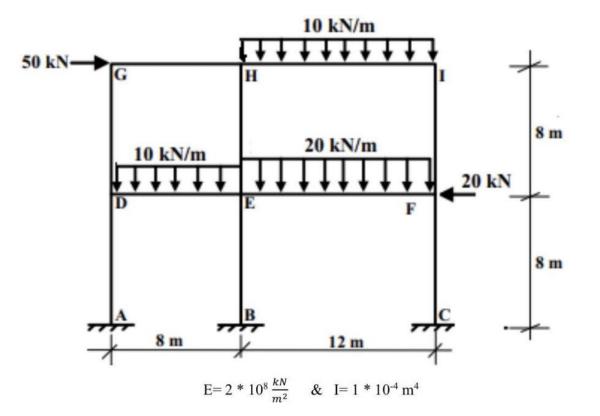
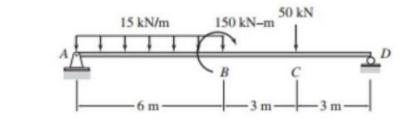

Subject (Elective): CSI ETABS SOFTWARE QUESTIONS



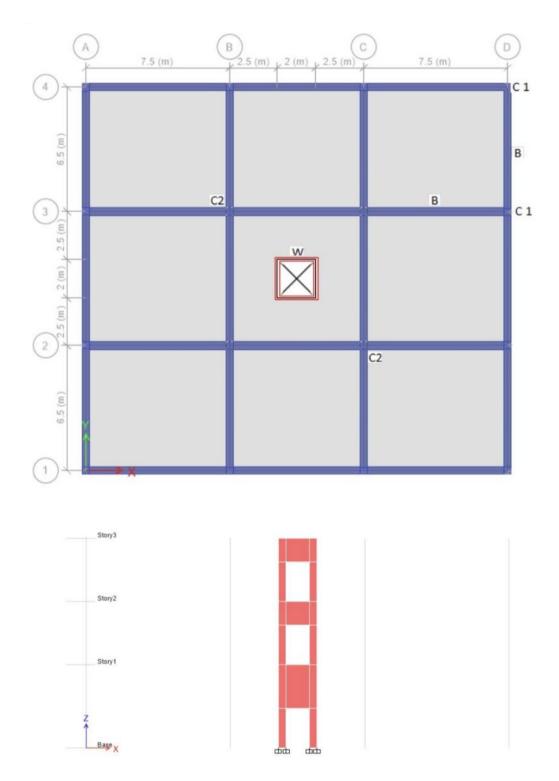
- 1. Draw Shear Force diagram of the beam
- 2. Determine the rotation at roller support
- 3. Find maximum negative moment of the beam
- 4. Find maximum shear force of the beam
- 5. Determine vertical displacement at simply support
- 6. Determine horizontal reaction at simply support
- 7. Determine vertical reaction at roller support


 $E=2 * 10^8 \frac{kN}{m^2}$ & $I=1 * 10^{-4} m^4$

- 8. Determine reactions at fix support
- 9. Draw moment diagram of the frame
- 10. Draw axial load diagram of the frame
- 11. Find the rotation at support
- 12. Determine maximum shear force of the frame


13. Determine vertical reaction at support D

- 14. Determine Horizontal reaction at support A
- 15. Find maximum positive moment of the frame
- 16. Find maximum negative moment of the frame
- 17. Find the horizontal displacement at point C
- 18. Find the rotation at point B
- 19. Draw the axial load diagram of the frame
- 20. Draw shear force diagram of member BC
- 21. Draw moment diagram of member CD


- 22. Find a moment at support B
- 23. Find the vertical reaction at point A
- 24. Find the horizontal reaction at point C
- 25. Determine the Horizontal displacement at point F
- 26. Determine the rotation of the joint G
- 27. Determine the vertical displacement of the member DE
- 28. Find the maximum shear force of the frame
- 29. Draw the moment diagram of the frame

- 30. Draw the axial load diagram of the frame
- 31. Draw shear force diagram of the member EF
- 32. Determine the rotation of the joint E

$$E=2 * 10^8 \frac{kN}{m^2}$$
 & $I=1 * 10^{-4} m^4$

- 33. Horizontal reaction at support A
- 34. Rotation of the roller support
- 35. Draw moment diagram of the beam
- 36. Determine reaction of the support D
- 37. Vertical displacement of the support D
- 38. Draw shear force diagram of the beam
- 39. Rotation of the support A
- 40. Horizontal displacement of the support A

41. Typical plan of slab-beams and frame section shown below

42. Input data Given

Structural element	Dimension
Columns: C1 (Corner & Ext. columns.) C2 (int. columns.)	ns.) Square col. (0.4*0.4)m
	Circular col. (0.4m. Diameter.)
All beams (B)	(0.4Width*0.58Height)m,
Slab thickness (S)	0.18m
Shear walls thickness(W)	0.20m
No. of elevators (door opening)	1 (1.2*2)m,
Rectangular mesh setting for floors walls	
No. of stories	3
Story height	4.2m for Ground floor
	3.2m for Typical floors,
f'c (for all structure)	28 MPa
fy (for steel bars)	420 MPa
Uniform Super dead load for slabs	3.6 (kN/m ²)
 Uniform Live load for floors For corridors (interior panel) For another panels) 4.0 (kN/m²) 2.5 (kN/m²)
Uniform Live load for roof	2.0 (kN/m²)
Load combinations:	Add default design combinations LL + DL
Base supports : Fix	

Analysis and design of the building based on the clear length.

43. Create a model of a reinforced concrete resisting frame of 3 stories office building.

44. After Analysis the model, find the followings:

45. Find reaction at base support of joint (A-1) due to (1.2DL + 1.6 LL)

46. Find reaction at base support of joint (B-3) due to (DL+LL)

47. Draw the moment diagram of the beam (A1 – B1) at (GF) due to (1.4DL)

48. Draw the moment diagram of the beam (A2 – B2) at $(2^{nd} F)$ due to (1.2DL+1.6LL)

49. Draw the shear force diagram of the beam (C2 – D2) at $(1^{st} F)$ due to (1.2DL+1.6LL)

50. Draw the shear force diagram of the beam (A3 – B3) at (1st F) due to (1.2DL+1.6LL)

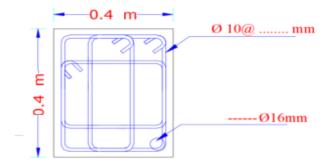
51. Find the maximum torsion of the beam (C4 – D4) at $(2^{nd} F)$ due to (1.2DL+1.6LL)

52. Find the maximum torsion of the beam (C3 – D3) at (G F) due to (1.4DL)

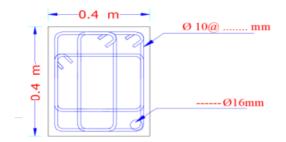
53. Find the maximum shear force of the beam (A4 – B4) at (G F) due to (1.4DL)

54. Find the maximum shear force of the beam (A3 – B3) at (1st F) due to (1.2DL+1.6LL)

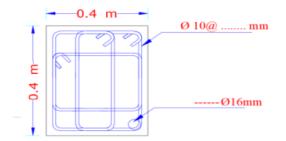
55. Find the maximum deflection of the beam (A2 – B2) at $(2^{nd} F)$ due to (DL+LL)


56. Find the maximum deflection of the beam (C1 - D1) at $(1^{st} F)$ due to (1.2DL+1.6LL)

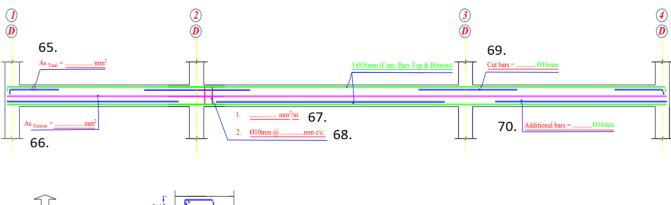
57. After Design the model, find the followings:


58. Maximum deflection and location (x , y) due to (1.2DL) \rightarrow (2nd F.)

59. Maximum deflection and location (x , y) due to $(1.2DL) \rightarrow (G F.)$


60. Design a longitudinal reinforcement bar of column [(B-4, GF) \rightarrow due to (1.2 DL + 1.6 LL)]

61. Design a longitudinal reinforcement bar of column [(D-1, 2^{nd} F) \rightarrow due to (1.4DL)]


62. Design a longitudinal reinforcement bar of column [(A-4, 1st F) \rightarrow due to (1.2DL+1.6LL)]

63. For beam reinforcement \rightarrow (Ground Floor)

Fill the missing data of a longitudinal section for the beams as shown in Fig. and draw transverse structural section For beam $\rightarrow As_{min.} = \frac{1.4}{fy} bd$ or $\frac{\sqrt{fc'}}{4 fy} bd$, (Use: d = h - 70mm). ($\Phi 25 \rightarrow A_b = 490 \text{mm}^2$), ($\Phi 20 \rightarrow A_b = 314 \text{mm}^2$), ($\Phi 16 \rightarrow A_b = 201 \text{mm}^2$), ($\Phi 12 \rightarrow A_b = 113 \text{mm}^2$) & ($\Phi 10 \rightarrow A_b = 71 \text{mm}^2$)

64.

