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Abstract 

 The Artin conjecture is a famous open problem in algebraic number theory that was 

proposed by Emil Artin in 1927.  The Artin conjecture has been partially resolved in some 

special cases, but remains open in general. Its resolution would have far-reaching 

consequences in number theory and related areas of mathematics, and is considered one of 

the most important open problems in the field. In this study, we only review at this 

conjecture and some of its partial results. 

Keywords: Artin conjecture, Primitive Root, Algebraic Number Theory, Analytic Number Theory. 
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1. Introduction 

There are many fascinating conjectures in number theory, but Artin’s primitive root 

conjecture is probably the most famous one. This dissertation is related to the generalization of 

this conjecture. The aim of this chapter is to present the background behind the problems that 

we are looking at, lay out our objectives, and provide an overview of the contribution that this 

dissertation makes. 

The Artin conjecture has important implications in many areas of mathematics. While some 

special cases of the conjecture have been proved, the full conjecture remains open. In fact, it is 

considered to be one of the most important open problems in algebraic number theory. Many 

mathematicians continue to work on this problem, using a wide range of techniques from 

algebraic geometry, representation theory, and analytic number theory. 

    In a conversation with H. Hasse in 1927, E. Artin postulated a conjectural density about how 

many primes 𝑝 there are for which a given integer 𝑎 is a primitive root modulo 𝑝 (see (Frei et 

al., 2008)). In reality, the conjecture was sparked by the following straightforward fact: If we 

pick a prime number 𝑝 that is not 2 nor 5, then the decimal expansion of its reciprocal 1/𝑝 will 

have a periodic pattern as follows:   

   When we look at the above instances, a number of questions may come to mind, such as the 

following: Why does the period length of 1/7 equal 6, while the period length of 1/11 is only 

2? Gauss explored this problem and even the generic probability of the period lengths of 1/𝑝.  

Thus, in articles 315-317 of his Disquisitiones Aritheoremeticae (1801), he 

demonstrated that the period length corresponds to the order of 10 in the cyclic group 𝔽𝑝
∗  of 

𝑝 − 1 elements, which is the smallest positive integer 𝑘 such that 10𝑘 ≡ 1(mod 𝑝). This 

integer 𝑘 denotes 𝑜𝑟𝑑𝑝(10) and is the order of the subgroup generated by 10 in 𝔽𝑝
∗ .  

We can deduct that 𝑜𝑟𝑑𝑝(10)|(𝑝 − 1). If 𝑜𝑟𝑑𝑝(10) = 𝑝 − 1, then 10 is a primitive root 

𝑚𝑜𝑑 𝑝. As seen by the preceding examples, 10 is a primitive root of modulo 7, 17, and 19, but 

not modulo 3, 11, or 13. Gauss was particularly curious to know how frequent 10 would be a 

primitive root modulo 𝑝, given that 𝑝 can vary over primes [4]. 

1/3 = 0. 3 1/11 = 0. 09 1/17 = 0. 0588235294117647 

1/7 = 0. 142857 1/13 = 0. 076923 1/19 = 0. 052631578947368421 
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The conjecture of Artin provides what is thought to be a necessary and sufficient 

condition for figuring out when there are an infinite number of primes 𝑝 for which a given 

integer 𝑎 is a primitive root modulo 𝑝. It is important to keep in mind that Gauss had already 

conjectured that there existed an unlimited prime 𝑝 with the primitive root 10 in the exceptional 

case where 𝑎 = 10. 

Gauss’s table has a few more examples like this, and he must have wondered if there 

are an infinite number of such primes, that is, primes whose decimal period is 𝑝 − 1. 𝐿𝑖(𝑥) is 

an abbreviation for the logarithmic integral, which is defined as ∫
𝑥

2
𝑑𝑡/log𝑡. By using the 

method of partial integration, one may determine that the expression 𝐿𝑖(𝑥)~𝑥/log𝑥 holds. The 

prime number theorem defined as 

𝜋(𝑥): = #{𝑝 ≤ 𝑥}~𝐿𝑖(𝑥), 𝑥 → ∞, 

argues that the probability that a number 𝑛 is prime is equal to 1/log𝑛. (Thus, we may anticipate 

that ∑2≤𝑛≤𝑥 1/log𝑛 primes ≤ 𝑥 which is asymptotically identical to 𝐿𝑖(𝑥).) 

This conjecture is widely credited to Gauss, but there is no documented evidence for it 

to the author’s knowledge. As a result, Emil Artin formulated the conjecture in 1927 as follows:  

Conjecture 1.1 For a given 𝑎 ∈ ℚ\{−1,0,1}, define  

𝜋𝑎 = {𝑝: 𝑜𝑟𝑑𝑝(𝑎) = 𝑝 − 1} and 𝜋(𝑎, 𝑥) = #{𝑝 ∈ 𝜋𝑎: 𝑝 ≤ 𝑥}. 

    • Qualitative form: If 𝑎 is not a square of a rational number, the set 𝜋𝑎 is infinite.  

    • Quantitative form: Let 𝑘 be the largest integer for which 𝑎 = 𝑎0
𝑘 with 𝑎0 ∈ ℚ. As 𝑥 

approaches infinity, we have  

𝜋(𝑎, 𝑥) = ∏

ℓ∤𝑘

(1 −
1

ℓ(ℓ − 1)
) ∏

ℓ|𝑘

(1 −
1

(ℓ − 1)
)

𝑥

log𝑥
+ 𝑂 (

𝑥

log𝑥
)            (1.1) 

Here, ∏ℓ 𝑓(ℓ) is a Euler product with 𝑓(ℓ) = 1 + 𝑂(ℓ−2) (to guarantee convergence) and ℓ 

sweeps over the primes.  

The primary component in 1.1 should be written as 𝐴(𝑘)
𝑥

log𝑥
. If 𝑘 is an even number, then 

𝐴(𝑘) = 0, and 𝜋𝑎 is obviously finite, and then the statement 1.1 is obvious. Then, for 𝜋𝑎 to be 

infinite, the fact that 𝑎 is not a square is necessary (and, accorollaryding to Artin, is sufficient). 

For an odd number 𝑘, we know that 𝐴(𝑘) is a rational multiple of the Artin constant.  
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𝐴(1) = 𝐴 = ∏

ℓ

(1 −
1

ℓ(ℓ − 1)
) ≈ 0.3739558 

Moreover, the quantitative form implies the qualitative form. A rapid convergence is 

not seen in the product that defines the Artin constant [3,7]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hasse’s mathematical notebook entry from 1927 on Artin’s primitive root conjecture. 
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In addition, enthusiastic readers of the dissertation are expected to have at least a 

fundamental knowledge of Algebraic Number Theory and Analytic Number Theory. To do this, 

In the next section we have some basic concepts in Algebraic Number Theory.  

  1.1 Some of Algebraic Number Theory’s concept 

  We will begin by writing down some basic definitions and proving elementary 

properties about number fields. 

Definition 1.1 (Ring) a ring is a set R equipped with two binary operations, usually denoted by 

addition (+) and multiplication (⋅), which satisfy certain axioms. Specifically, a ring is an 

algebraic structure that satisfies the following axioms: 

1. R is an abelian group under addition, meaning that: 

• (a + b) + c = a + (b + c) for all a, b, c in R (that is, + is associative) 

• a + b = b + a for all a, b in R (that is, + is commutative). 

• There is an element 0 in R such that a + 0 = a for all a in R (that is, 0 is 

the additive identity). 

• For each a in R there exists −a in R such that a + (−a) = 0 (that is, −a is 

the additive inverse of a). 

2. R is a monoid under multiplication, meaning that: 

• (a · b) · c = a · (b · c) for all a, b, c in R (that is, ⋅ is associative). 

• There is an element 1 in R such that a · 1 = a and 1 · a = a for all a in R (that 

is, 1 is the multiplicative identity).[b] 

3. Multiplication is distributive with respect to addition, meaning that: 

• a · (b + c) = (a · b) + (a · c) for all a, b, c in R (left distributivity). 

• (b + c) · a = (b · a) + (c · a) for all a, b, c in R (right distributivity). 

Examples of rings include the integers, the rational numbers, and the real numbers, as well 

as other algebraic structures such as polynomial rings and matrix rings. The study of rings is an 

important part of algebraic geometry, algebraic number theory, and other branches of abstract 

algebra [6]. 

Definition 1.2 (Field) a field is a set 𝐹 equipped with two binary operations, usually denoted 

by addition (+) and multiplication (⋅), which satisfy certain axioms. Specifically, a field is an 

algebraic structure that satisfies the following axioms: 

 

https://en.wikipedia.org/wiki/Abelian_group
https://en.wikipedia.org/wiki/Associativity
https://en.wikipedia.org/wiki/Commutativity
https://en.wikipedia.org/wiki/Additive_identity
https://en.wikipedia.org/wiki/Additive_inverse
https://en.wikipedia.org/wiki/Monoid
https://en.wikipedia.org/wiki/Multiplicative_identity
https://en.wikipedia.org/wiki/Ring_(mathematics)#cite_note-5
https://en.wikipedia.org/wiki/Distributive_law
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• Associativity of addition and multiplication: a + (b + c) = (a + b) + c, and a ⋅ (b ⋅ c) = 

(a ⋅ b) ⋅ c. 

• Commutativity of addition and multiplication: a + b = b + a, and a ⋅ b = b ⋅ a. 

• Additive and multiplicative identity: there exist two different 

elements 0 and 1 in F such that a + 0 = a and a ⋅ 1 = a. 

• Additive inverses: for every a in F, there exists an element in F, denoted −a, called 

the additive inverse of a, such that a + (−a) = 0. 

• Multiplicative inverses: for every a ≠ 0 in F, there exists an element in F, denoted 

by a−1 or 1/a, called the multiplicative inverse of a, such that a ⋅ a−1 = 1. 

• Distributivity of multiplication over addition: a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c). 

Examples of fields include the rational numbers, the real numbers, and the complex 

numbers. Other examples of fields include finite fields, which have a finite number of elements 

[6]. 

Definition 1.3 (Field extension) A field extension is an inclusion of fields 𝐾 ⊆ 𝐿. We 

sometimes write this as 𝐿/𝐾 [6].  

Definition 1.4 (Degree of field extension) Let 𝐾 ⊆ 𝐿 be fields. Then 𝐿 is a vector space over 

𝐾, and the degree of the field extension is  

[𝐿: 𝐾] = dim𝐾(𝐿). 

Definition 1.5 (Number field) A number field is a finite field extension over ℚ [6].  

Definition 1.6 (Algebraic integer) Let 𝐿 be a number field. An algebraic integer is an 𝛼 ∈ 𝐿 

such that there is some monic 𝑓 ∈ ℤ[𝑥] with 𝑓(𝛼) = 0. We write 𝒪𝐿 for the set of algebraic 

integers in 𝐿 [6].  

Definition 1.7 (Ideal) An ideal is a subset of a ring that satisfies certain algebraic conditions. 

Specifically, an ideal I of a ring R is a non-empty subset of R that satisfies the following 

properties: 

• 𝐼 is closed under addition: if 𝑎 and 𝑏 are in 𝐼, then 𝑎 +  𝑏 is in 𝐼. 

• 𝐼 is closed under multiplication by elements of 𝑅: if 𝑎 is in 𝐼 and 𝑟 is any element of 𝑅, 

then 𝑟𝑎 and 𝑎𝑟 are both in 𝐼. 

The first property ensures that 𝐼 is a subgroup of 𝑅 under addition, while the second property 

ensures that 𝐼 is closed under multiplication by elements of 𝑅. 

https://en.wikipedia.org/wiki/Associativity
https://en.wikipedia.org/wiki/Commutativity
https://en.wikipedia.org/wiki/Additive_identity
https://en.wikipedia.org/wiki/Multiplicative_identity
https://en.wikipedia.org/wiki/Additive_inverse
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Distributivity
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Examples of ideals include the set of all multiples of a fixed integer in the ring of integers, 

the set of all polynomials with a given factor in a polynomial ring [6]. 

Definition 1.8 (Prime ideal) Let 𝑅 be a ring. An ideal 𝔭 ⊆ 𝑅 is prime if for all 𝑥, 𝑦 ∈ 𝑅, 𝑥𝑦 ∈

𝔭 implies 𝑥 ∈ 𝔭 or 𝑦 ∈ 𝔭. 

   Here, we take the convention that a prime ideal is non-zero. This is not standard, but it saves 

us from saying “non-zero” all the time [6].  

1.1.1 Structure of prime ideals: 

We can now move on to find all prime ideals. We know that every ideal factors as a 

product of prime ideals, but we don’t know what the prime ideals are.  

Lemma 1.1 Let 𝔭 ⊲ 𝒪𝐿 be a prime ideal. Then there exists a unique 𝑝 ∈ ℤ, 𝑝 prime, with 𝔭|〈𝑝〉. 

Moreover, 𝑁(𝔭) = 𝑝𝑓 for some 1 ≤ 𝑓 ≤ 𝑛.  

This is not really too exciting, as soon as we realize that 𝔭|〈𝑝〉 is the same as saying 

〈𝑝〉 ⊆ 𝔭, and we already know 𝔭 ∩ ℤ is non-empty. So, all we have to do is to figure out how 

principal ideals 〈𝑝〉 factor into prime ideals. 

    We write  

〈𝑝〉 = 𝔭1
𝑒1 ⋯ 𝔭𝑚

𝑒𝑚 

for some distinct prime ideals 𝔭𝑖, with 𝑁(𝔭𝑖) = 𝑝𝑓𝑖 for some positive integers 𝑒𝑖. Taking norms, 

we get  

𝑝𝑛 = ∏ 𝑝𝑓𝑖𝑒𝑖 . 

So  

𝑛 = ∑ 𝑒𝑖𝑓𝑖 . 

We start by giving some names to the possible scenarios.  

Definition 1.9 (Ramification indices) Let 〈𝑝〉 = 𝔭1
𝑒1 ⋯ 𝔭𝑚

𝑒𝑚  be the factorization into prime 

ideals. Then 𝑒1, ⋯ , 𝑒𝑚 are the ramification indices.  

Definition 1.10 (Ramified prime) We say 𝑝 is ramified if some 𝑒𝑖 > 1.  

Definition 1.11 (Inert prime) We say 𝑝 is inert if 𝑚 = 1 and 𝑒𝑚 = 1, i.e., 〈𝑝〉 remains prime.  
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Definition 1.12 (Splitting prime) We say 𝑝 splits completely if 𝑒1 = ⋯ = 𝑒𝑚 = 1 = 𝑓1 =

⋯ = 𝑓𝑚. So 𝑚 = 𝑛.  

   Note that this does not exhaust all possibilities. The importance of these terms, especially 

ramification, will become clear later [6]. 

   So how do we actually compute 𝔭𝑖 and 𝑒𝑖? In other words, how can we factor the ideal 〈𝑝〉 

into prime ideals?  

Example 1.1 Consider 𝐿 = ℚ(√−11). We want to factor 〈5〉. We consider ℤ[√−11] ⊆ 𝒪𝐿. 

This has index 2, and 5 ∤ 2. So, we can say 

〈5〉 = 〈5, √−11 + 2〉〈5, √−11 − 2〉. 

In general, consider 𝐿 = ℚ(√𝑑), 𝑑 = 0,1 and square-free, and 𝑝 an odd prime.  

1.1.2 Cyclotomic fields: 

A field 𝐹 is cyclotomic field with the expression 𝐹 = ℚ(𝜁𝑛), where 𝜁𝑛 = 𝑒
2𝜋𝑖

𝑛  and 𝑛 ∈ ℕ. 

One might demonstrate that  

𝑓𝜁𝑛
(𝑥) = ∏

𝛼=1
(𝛼,𝑛)=1

(𝑥 − 𝜁𝑛
𝛼) = Φ𝑛(𝑥) ∈ ℤ[𝑥]. 

The Φ𝑛(𝑥) polynomial is the 𝑛th cyclotomic polynomial. This leads us to conclude that 

[ℚ(𝜁𝑛): ℚ] = degΦ𝑛(𝑥) = 𝜑(𝑛). Moreover, the cyclotomic fields are normal. It is possible to 

demonstrate that 𝑝 splits completely in 𝐹 if and only if 𝑝 ≡ 1(mod𝑛), if and only if 𝑥𝑛 − 1 

factors completely over 𝔽𝑝 [1, 6].  

1.2 Analytic Number Theory 

Suppose that 𝔇 crosses the non-zero integral ideals of 𝒪𝐹 , where 𝐹 is a number field. When 

ℜ(𝑠) > 1, we define 𝜁𝐹(𝑠) = ∑𝔇 𝑁𝔇−𝑠, and use analytic continuation elsewhere. It is worth 

noting that if 𝐹 = 𝑄, then 𝜁𝐹(𝑠) = 𝜁(𝑠), the standard Riemann zeta-function. In the case when 

ℜ(𝑠) > 1 we get a Euler product, denoted by 𝜁𝐹(𝑠) = ∏𝔭 (1 − 𝑁𝔭−𝑠)−1, in which the product 

runs over all of the prime ideals 𝔭 of 𝒪𝐹  [1]. 

The Generalized Riemann Hypothesis (GRH) is a conjecture in mathematics that asserts that 

all non-trivial zeros of certain types of zeta functions lie on the critical line. The Riemann 

hypothesis itself is a special case of the GRH. 
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The zeta function is a mathematical function that was first studied by the mathematician 

Leonard Euler in the 18th century, and later extensively by Bernhard Riemann in the 19th 

century. The Riemann zeta function is defined as the sum of the reciprocal of the nth power of 

the positive integers, where n is a complex number. 

The non-trivial zeros of the Riemann zeta function are all of the complex numbers s of the 

form s = 1/2 + it, where t is a real number and i is the imaginary unit. The Riemann hypothesis 

states that all of these zeros lie on the critical line s = 1/2. The GRH extends this conjecture to 

other zeta functions, such as Dirichlet L-functions and Hecke L-functions. 

The importance of the GRH lies in its connections to other areas of mathematics, such as 

number theory and cryptography. If the GRH were proven to be true, it would have significant 

implications for these fields, as it would provide a powerful tool for understanding the 

distribution of prime numbers and for constructing secure cryptographic systems. 

Despite extensive efforts by mathematicians over the past century, the GRH remains 

unproven. However, there have been many important partial results and related conjectures that 

have been proven, which have contributed to our understanding of this important problem [1]. 

2. Materials and Methods  

 At the very beginning, Artin’s idea is that 𝑎 is a primitive root (mod 𝑝) if and only if 

𝑎(𝑝−1)/ℓ ≡ (mod 𝑝) for all prime divisors ℓ of (𝑝 − 1). However, 𝑝 splits completely in 𝐹ℓ =

ℚ(𝜁ℓ, 𝑎1/ℓ), where 𝜁ℓ = 𝑒2𝜋𝑖/ℓ if and only if 𝑎(𝑝−1)/ℓ ≡ (mod 𝑝). As a result, he deduced that 

𝑎 is a primitive root (mod 𝑝) if and only if 𝑝 does not split completely in any 𝐹ℓ. Then he 

realized that the prime ideal theorem gives the density of primes which splits completely in 𝐹ℓ, 

as  

1

[𝐹ℓ: ℚ]
, 

Hence, the probability that 𝑝 does not split completely is  

1 −
1

[𝐹ℓ: ℚ]
. 

So, one would expect  

𝐴 = ∏

ℓ

(𝑙 −
1

[𝐹ℓ: ℚ]
) 

as the density of primes for which 𝑎 is a primitive root. 
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   In other words, the following is the first thing we notice when we look at Artin’s primitive 

root conjecture:  

𝑝 ∈ 𝜋𝑎 ⇔ 𝑎
𝑝−1

ℓ ≡ 1(mod 𝑝) for every prime ℓ dividing 𝑝 − 1.                                    (2.1) 

" ⇒ " Obvious. 

" ⇐ " If 𝑝 ∈ 𝜋𝑎, then for any ℎ|(𝑝 − 1), ℎ > 1 we have 𝑎
𝑝−1

ℎ ≡ 1(mod 𝑝). This means that 

𝑎
𝑝−1

ℓ1 ≡ 1(mod 𝑝) for any prime divisor ℓ1 of ℎ. This is an inconsistency. 

    Since Artin is responsible for several unsolved conjectures, it is more common to refer to the 

Artin primitive root conjecture than Artin’s conjecture. In point of fact, there are even articles 

that have been written in which both of these conjectures are discussed, such as [5]. 

   As a result, we have criteria for different ℓ corollaryresponding with a prime 𝑝. We will swap 

the roles of 𝑝 and ℓ; that is, given a fixed ℓ, we will examine the set of primes 𝑝 such that 𝑝 ≡

1(mod ℓ) and 𝑎
𝑝−1

ℓ ≡ 1(mod 𝑝). 

   Now we fix a prime ℓ and attempt to determine the density of primes 𝑝 satisfying the 

conditions 𝑝 ≡ 1(mod ℓ) and 𝑎
𝑝−1

ℓ ≡ 1mod 𝑝. As 𝑥 approaches infinity, the prime number 

theorem for arithmetic progressions asserts  

𝜋(𝑥; 𝑏, 𝑎): = ∑
𝑝≤𝑥

𝑝≡𝑎(mod𝑏)

1~
𝑥

𝜑(𝑏)log(𝑥)
                                                                                        (2.2) 

    It is argued that the residue classes 𝑎(mod 𝑏) are called primitive where (𝑎, 𝑏) = 1. With 

several exceptions, given an integer 𝑏, a prime must be in a primitive residue class modulo 𝑏. 

Furthermore, due to the fact we have 𝜑(𝑏) primitive residue classes modulo 𝑏, 2.2 tells us the 

primes asymptotically spread equally among the primitive residue classes modulo 𝑏. Dirichlet’s 

theorem (1837) makes the weaker claim that every primitive residue class has an infinite 

number of primes. 

   From 2.2 𝑝 ≡ 1(mod ℓ) occurs for primes 𝑝 with rate 1/𝜑(ℓ) = 1/(ℓ − 1). We bring back 

Fermat’s little theorem, which states that 𝑎𝑝−1 ≡ 1mod 𝑝 if 𝑝 ∤ 𝑎. Thus, in the event that 𝑝 ∤

𝑎, we may deduce that 𝑎
𝑝−1

ℓ  is a solution to the equation 𝑥ℓ ≡ 1(mod 𝑝). We assume that there 

will be ℓ solutions and we need that each solution has the value 1 modulo ℓ. Therefore, we 

predict being successful with a frequency of 
1

ℓ
, with the exception of the case when ℓ|𝑘. Then 
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𝑎
𝑝−1

ℓ = 𝑎𝑘
𝑝−1

ℓ ≡ 1mod 𝑝, trivially. If we make the assumption that both occurrences are not 

reliant on one another, then the probability that both of these occurrences will take place is 

1

ℓ(ℓ−1)
 if 𝑝 ∤ 𝑘 and 

1

ℓ−1
 otherwise. 

   According to 2.1 the preceding occurrences should not happen for any ℓ, so that 𝑝 ∈ 𝜋𝑎, 

which predicts a natural density of   

∏

ℓ∤𝑘

(1 −
1

ℓ(ℓ − 1)
) ∏

ℓ|𝑘

(1 −
1

(ℓ − 1)
) = 𝐴(𝑘). 

for primes of this kind, we conclude that 1.1 holds [3,9]. 

   Until approximately 1960, Lehmers performed some quantitative measures that did not 

always agree with Artin’s heuristic, which was considered credible at the time. Later, Heilbronn 

presented a modified quantitative conjecture in 1968 after realizing that the case "𝑝 does not 

split completely in 𝐹ℓ" is not always independent because of the fact that 𝑝 and ℓ cover all 

primes.  

However, Artin produced this modification even pretty earlier, in 1958, in a letter to the 

Lehmers in reply to a letter from the Lehmers about his quantitative work. Artin did not publish 

his revised guess, nor did the Lehmers mention Artin in their publication, despite providing the 

correction factor. Hasse included in the 1964 version of his book a correction factor that is 

wrong if 𝑎 ≡ 1(mod 4) is not a prime [5,2]. 

   Bilharz demonstrated the function field equivalent to Artin’s conjecture in 1937.. Artin’s 

fundamental conjecture is a reasonable issue to ask if one assumes the generalized Riemann 

hypothesis for the number fields concerned. A positive response was given by Hooley in 1967. 

He demonstrated that if the Riemann Hypothesis exists for the number fields ℚ(𝜁𝑘 , 𝑎1/𝑘) with 

𝑘 square free, then we will get  

𝜋𝑎(𝑥) = 𝜌(𝑎).
𝑥

log𝑥
+ 𝑂𝑎 (

𝑥loglog𝑥

log2𝑥
), 

 and he specifically assessed the latter sum, say 𝜌(𝑎), as 

𝜌(𝑎) = {

𝐴(ℎ) 𝑖𝑓𝑑 ≡ 1(𝑚𝑜𝑑 4),

(1 − 𝜇(|𝑑|) ∏

ℓ|𝑑ℓ|ℎ

1

ℓ − 2
∏

ℓ|𝑑𝑝∤ℎ

1

ℓ2 − ℓ − 2
) 𝐴(ℎ) 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒.
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   In a notable paper, Lenstra used Hooley’s approach and, assuming GRH, established a 

number field analogue of the Artin Conjecture. Regarding Hooley’s proof under GRH, various 

variations of the conjecture were investigated. The following are many typical extensions:   

 • Primes with a particular primitive root in aritheoremetic progressions;  

 • Near-primitive roots: [𝐹𝑝
∗: 〈𝑎〉] = 𝑚 ∈ ℤ>0;  

 • Two-variable Artin: 〈𝑎1〉 ⊂ 〈𝑎2〉 ⊂ 𝐹𝑝
∗.  

 • Higher-rank Artin: 𝐹𝑝
∗ = 〈𝑎1, 𝑎2, . . . , 𝑎𝑟〉.  

 • Multiple primitive roots: 𝐹𝑝
∗ = 〈𝑎1〉 = 〈𝑎2〉 =. . . = 〈𝑎𝑟〉.  

 • Same order: 〈𝑎1〉 = 〈𝑎2〉 =. . . = 〈𝑎𝑟〉 ⊂ 𝐹𝑝
∗ [5,9].  

3. Results and Discussion 

Findings should be described without comments. Several people have generalized Hooley’s 

work. In 1983, Rajiv Gupta and Ram Murty  demonstrated, without any hypotheses, that three 

is a set of 13 numbers such that Artin conjecture is available for at least one of these 13 numbers.  

Theorem 3.1 Assume that 𝑟, 𝑠, 𝑡 are three different primes, and  

𝑆 = {𝑟𝑡2, 𝑟3𝑠2, 𝑟2𝑠, 𝑠3𝑡2, 𝑠2𝑡, 𝑟 

2𝑡3, 𝑟𝑠3, 𝑟3𝑠𝑡2, 𝑠𝑡3, 𝑟2𝑠3𝑡, 𝑟3𝑡, 𝑟𝑠2𝑡3, 𝑟𝑠𝑡}, 

then we have  

𝜋𝑎(𝑥): = 𝜋𝑎 ∩ [1, 𝑥] ≫
𝑥

log2𝑥
 

 For some 𝑎 ∈ 𝑆 [4].  

    Subsequently, Gupta, Kumar Murty, and Ram Murty decreased the size of this set to seven. 

In 1986, however, Heath-Brown developed on earlier fundamental work by Gupta, Ram Murty, 

and Srinivasan that allowed Heath-Brown to prove the following improvement of the Theorem 

3.1.  

Theorem 3.2 Given 𝑞, 𝑟, 𝑠 ∈ ℤ multiplicatively independent, such that none of 

𝑞, 𝑟, 𝑠, −3𝑞𝑟, −3𝑞𝑠, −3𝑟𝑠, 𝑞𝑟𝑠 is a square, then there exists 𝑎 ∈ {𝑞, 𝑟, 𝑠} with  

𝜋𝑎(𝑥): = 𝜋𝑎 ∩ [1, 𝑥] ≫
𝑥

log2𝑥
, 

Moreover, there exists 𝑎 ∈ {2,3,5} such that  

#{𝑝 ≤ 𝑥: 𝑝 > 5, 〈𝑎mod 𝑝〉 = 𝔽𝑝
∗ 〉 ≫

𝜋(𝑥)

log𝑥
, 
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Specifically, the qualitative AC occurs for 𝑟, 𝑠, and 𝑡[9].  

    As a consequence, there are only two primes, ℓ1 and ℓ2 for which 𝜋ℓ1
 and 𝜋ℓ2

 are finite, and 

no more than three square-free integers 𝑎1, 𝑎2 and 𝑎3 for which 𝜋𝑎1
, 𝜋𝑎2

 and 𝜋𝑎3
 are finite. 

Given an integer 𝑚 ≥ 1, the prime counting function that counts the prime numbers 𝑝 for which 

𝑎 is a near-primitive root modulo 𝑝 of index 𝑚 is:  

𝜋Γ(𝑥, 𝑚): = #{𝑝 ≤ 𝑥: 𝑝 ∈ 𝑆𝑢𝑝𝑝Γ, [𝔽𝑝
∗ : Γ𝑝] = 𝑚}. 

Hooley’s approach has been expanded by numerous authors (such as Moree, Murata, 

Lenstra,Wagstaff, and others) who derive an asymptotic formula for 𝜋𝑎(𝑥, 𝑚). Specifically, 

Lenstra, Moree, and Stevenhagen provide in 2014 a full characterisation, assuming the GRH, 

of the pairings (𝑎, 𝑚) for which there exists no 𝑝|𝑎 with 𝑖𝑛𝑑𝑝(𝑎) = 𝑚. In a different route, L. 

Cangelmi and F. Pappalardi derived from GRH an asymptotic formula for 𝜋Γ(𝑥, 1), for which 

Γ𝑝 includes a primitive root modulo 𝑝 [7,8]. Later, in 2013, F. Pappalardi and A. Susa looked 

at 𝜋Γ(𝑥, 𝑚) in a more general way and made the following suggestions [7,9]:  

Theorem 3.3 Let 𝛤 ⊂ ℚ∗ has rank 𝑟 ≥ 2, let 𝑚 ∈ ℕ. Assume GRH holds for the fields of the 

form ℚ(𝜁𝑘, 𝛤1/𝑘)(𝑘 ∈ ℕ). Then, for any ∀𝜀 > 0 and for 𝑚 ≤ 𝑥
𝑟−1

(𝑟+1)(4𝑟+2)
−𝜀

,  

 𝜋Γ(𝑥, 𝑚): = 𝜋Γ(𝑚) ∩ [1, 𝑥] = (𝜌(Γ, 𝑚) + 𝑂 (
1

𝜑(𝑚𝑟+1)log𝑟(𝑥)
)) 𝜋(𝑥), 

where  

𝜌(Γ, 𝑚) = ∑

𝑘≥1

𝜇(𝑘)

[ℚ(𝜁𝑚𝑘, Γ1/𝑚𝑘): ℚ]
. 

    In addition to this, they were successful in constructing an explicit formula for the density 

𝜌(Γ, 𝑚) in the case when Γ only contains positive rational numbers [8]. Specifically, they 

demonstrated:  

Theorem 3.4 Let 𝛤 ⊂ ℚ+ with 𝑟 = 𝑟𝑎𝑛𝑘𝛤 ≥ 2, 𝑚 ∈ ℕ, and 𝑚ℓ: = ℓ𝑣ℓ(𝑚).  

 𝜌(Γ, 𝑚) = 𝐴Γ,𝑚 (𝐵Γ,𝑚 −
|Γ(𝑚2|

(2,𝑚)|Γ(2𝑚2)|
𝐵Γ,2𝑚), 

where   

𝐴Γ,𝑚 =
1

𝜑(𝑚)|Γ(𝑚)|
× ∏

ℓ>2ℓ∤𝑚

(1 −
1

(ℓ − 1)|Γ(ℓ)|
) × ∏

ℓ>2ℓ|𝑚

(1 −
|Γ(𝑚ℓ)|

ℓ|Γ(ℓ𝑚ℓ)|
) ,

 

 and   
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𝐵Γ,𝛼 = ∑
𝜂|𝜎Γ

𝜂
𝛼2
2 .ℚ∗𝛼2 ∈Γ(𝛼2)

𝑣2(∂(𝜂))≤𝛼

∏
ℓ| ∂(𝜂)

ℓ∤𝛼

−1

(ℓ − 1)|Γ(ℓ)| − 1
, where𝛼 > 0. 

   Here, we could not list all the names and their works, but in order to have a general overview, 

we refer to [3]. 

4. Conclusions  

In conclusion, the Artin conjecture is a significant problem in number theory that has 

captured the attention of mathematicians for almost a century. Although it has been proven for 

some cases, it remains unsolved in general, and its resolution would have important 

implications for other areas of mathematics. 

Research on the Artin conjecture is ongoing, and mathematicians continue to make 

progress towards a solution. Advances in computational techniques, as well as new insights 

from related areas of mathematics, have helped to shed light on the problem and bring it 

closer to resolution. 

While the Artin conjecture remains a challenging and complex problem, its study has led 

to important developments in number theory and has enriched our understanding of the 

behavior of algebraic functions. It is likely that the pursuit of this conjecture will continue to 

inspire and challenge mathematicians for many years to come. 
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