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Abstract 

 Elliptic Curve Cryptography (ECC) is a public key cryptographic system that uses 

the properties of elliptic curves over finite fields to provide security. It is a relatively new 

cryptographic technique that has gained popularity due to its efficiency, security, and 

flexibility compared to other public key systems such as RSA. 

ECC involves two keys, a public key and a private key, and uses complex 

mathematical operations to encrypt and decrypt messages. The security of ECC is based on 

the difficulty of solving the discrete logarithm problem in the elliptic curve group, which is 

believed to be computationally infeasible. 

In summary, ECC is a powerful cryptographic technique that offers efficient and 

secure public key encryption. It has become a popular choice in modern applications due to 

its many advantages over traditional public key systems, and its continued development is 

expected to have a significant impact on the field of cryptography. This study focuses simply 

on ECC and some of its component outcomes. 

 

Keywords: Elliptic Curve, Cryptography, Encryption, Decryption. 
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1. Introduction 

Elliptic curve cryptography (ECC) is a public-key encryption method that uses elliptic 

curves to establish a secure communication channel between two parties. It is considered to be 

more efficient than traditional methods, such as RSA, while offering the same level of security. 

In ECC, a private key is generated by multiplying a random number, known as the private 

key, with a point on an elliptic curve. The resulting point on the curve is used as the public key, 

which can be shared with anyone who needs to communicate with the owner of the private key. 

The strength of the security in ECC is based on the difficulty of calculating the private key from 

the public key. 

One of the key advantages of ECC is its efficiency. Compared to RSA, ECC requires 

smaller key sizes to provide the same level of security. For example, a 256-bit ECC key 

provides the same security as a 3072-bit RSA key. This makes ECC a popular choice for mobile 

devices and other systems with limited resources [2]. 

Another advantage of ECC is its resistance to attacks based on quantum computing. 

While traditional encryption methods, such as RSA, can be easily broken by quantum 

computers, ECC has been shown to be resistant to such attacks. 

Despite its advantages, there are some potential weaknesses in ECC that must be 

considered. One such weakness is the possibility of a side-channel attack, in which an attacker 

can use information about the physical properties of the system to extract the private key. 

Additionally, the security of ECC depends on the selection of the elliptic curve used, and some 

curves have been found to be vulnerable to attack. 

Overall, ECC is a promising method of encryption that offers a high level of security 

with greater efficiency than traditional methods. However, it is important to carefully consider 

the potential weaknesses and vulnerabilities when implementing ECC in a system [6]. 

There are several encryption algorithms that can be used in elliptic curve cryptography 

(ECC), including: 

1) Elliptic Curve Diffie-Hellman (ECDH): This algorithm is used for key exchange 

between two parties. It involves each party generating a private key and a public key 

based on an elliptic curve. The parties then exchange their public keys and use them to 

generate a shared secret key that can be used for encryption and decryption. 
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2) Elliptic Curve Integrated Encryption Scheme (ECIES): This algorithm is used for 

encrypting data between two parties. It involves using the ECDH algorithm to generate 

a shared secret key, which is then used to encrypt the data using a symmetric encryption 

algorithm, such as AES. The encrypted data is then sent to the recipient, who can use 

their private key to decrypt it. 

3) Elliptic Curve Digital Signature Algorithm (ECDSA): This algorithm is used for 

verifying the authenticity of digital signatures. It involves the use of a private key to 

generate a digital signature, which can be verified using the corresponding public key. 

The algorithm ensures that the signature is only valid for the specific message it was 

created for and that it cannot be forged or tampered with. 

All of these algorithms are based on the properties of elliptic curves and are designed to 

provide a high level of security while being efficient in terms of computation and 

communication overhead. They are widely used in various applications, such as secure 

communication protocols, digital signatures, and mobile device security [1]. 

1.1 Elliptic Curves 

First and foremost, elliptic curves have nothing to do with ellipses. Ellipses are formed by 

quadratic curves. Elliptic curves are always cubic. [Note: Elliptic curves are called elliptic 

because of their relationship to elliptic integrals in mathematics. An elliptic integral can be used 

to determine the arc length of an ellipse.]. The simplest possible "curves" are, of course, straight 

lines. The next simplest possible curves are conics, these being quadratic forms of the following 

sort 

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0 

If 𝑏2 − 4𝑎𝑐 is less than 0, then the curve is either an ellipse, or a circle, or a point, or the curve 

does not exist; if it is equal to 0, then we have either a parabola, or two parallel lines, or no 

curve at all; if it is greater than 0, then we either have a hyperbola or two intersecting lines. 

(Note that, by definition, a conic is the intersection of a plane and a cone.) - The next simplest 

possible curves are elliptic curves. An elliptic curve in its "standard form" is described by 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

for some fixed values for the parameters 𝑎 and 𝑏. This equation is also referred to as Weierstrass 

Equation of characteristic 0. (The equation shown involves multiplications and additions over 

certain objects that are represented by 𝑥, 𝑦, 𝑎, and 𝑏. The values that these objects acquire are 
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meant to be drawn from a set that must at least be a ring. The characteristic of a ring is the 

number of times you must add the multiplicative identity element in order to get the additive 

identity element. If adding the multiplicative identity element to itself, no matter how many 

times, never gives us the additive identity element, we say the characteristic is 0. Otherwise, 

there must exist an integer 𝑝 such that 𝑝 × 𝑛 = 0 for all 𝑛. The value of 𝑝 is then the 

characteristic of the ring. In a ring of characteristic 2, the elements 2,4, etc., are all equal to 0. 

In a ring of characteristic 3, the elements 3,6, etc., are all equal to 0.) Elliptic curves have a rich 

structure that can be put to use for cryptography [5]. 

Figure 1 shows some elliptic curves for a set of parameters (𝑎, 𝑏). The top four curves 

all look smooth (they do not have cusps, for example) because they all satisfy the following 

condition on the discriminant of the polynomial 𝑓(𝑥) = 𝑥3 + 𝑎𝑥 + 𝑏 : 

4𝑎3 + 27𝑏2 ≠ 0                                                                                                 (1) 

[ Note: The discriminant of a polynomial is the product of the squares of the differences of the 

polynomial roots. The roots of the polynomial 𝑓(𝑥) = 𝑥3 + 𝑎𝑥 + 𝑏 are obtained by solving the 

equation 𝑥3 + 𝑎𝑥 + 𝑏 = 0. Since this is a cubic polynomial, it will in general have three roots. 

Let's call them 𝑟1, 𝑟2, and 𝑟3. Its discriminant will therefore be 

𝐷3 = ∏  

3

𝑖<𝑗

(𝑟𝑖 − 𝑟𝑗)
2
 

which is the same as (𝑟1 − 𝑟2)2(𝑟1 − 𝑟3)2(𝑟2 − 𝑟3)2. It can be shown that when the polynomial 

is 𝑥3 + 𝑎𝑥 + 𝑏, the discriminant reduces to 

𝐷3 = −16(4𝑎3 + 27𝑏2) 

This discriminant must not become zero for an elliptic curve polynomial 𝑥3 + 𝑎𝑥 + 𝑏 

to possess three distinct roots. If the discriminant is zero, that would imply that two or more 

roots have coalesced, giving the curve a cusp or some other form of nonsmoothness. Non-

smooth curves are singular. It is not safe to use singular curves for cryptography. 

The bottom two examples in Figure 1 show two elliptic curves for which the condition 

on the discriminant is violated. For the one on the left that corresponds to 𝑓(𝑥) = 𝑥3, all three 

roots of the cubic polynomial have coalesced into a single point and we get a cusp at that point. 

For the one on the right that corresponds to 𝑓(𝑥) = 𝑥3 − 3𝑥 + 2, two of the roots have 

coalesced into the point where the curve crosses itself. These two curves are singular. As 

mentioned earlier, it is not safe to use singular curves for cryptography. Note that since we can 
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write 𝑦 = ±√𝑥3 + 𝑎𝑥 + 𝑏 elliptic curves in their standard form will be symmetric about the 𝑥-

axis. It is difficult to comprehend the structure of the curves that involve polynomials of degree 

greater than 3. To give the reader a taste of the parameters used in elliptic curves meant for real 

security, here is an example: 

𝑦2 = 𝑥3  +317689081251325503476317476413827693272746955927𝑥

 +79052896607878758718120572025718535432100651934
 

This elliptic curve is used in the Microsoft Windows Media Digital Rights Management 

Version 2 [3].  

Figure 1: Elliptic curves for different values of the parameters a and b. 
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2. Materials and Methods  

2.1 A Group Operator Defined for Points on an Elliptic Curve: 

The points on an elliptic curve can be shown to constitute a group. Recall that a group needs 

the following:  

1) a group operator;  

2) an identity element with respect to the operator;  

3) closure and associativity with respect to the operator;  

4)  the existence of inverses with respect to the operator.  

The group operator for the points on an elliptic curve is, by convention, called addition. Its 

definition has nothing to do with the conventional arithmetic addition. To add a point 𝑃 on an 

elliptic curve to another point 𝑄 on the same curve, we use the following rule: 

We first join 𝑃 with 𝑄 with a straight line. The third point of the intersection of this straight 

line with the curve, if such an intersection exists, is denoted 𝑅. The mirror image of this point 

with respect to the x-coordinate is the point 𝑃 + 𝑄. If the third point of intersection does not 

exist, we say it is at infinity [7].  

The upper two curves in Figure 2 illustrate the addition operation for two different elliptic 

curves. The values for 𝑎 and 𝑏 for the upper curve at the left are -4 and 0, respectively. The 

values for the same two constants for the upper curve on the right are 2 and 1, respectively. But 

what happens when the intersection of 𝑃 and 𝑄 is at infinity? We denote the point at infinity by 

the special symbol O and we then show that this can serve as the additive identity element for 

the group operator. We now stipulate that that 𝑃 + O = 𝑃 for any point on the curve.  

We define the additive inverse of a point 𝑃 as its mirror reflection with respect to the 𝑥 

coordinate. So, if 𝑄 on the curve is the mirror reflection of 𝑃 on the curve, then 𝑄 = −𝑃. For 

any such two points, it would obviously be the case that the third point of intersection will be 

at infinity. That is, the third point of intersection will be the distinguished point O.  

We will further stipulate that that O + O = O, implying that −O = O. Therefore, the mirror 

reflection of the point at infinity is the same point at infinity. Now we can go back to the issue 

of what happens to 𝑃 + 𝑄 when the intersection of two points 𝑃 and 𝑄 is at infinity, as would 

be the case when 𝑃 and 𝑄 are eath other's mirror reflections with regard to the x-axis. Obviously, 

in this case, the intersection of 𝑃 and 𝑄 is at the distinguished point O, whose mirror reflection 
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is also at O. Therefore, for such points, 𝑃 + 𝑄 = O and 𝑄 = −𝑃. We have already defined the 

additive inverse of a point 𝑃 as its mirror reflection about the 𝑥-axis.  

What is the additive inverse of a point where the tangent is parallel to the 𝑦-axis? The 

additive inverse of such a point is the point itself. That is, if the tangent at 𝑃 is parallel to the 𝑦-

axis, then 𝑃 + 𝑃 = O. - In general, what does it mean to add 𝑃 to itself? To see what it means, 

let's consider two distinct points 𝑃 and 𝑄 and let 𝑄 approach 𝑃. The line joining 𝑃 and 𝑄 will 

obviously become a tangent at 𝑃 in the limit. Therefore, the operation 𝑃 + 𝑃 means that we 

must draw a tangent at 𝑃, find the intersection of the tangent with the curve, and then take the 

mirror reflection of the intersection [1]. 

Obviously, if the tangent at 𝑃 intersects the curve at infinity (as would be the case when a 

line parallel to the y-axis is tangent to the curve), meaning at the distinguished point O, then 

𝑃 + 𝑃 = O. Such a 𝑃 would be its own inverse. For an elliptic curve 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

we define the set of all points on the curve along with the distinguished point O by 

𝐸(𝑎, 𝑏). 𝐸(𝑎, 𝑏) is a group with the "addition" operator. 𝐸(𝑎, 𝑏) is obviously closed with respect 

to the addition operation.  

We can also show geometrically that the property of associativity is satisfied. Every 

element in the set obviously has its additive inverse in the set. Since the operation of "addition" 

is commutative, 𝐸(𝑎, 𝑏) is an abelian group.  Just for notational convenience, we now define 

multiplication on this group as repeated addition. Therefore, 

𝑘 × 𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃 

with 𝑃 making 𝑘 appearances on the right. Therefore, we can express 𝑃 + 𝑃 as 2𝑃, 𝑃 + 𝑃 + 𝑃 

as 3𝑃, and so on. The two curves at the bottom in Figure 2 show us calculating 2𝑃 and 3𝑃 for 

a given 𝑃. The values of 𝑎 and 𝑏 for the lower curve on the left are -4 and 2, respectively. The 

values for the same two constants for the lower curve on the right are both 3 [9]. 
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Figure 2. The Characteristic of the Underlying Field and the Singular Elliptic Curves 

The examples of the elliptic curves shown so far were for the field of real numbers. These 

fields are of characteristic zero because no matter how many times you add the multiplicative 

identity element to itself, you'll never get the additive identity element.  

The group law can also be defined when the underlying field is of characteristic 2 or 3. 

[When we consider real numbers modulo 2, we have an underlying field of characteristic 2. By 

the same token, when we consider real numbers modulo 3, we have an underlying field of 

characteristic 3.]  

But now the elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 becomes singular. While singular elliptic 

curves do admit group laws of the sort, such groups, although defined over the points on the 

elliptic curve, become isomorphic to either the multiplicative or the additive group over the 

underlying field itself, depending on the type of singularity. That fact makes singular elliptic 

curves unsuitable for cryptography because they are easy to crack.  
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To show that the elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 becomes singular when the characteristic 

of the underlying field is 2, let's look at the partial derivatives of the two sides of the equation 

of this curve: 

2𝑦𝑑𝑦 = 3𝑥2𝑑𝑥 + 𝑎𝑑𝑥 

implying 

𝑑𝑦

𝑑𝑥
=

3𝑥2+𝑎

2𝑦
                                                                                                   (2) 

A point on the curve is singular if 
𝑑𝑦

𝑑𝑥
 is not properly defined. This would be the point 

where both the numerator and the denominator are zero. [When only the denominator goes to 

zero, the slope is still defined even though it is ∞.] So, the elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 will 

become singular if it contains a point (𝑥, 𝑦) so that 

3𝑥2 + 𝑎 = 0
2𝑦 = 0

 

and the point (𝑥, 𝑦) satisfying these two equations lies on the curve. Let's now consider the case 

when the underlying field is of characteristic 2. In this case, we go back to Equation (2) above 

and see that, since 2 is the same thing as 0 for such a, the derivative 
𝑑𝑦

𝑑𝑥
 will not be defined at 

𝑥 = √
−𝑎

3
. Therefore, the curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 will be singular for some values of 𝑎 that can 

be obtained by substituting 𝑥 = √
−𝑎

3
 in the equation of the curve. 

Let's now consider the case of a field of characteristic 3. In this case, since 3 is the same 

thing as 0, we can write for the curve slope from Equation (2): 

𝑑𝑦

𝑑𝑥
=

𝑎

2𝑦
 

This curve becomes singular if we should choose 𝑎 = 0. 

In general, when using the elliptic curve equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, we avoid underlying 

fields of characteristic 2 or 3 because of the nature of the constraints they place on the 

parameters 𝑎 and 𝑏 in order for the curve to not become singular [10]. 
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2.2 An Algebraic Expression for Adding Two Points on An Elliptic Curve 

Given two points 𝑃 and 𝑄 on an elliptic curve 𝐸(𝑎, 𝑏), we have already pointed out that to 

compute the point 𝑃 + 𝑄, we first draw a straight line through 𝑃 and 𝑄. We next find the third 

intersection of this line with the elliptic curve. We denote this point of intersection by 𝑅. Then 

𝑃 + 𝑄 is equal to the mirror reflection of 𝑅 about the 𝑥-axis. 

In other words, if 𝑃, 𝑄, and 𝑅 are the three intersections of the straight line with the curve, 

then 

𝑃 + 𝑄 = −𝑅 

This implies that the three intersections of a straight line with the elliptic curve must satisfy 

𝑃 + 𝑄 + 𝑅 = O 

We will next examine the algebraic implications of the above relationship between the 

three points of intersection. - The equation of the straight line that runs through the points 𝑃 

and 𝑄 is obviously of the form: 

𝑦 = 𝛼𝑥 + 𝛽 

where 𝛼 is the slope of the line, which is given by 

𝛼 =
𝑦𝑄 − 𝑦𝑃

𝑥𝑄 − 𝑥𝑃
 

For a point (𝑥, 𝑦) to lie at the intersection of the straight line and the elliptic curve 

𝐸(𝑎, 𝑏), the following equality must obviously hold 

(𝛼𝑥 + 𝛽)2 = 𝑥3 + 𝑎𝑥 + 𝑏                                                                                        (3) 

since 𝑦 = 𝛼𝑥 + 𝛽 on the straight line through the points 𝑃 and 𝑄 and since the equation of the 

elliptic curve is 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. 

For there to be three points of intersection between the straight line and the elliptic 

curve, the cubic form in Equation (3) must obviously have three roots. We already know two 

of these roots, since they must be 𝑥𝑃 and 𝑥𝑄, correspond to the points 𝑃 and 𝑄. 

Being a cubic equation, since Equation (3) has at most three roots, the remaining root 

must be 𝑥𝑅, the 𝑥-coordinate of the third point 𝑅. Equation (3) represents a monic polynomial. 

What that means is that the coefficient of the highest power of 𝑥 is 1. A property of monic 
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polynomials is that the sum of their roots is equal to the negative of the coefficient of the second 

highest power. Expressing Equation (3) in the following form: 

𝑥3 − 𝛼2𝑥2 + (𝑎 − 2𝛼𝛽)𝑥 + (𝑏 − 𝛽2) = 0                                                                      (4) 

we notice that the coefficient of 𝑥2 is −𝛼2. Therefore, we have 

𝑥𝑃 + 𝑥𝑄 + 𝑥𝑅 = 𝛼2 

We therefore have the following result for the 𝑥-coordinate of 𝑅 : 

𝑥𝑅 = 𝛼2 − 𝑥𝑃 − 𝑥𝑄                                                                                                          (5) 

Since the point (𝑥𝑅 , 𝑦𝑅) must be on the straight line 𝑦 = 𝛼𝑥 + 𝛽, we can write for 𝑦𝑅 : 

𝑦𝑅  = 𝛼𝑥𝑅 + 𝛽

 = 𝛼𝑥𝑅 + (𝑦𝑃 − 𝛼𝑥𝑃)

 = 𝛼(𝑥𝑅 − 𝑥𝑃 + 𝑦𝑃)

                                                                                               (6) 

To summarize, ordinarily a straight line will intersect an elliptical curve at three points. 

If the coordinates of the first two points are (𝑥𝑃, 𝑦𝑃) and (𝑥𝑄 , 𝑦𝑄), then the coordinates of the 

third point are 

𝑥𝑅 = 𝛼2 − 𝑥𝑃 − 𝑥𝑄                                                                                                       (7) 

𝑦𝑅 = 𝛼(𝑥𝑅 − 𝑥𝑃) + 𝑦𝑃                                                                                                  (8) 

We started out with the following relationship between 𝑃, 𝑄, and 𝑅 

𝑃 + 𝑄 = −𝑅 

we can therefore write the following expressions for the 𝑥 and the 𝑦 coordinates of the 

addition of two points 𝑃 and 𝑄 : 

𝑥𝑃+𝑄 = 𝛼2 − 𝑥𝑃 − 𝑥𝑄                                                                                           (9) 

𝑦𝑃+𝑄 = −𝑦𝑃 + 𝛼(𝑥𝑃 − 𝑥𝑅)                                                                                  (10) 

since the 𝑦-coordinate of the reflection −𝑅 is negative of the 𝑦-coordinate of the point 𝑅 on the 

intersecting straight line [4]. 

2.3 An Algebraic Expression for Calculating 2𝑃 from 𝑃 

Given a point 𝑃 on the elliptical curve 𝐸(𝑎, 𝑏), computing 2𝑃 (which is the same thing as 

computing 𝑃 + 𝑃 ), requires us to draw a tangent at 𝑃 and to find the intersection of this tangent 

with the curve. The reflection of this intersection about the 𝑥-axis is then the value of 2𝑃. Given 
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the equation of the elliptical curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, the slope of the tangent at a point (𝑥, 𝑦) 

is obtained by differentiating both sides of the curve equation 

2𝑦
𝑑𝑦

𝑑𝑥
= 3𝑥2 + 𝑎 

We can therefore write the following expression for the slope of the tangent at point 𝑃 : 

𝛼 =
3𝑥𝑃

2 +𝑎

2𝑦𝑃
                                                                                                                      (11) 

Since drawing the tangent at 𝑃 is the limiting case of drawing a line through 𝑃 and 𝑄 as 𝑄 

approaches 𝑃, two of the three roots of the following equation (which is the same as Equation 

(3) you saw before): 

(𝛼𝑥 + 𝛽)2 = 𝑥3 + 𝑎𝑥 + 𝑏                                                                                           (12) 

must coalesce into the point 𝑥𝑃 and the third root must be 𝑥𝑅. As before, 𝑅 is the point of 

intersection of the tangent with the elliptical curve. 

As before, we can use the property that sum of the roots of the monic polynomial above 

must equal the negative of the coefficient of the second highest power. Noting two of the three 

roots have coalesced into 𝑥𝑃, we get 

𝑥𝑃 + 𝑥𝑃 + 𝑥𝑅 = 𝛼2 

Substituting the value of 𝛼 from Equation (11) in the above equation, we get 

𝑥𝑅 = 𝛼2 − 2𝑥𝑃 = (
3𝑥𝑃

2 +𝑎

2𝑦𝑃
)

2

− 2𝑥𝑃                                                                                  (13) 

Since the point 𝑅 must also lie on the straight line 𝑦 = 𝛼𝑥 + 𝛽, substituting the expression for 

𝑥𝑅 in this equation yields 

𝑦𝑅  = 𝛼𝑥𝑅 + 𝛽

 = 𝛼𝑥𝑅 + (𝑦𝑃 − 𝛼𝑥𝑃)

 = 𝛼(𝑥𝑅 − 𝑥𝑃) + 𝑦𝑃

 =
3𝑥𝑃

2 +𝑎

2𝑦𝑃
(𝑥𝑅 − 𝑥𝑃) + 𝑦𝑃

                                                                                        (14) 

To summarize, if we draw a tangent at point 𝑃 to an elliptical curve, the tangent will 

intersect the curve at a point 𝑅 whose coordinates are given by 

𝑥𝑅  = (
3𝑥𝑃

2 +𝑎

2𝑦𝑃
)

2

− 2𝑥𝑃

𝑦𝑅  =
3𝑥𝑃

2 +𝑎

2𝑦𝑃
(𝑥𝑅 − 𝑥𝑃) + 𝑦𝑃

                                                                                       (15) 
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Since the value of 2𝑃 is the reflection of the point 𝑅 about the 𝑥-axis, the value of 2𝑃 is obtained 

by taking the negative of the 𝑦-coordinate: 

𝑥2𝑃  = (
3𝑥𝑃

2 +𝑎

2𝑦𝑃
)

2

− 2𝑥𝑃

𝑦2𝑃  =
3𝑥𝑃

2 +𝑎

2𝑦𝑃
(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃

                                                                                    (16) 

2.4 Elliptic Curves Over 𝑍𝑝 for Prime 𝑝: 

The elliptic curve arithmetic we described so far was over real numbers. These curves 

cannot be used as such for cryptography because calculations with real numbers are prone to 

roundoff error. Cryptography requires error-free arithmetic. That is after all the main reason for 

why we introduced the notion of a finite field. 

However, by restricting the values of the parameters 𝑎 and 𝑏, the value of the independent 

variable 𝑥, and the value of the dependent variable 𝑦 to belong to the prime finite field 𝑍𝑝, we 

obtain elliptic curves that are more appropriate for cryptography: 

𝑦2 mod 𝑝 = (𝑥3 + 𝑎𝑥 + 𝑏)mod 𝑝                                                                              (17) 

subject to the modulo 𝑝 version of the same smoothness constraint on the discriminant as we 

had for the case of real numbers: 

(4𝑎3 + 27𝑏2)mod 𝑝 ≠ 0 mod 𝑝 

We will use the notation 𝐸𝑝(𝑎, 𝑏) to represent all the points (𝑥, 𝑦) that obey the above 

equation. 𝐸𝑝(𝑎, 𝑏) will also include the dis- tinguished point O, the point at infinity. So the 

points in 𝐸𝑝(𝑎, 𝑏) are the set of coordinates (𝑥, 𝑦), with 𝑥, 𝑦 ∈ 𝑍𝑝, such that the equation 𝑦2 =

𝑥3 + 𝑎𝑥 + 𝑏, with 𝑎, 𝑏 ∈ 𝑍𝑝 is satisfied modulo 𝑝 and such that the condition 4𝑎3 + 27𝑏2 ≠

0 (mod𝑝)  is fulfilled. 

Obviously, then, the set of points in 𝐸𝑝(𝑎, 𝑏) is no longer a curve, but a collection of 

discrete points in the (𝑥, 𝑦) plane (or, even more precisely speaking, in the plane corresponding 

to the Cartesian product 𝑍𝑝 × 𝑍𝑝 ). 

Since the points in 𝐸𝑝(𝑎, 𝑏) can no longer be connected to form a smooth curve, we 

cannot use the geometrical construction to illustrate the action of the group operator. That is, 

given a point 𝑃, now one cannot show geometrically how to compute 2𝑃, or given two points 

𝑃 and 𝑄, one cannot show geometrically how to determine 𝑃 + 𝑄. However, the algebraic 

expressions we derived for these operations continue to hold good provided the calculations are 
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carried out modulo 𝑝. Note that for a prime finite field 𝑍𝑝, the value of 𝑝 is its characteristic. 

Elliptic curves over prime finite fields with 𝑝 ≤ 3, while admitting the group law, are not 

suitable for cryptography.  

We should also mention that you can also define an elliptic curve when the coordinates 

are drawn from the set (𝑍/𝑝𝑍)× for any positive integer 𝑝. The notation (𝑍/𝑝𝑍)× it consists of 

the set of all integers that are coprime to 𝑁 with the group operator betting integer multiplication 

modulo 𝑁. 

As we will see in the next section, elliptic curves can also be defined over finite fields 

𝑍2𝑚  also commonly called binary finite fields. Binary finite fields have characteristic 2 [7]. 

2.5 Elliptic Curves Over Finite Field 𝑍2𝑚  

For hardware implementations of ECC, it is common to define elliptic curves over a Finite 

Field 𝑍2𝑚 . What makes the binary finite fields more convenient for hardware implementations 

is that the elements of 𝑍2𝑚  can be represented by 𝑛-bit binary code words.   

The addition operation in 𝑍2𝑚  is like the XOR operation on bit patterns. That is 𝑥 + 𝑥 =

0 for all 𝑥 ∈ 𝑍2𝑚 . This implies that a finite field of the form 𝑍2𝑚  is of characteristic 2. As 

mentioned before, the elliptic curve we showed earlier (𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏) is meant to be used 

only when the underlying finite field is of characteristic greater than 3. The elliptic curve 

equation to use when the underlying field is described by 𝑍2𝑚  is 

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏,  𝑏 ≠ 0                                                                               (18) 

The constraint 𝑏 ≠ 0 serves the same purpose here that the constraint 4𝑎3 + 27𝑏2 ≠ 0 

did for the case of the elliptic curve equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. The reason for the constraint 

𝑏 ≠ 0 is that the discriminant becomes 0 when 𝑏 = 0. As mentioned earlier, when the 

discriminant becomes zero, we have multiple roots at the same point, causing the derivative of 

the curve to become ill-defined at that point. In other words, the curve has a singularity at the 

point where discriminant is 0. 

Shown in Figure 3 are six elliptic curves described by the analytical form 𝑦2 + 𝑥𝑦 =

𝑥3 + 𝑎𝑥2 + 𝑏 for different values of the parameters 𝑎 and 𝑏. The four upper curves are non-

singular. The parameters 𝑎 and 𝑏 for the top-left curve are 2 and 1, respectively. The same 

parameters for the top-right curve are 2 and -1, respectively. For the two non-singular curves in 

the middle row, the one on the left has 0 and 2 for its 𝑎 and 𝑏 parameters, whereas the one on 

the right has -3 and 2.  
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The two curves in the bottom row are both singular, but for different reasons. The one 

on the left is singular because 𝑏 is set to 0.  

The fact that the equation of the elliptic curve is different when the underlying field is 𝑍2𝑚  

introduces the following changes in the behavior of the group operator: 

• Given a point 𝑃 = (𝑥, 𝑦), we now consider the negative of this point to be located at 

−𝑃 = (𝑥, −(𝑥 + 𝑦)). 

• Given two distinct points 𝑃 = (𝑥𝑃, 𝑦𝑃) and 𝑄 = (𝑥𝑄 , 𝑦𝑄), the addition of the two points, 

represented by (𝑥𝑃+𝑄 , 𝑦𝑃+𝑄), is now given by 

𝑥𝑃+𝑄  = 𝛼2 + 𝛼 − 𝑥𝑃 − 𝑥𝑄 − 𝑎

𝑦𝑃+𝑄  = −𝛼(𝑥𝑃+𝑄 − 𝑥𝑃) − 𝑥𝑃+𝑄 − 𝑦𝑃

                                                                       (19) 

with 

𝛼 =
𝑦𝑄−𝑦𝑃

𝑥𝑄−𝑥𝑃
                                                                                                                        (20) 
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Figure 3. Elliptic curves meant to be used with finite fields. 

To double a point, that is to calculate 2𝑃 from 𝑃, we now use the formulas 

𝑥2𝑃 = 𝛼2 + 𝛼 − 𝑎 − 2𝑥𝑃

𝑦2𝑃 = −𝛼2 − 𝛼 + 𝑎 + (2 + 𝛼)𝑥𝑃 − 𝛼𝑥2𝑃 − 𝑦𝑃
                                                     (21) 

with 

𝛼 =
3𝑥𝑃

2 +2𝑎𝑥𝑃−𝑦𝑃

2𝑦𝑃+𝑥𝑃
                                                                                                              (22) 
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This value of 𝛼 is obtained by differentiating both sides of 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

with respect to 𝑥 and writing down an expression for 
𝑑𝑦

𝑑𝑥
 just as we derived the expression for 𝛼 

in Equation (11). 

Since the results for doubling shown in Equation (21) can be obtained from those in 

Equation (19) by letting 𝑥𝑄 approach 𝑥𝑃, which in our case can be simply accomplished by 

setting 𝑥𝑄 = 𝑥𝑃, the reader may be puzzled by the very different appearances of the expressions 

shown for 𝑦𝑃+𝑄 and 𝑦2𝑃. If you set 𝑥𝑄 = 𝑥𝑃 in the expression for 𝑦𝑃+𝑄, then both the 𝑦-

coordinate expressions can be shown to reduce to −𝛼3 − 2𝛼2 + 𝛼(3𝑥𝑃 + 𝑎 − 1) + 2𝑥𝑃 + 𝑎 −

𝑦𝑃 

The above results are derived in a manner that is completely analogous. As before, we 

recognize that the points on a straight line passing through two points (𝑥𝑃, 𝑦𝑃) and (𝑥𝑄 , 𝑦𝑄) are 

given by 𝑦 = 𝛼𝑥 + 𝛽 with 𝛼 =
𝑦𝑄−𝑦𝑃

𝑥𝑄−𝑥𝑃
. To find the point of intersection of such a line with the 

elliptic curve 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, as before we form the equation 

(𝛼𝑥 + 𝛽)2 + 𝑥(𝛼𝑥 + 𝛽) = 𝑥3 + 𝑎𝑥2 + 𝑏                                                                       (23) 

which can be expressed in the following form as a monic polynomial: 

𝑥3 + (𝑎 − 𝛼2 − 𝛼)𝑥2 + (−2𝛼𝛽 − 𝛽)𝑥 + (𝑏 − 𝛽2) = 0                                                 (24) 

Reasoning as before, this cubic equation can have at most three roots, of which two are 

already known, those being the points 𝑃 and 𝑄. The remaining root, if it exists, must correspond 

to the point to the point 𝑅, which the point where the straight line passing through 𝑃 and 𝑄 

meets the curve again. Again, using the property that the sum of the the roots is equal to the 

negative of the coefficient of the second highest power, we can write 

𝑥𝑃 + 𝑥𝑄 + 𝑥𝑅 = 𝛼2 + 𝛼 − 𝑎 

We therefore have the following result for the 𝑥-coordinate of 𝑅 : 

𝑥𝑅 = 𝛼2 + 𝛼 − 𝑎 − 𝑥𝑃 − 𝑥𝑄                                                                                       (25) 

Since this point must be on the straight line 𝑦 = 𝛼𝑥 + 𝛽, we get for the y-coordinate at 

the point of intersection 𝑦𝑅 = 𝛼𝑥𝑅 + 𝛽. Substituting for 𝛽 from the equation 𝑦𝑃 = 𝛼𝑥𝑃 + 𝛽, 

we get the following result for 𝑦𝑅 : 

𝑦𝑅 = 𝛼(𝑥𝑅 − 𝑥𝑃) + 𝑦𝑃                                                                                                 (26) 
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The negative of a point 𝑅 = (𝑥𝑅 , 𝑦𝑅) is given by −𝑅 = (𝑥𝑅 , −(𝑥𝑅 + 𝑦𝑅)). Since the 

point (𝑥𝑃+𝑄 , 𝑦𝑃+𝑄) is located at the negative of the point 𝑅 at (𝑥𝑅 , 𝑦𝑅), we can write the 

following result for the summation of the two points 𝑃 and 𝑄 : 

𝑥𝑃+𝑄 = 𝑥𝑅 = 𝛼2 + 𝛼 − 𝑥𝑃 − 𝑥𝑄 − 𝑎

𝑦𝑃+𝑄 = −(𝑥𝑅 + 𝑦𝑅) = −𝛼(𝑥𝑃+𝑄 − 𝑥𝑃) + 𝑥𝑃+𝑄 − 𝑦𝑃

                                                (27) 

The result for doubling of a point can be derived in a similar manner. Figure 4 shows 

these operations in action. The two figures in the topmost row show us calculating 𝑃 + 𝑄 for 

the two points 𝑃 and 𝑄 as shown.  
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Figure 4. This figure is from middle row shows the doubling of a point and the figure on the 

right the tripling of a point.  

3. Results and Discussion 

We will use the notation 𝐸2𝑛(𝑎, 𝑏) to denote the set of all points (𝑥, 𝑦) ∈ 𝑍2𝑛 × 𝑍2𝑛, that 

satisfy the equation 

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 
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with 𝑎 ∈ 𝑍2𝑛  and 𝑏 ∈ 𝑍2𝑛, along with the distinguished point O that serves as the additive 

identity element for the group structure formed by the points on the curve. Note that we do not 

allow 𝑏 in the above equation to take on the value which is the additive identity element of the 

finite field 𝑍2𝑛. 

If 𝑔 is a generator for the field 𝑍2𝑛 , then all the element of 𝑍2𝑛  can be expressed in the 

following form 

0,1, 𝑔, 𝑔2, 𝑔3, … … , 𝑔2𝑛−2 

This implies that the majority of the points on the elliptic curve 𝐸2𝑛(𝑎, 𝑏) can be 

expressed in the form (𝑔𝑖, 𝑔𝑗), where 𝑖, 𝑗 = 0,1, … , 𝑛 − 2. In addition, there may be points 

whose coordinates can be expressed (0, 𝑔𝑖) or (𝑔𝑖, 0), with  𝑖 = 0,1, … , 𝑛 − 2. And then there 

is, of course, the distinguished point O. 

The order of an elliptic curve, that is the number of points in the group 𝐸2𝑛(𝑎, 𝑏) is 

important from the standpoint of the cryptographic security of the curve. [Note: When we talk 

about the order of 𝐸2𝑛(𝑎, 𝑏), we must of course include the distinguished point O.] 

Hasse's Theorem addresses the question of how many points are on an elliptic curve that 

is defined over a finite field. This theorem says that if 𝑁 is the number of points on 𝐸𝑞(𝑎, 𝑏) 

when the curve is defined on a finite field 𝑍𝑞 with 𝑞 elements, then 𝑁 is bounded by 

|𝑁 − (𝑞 + 1)| ≤ 2√𝑞 

As mentioned previously, 𝑁 includes the additive identity element O. 

Since the Finite field 𝑍2𝑛  contains 2𝑛 elements, we can say that the order of 𝐸2𝑛(𝑎, 𝑏) 

is equal to 2𝑛 + 1 − 𝑡 where 𝑡 is a number such that |𝑡| ≤ √2𝑛. - An elliptic curve defined over 

a Finite field 𝑍2𝑛 is super singular if 2 ∣ 𝑡, that is if 2 is a divisor of 𝑡. [Supersingularity is not 

to be confused with singularity. When an elliptic curve is defined over real numbers, singularity 

of the curve is related to its smoothness. More specifically, a curve is singular if its slope at a 

point is not defined. Super singularity, on the other hand, is related to the order of 𝐸2𝑛  and how 

this order relates to the number of points in the underlying finite field.] 

Should it happen that 𝑡 = 0, then the order of 𝐸2𝑛  is 2𝑛 + 1. Since this number is always 

odd, such a curve can never be super singular. Super singular curves defined over fields of 

characteristic 2 (which includes the binary finite fields 𝑍2𝑛) always have an odd number of 

points, including the distinguished point O. Super singular curves are to be avoided for 
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cryptography because they are vulnerable to the MOV attack. More on that later. Is 𝑏 ≠ 0 a 

Sufficient Condition for the Elliptic Curve 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 to Not Be Singular? In 

general, we want to avoid using singular elliptic curves for cryptography for reasons already 

indicated. We indicated that when using a curve of form 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, you want 

to make sure that 𝑏 ≠ 0 since otherwise the curve will be singular. 

We will now consider in greater detail when exactly the curve 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 +

𝑏 becomes singular for the case when the underlying field consists of real numbers. Toward 

that end we will derive an expression for the discriminant of a polynomial that is singular if and 

only if the curve 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 is singular. The condition which will prevent the 

discriminant going to zero will be the condition under which the curve 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 +

𝑏 will stay nonsingular. 

To meet the goal stated above, we will introduce the coordinate transformation 

𝑦 = 𝑌 −
𝑥

2
 

in the equation 

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

The purpose of the coordinate transformation is to get rid of the troublesome term 𝑥𝑦 in 

the equation. Note that this coordinate transformation cannot make a singularity disappear, and 

neither can it introduce a new singularity. With this transformation, the equation of the curve 

becomes 

𝑌2 −
𝑥2

4
= 𝑥3 + 𝑎𝑥2 + 𝑏 

which can be rewritten as 

𝑌2 = 𝑥3 + (𝑎 +
1

4
) 𝑥2 + 𝑏 

The polynomial on the right-hand side of the equation shown above has a singular point 

wherever its discriminant goes to zero. In general, the discriminant of the polynomial 

𝑎3𝑧3 + 𝑎2𝑧2 + 𝑎1𝑧 = 0 

is given by 

𝐷3 = 𝑎1
2𝑎2

2 − 4𝑎0𝑎2
3 − 4𝑎1

3𝑎3 + 18𝑎0𝑎1𝑎2𝑎3 − 27𝑎0
2𝑎3

2 
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Substituting the coefficient values for our case, 𝑎3 = 1, 𝑎2 = (𝑎 +
1

4
) , 𝑎1 = 0, and 𝑎0 =

𝑏, in the general formula for the discriminant of a cubic polynomial, we get for the discriminant 

𝐷3 = −4𝑏 (𝑎 +
1

4
)

3

− 27𝑏2 

This simplifies to 

𝐷3 =
1

16
[−64𝑎3𝑏 − 48𝑎2𝑏 − 12𝑎𝑏 − 𝑏 − 432𝑏2] 

which can be expressed as 

𝐷3 = −
1

16
𝑏[64𝑎3 + 48𝑎2 + 12𝑎 + 432𝑏 + 1] 

Obviously, if 𝑏 = 0, the discriminant will become 0. However, it is also obvious that even 

when the 𝑏 = 0 condition is satisfied, certain values of 𝑎 and 𝑏 may cause the discriminant to 

go to 0. As with the super singular curves, elliptic curves that are singular are to be avoided for 

cryptography because they are vulnerable to the MOV attack [5]. 

3.1 Elliptic Curve Cryptography: 

That elliptic curves over finite fields could be used for cryptography was suggested 

independently by Neal Koblitz (University of Washington) and Victor Miller (IBM) in 1985. 

Just as RSA uses multiplication as its basic arithmetic operation (exponentiation is merely 

repeated multiplication), ECC uses the "addition" group operator as its basic arithmetic 

operation (multiplication is merely repeated addition). 

Suppose 𝐺 is a user-chosen "base point" on the curve 𝐸𝑞(𝑎, 𝑏), where 𝑞 = 𝑝 for some prime 

𝑝 when the underlying finite field is a prime finite field and 𝑞 = 2𝑛 when the underlying finite 

field is a Finite field. 

In accordance with how the group operator works, 𝑘 × 𝐺 stands for 𝐺 + 𝐺 + 𝐺 + ⋯ + 𝐺 

with 𝐺 making 𝑘 appearances in this expression. - Now suppose our message consists of an 

integer 𝑀 and we encrypt it by calculating 𝐶 = 𝑀 × 𝐺.   FFor the purpose of visualization, 

think of 𝑀 × 𝐺 as the two-dimensional point 𝐺 being added to itself 𝑀 times through the 

geometric construction.  

Now the question is whether an adversary with knowledge of all of the parameters of 

the curve 𝐸𝑞(𝑎, 𝑏) and of the point 𝐺 can decrypt 𝐶 and figure out the value of the message 
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integer 𝑀. [Bear in mind that whereas 𝑀 is an integer, 𝐶 just like 𝐺 is a point on the elliptic 

curve. In that sense, 𝑀 and 𝐶 are two different types of entities.] 

The core notion that ECC is based on is that, with a proper choice for 𝐺, whereas it is 

relatively easy to calculate 𝐶 = 𝑀 × 𝐺, it can be extremely to recover 𝑀 from 𝐶 even when an 

adversary knows the curve 𝐸𝑞(𝑎, 𝑏) and the 𝐺 used. Recovering 𝑀 from 𝐶 is referred to as 

having to solve the discrete logarithm problem. [To understand why finding 𝑀 from 𝐶 is 

referred to as solving the discrete logarithm problem: Note that word "addition" for the group 

operator for 𝐸𝑞(𝑎, 𝑏) is a matter of convention and convenience.  

As you already know a group operator is typically referred to as addition and denoted ' 

+ ', whereas the second operator when the group becomes a ring is typically called 

multiplication and denoted ' × '. So, there is nothing wrong with choosing to express 𝐺 + 𝐺 +

𝐺 + ⋯ + 𝐺 more generically as 𝐺 ∘ 𝐺 ∘ 𝐺 ∘ … ∘ 𝐺 if we do not want to get confused by mental 

associations with the '+' operator. Now let's see what we mean by a logarithm. As you know, if 

𝑎 = 𝑏𝑛 then 𝑛 = log𝑏 𝑎.  

We are at a liberty to write 𝑏𝑛 as 𝑏 × 𝑏 × 𝑏 … × 𝑏, or even as 𝑏 ∘ 𝑏 ∘ 𝑏 … ∘ 𝑏 if we 

assume that the operator ∘ stands for multiplication. If we want to recover the number of times 

𝑏 participates in 𝑎 = 𝑏 ∘ 𝑏 ∘ 𝑏 … ∘ 𝑏 we take the logarithm of 𝑎 to the base 𝑏. By the same token, 

if we want to determine the number of times 𝐺 participates in 𝐶 = 𝐺 ∘ 𝐺 ∘ 𝐺 ∘ … ∘ 𝐺, we take 

the "logarithm" of 𝐶 to the base 𝐺. 

An adversary could try to recover 𝑀 from 𝐶 = 𝑀 × 𝐺 by calculating 2𝐺, 3𝐺, 4𝐺, … , 𝑘𝐺 

with 𝑘 spanning the size of the set 𝐸𝑞(𝑎, 𝑏), and then seeing which one of the results matched 

𝐶. But if 𝑞 is sufficiently large and if the point 𝐺 on the curve 𝐸𝑞(𝑎, 𝑏) is chosen carefully, that 

would take much too long [8]. 

3.2 Elliptic Curve Diffie-Hellman Secret Key Exchange 

A community of users wishing to engage in secure communications with ECC chooses the 

parameters 𝑞, 𝑎, and 𝑏 for an elliptic curve-based group 𝐸𝑞(𝑎, 𝑏), and a base point 𝐺 ∈ 𝐸𝑞(𝑎, 𝑏). 

𝐴 selects an integer 𝑃𝑅𝐴 to serve as his/her private key. 𝐴 then generates 𝑃𝑈𝐴 = 𝑃𝑅𝐴 × 𝐺 to 

serve as his/her public key. 𝐴 makes publicly available the public key 𝑃𝑈𝐴. 𝐵 designates an 

integer 𝑃𝑅𝐵 to serve as his/her private key.  

As was done by 𝐴, 𝐵 also calculates his/her public key by 𝑃𝑈𝐵 = 𝑃𝑅𝐵 × 𝐺. In order to 

create a shared secret key (that could subsequently be used for, say, a symmetric-key based 
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communication link), both 𝐴 and 𝐵 now carry out the following operations: 𝐴 calculates the 

shared secret key by 

𝐾 = 𝑃𝑅𝐴 × 𝑃𝑈𝐵                                                                                                               (28) 

𝐵 calculates the shared secret key by 

𝐾 = 𝑃𝑅𝐵 × 𝑃𝑈𝐴                                                                                                               (29) 

The calculations in Eqs. (19) and (20) yield the same result because 

𝐾 as calculated by 𝐴  = 𝑃𝑅𝐴 × 𝑃𝑈𝐵

 = 𝑃𝑅𝐴 × (𝑃𝑅𝐵 × 𝐺)

 = (𝑃𝑅𝐴 × 𝑃𝑅𝐵) × 𝐺

 = (𝑃𝑅𝐵 × 𝑃𝑅𝐴) × 𝐺

 = 𝑃𝑅𝐵 × (𝑃𝑅𝐴 × 𝐺)

 = 𝑃𝑅𝐵 × 𝑃𝑈𝐴

 = 𝐾 as calculated by 𝐵

 

To discover the secret key, an attacker could try to discover 𝑃𝑅𝐴 from the publicly 

available base point 𝐺 and the publicly available 𝑃𝑈𝐴. Recall, 𝑃𝑈𝐴 = 𝑃𝑅𝐴 × 𝐺. But this 

requires solving the discrete logarithm problem which, for a properly chosen set of curve 

parameters and 𝐺, can be extremely hard.  

To increase the level of difficulty in solving the discrete logarithm problem, we select 

for 𝐺 a base point whose order is very large. The order of a point on the elliptic curve is the 

least number of times 𝐺 must be added to itself so that we get the identity element O of the 

group 𝐸𝑞(𝑎, 𝑏).  

We can also associate the notion of order with an elliptic curve over a finite field: The 

order of an elliptic curve is the total number of points in the set 𝐸𝑞(𝑎, 𝑏). This order is denoted 

#𝐸𝑞(𝑎, 𝑏). Since the integers 𝑃𝑅𝐴, 𝑃𝑈𝐴, 𝑃𝑅𝐵, and 𝑃𝑈𝐵 must all be less than the order of the 

base point 𝐺, this value must also be made publicly available. 

The base point 𝐺 is also known as the generator of a subgroup of 𝐸𝑞(𝑎, 𝑏) whose elements 

are all given by 𝐺, 2𝐺, 3𝐺, …, and, of course, the identity element O. For the size of the subgroup 

to equal the degree of the generator 𝐺, the value of 𝑛 must be a prime when the underlying field 

is a Finite field 𝑍2𝑛[3]. 
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3.3 ECC For Digital Rights Management 

ECC has been and continues to be used for Digital Rights Man- agement (DRM). DRM 

stands for technologies/algorithms that allow a content provider to impose limitations on the 

who’s and how’s of the usage of some media content made available by the provider. 

ECC is used in the DRM associated with the Windows Media framework that is made 

available by Microsoft to third-party vendors interested in revenue-generating content creation 

and distribution. In what follows, we will refer to this DRM as WMDRM. 

The three main versions of WM-DRM are Version 1 (released in 1999), Version 2 (released 

in 2003, also referred to as Version 7.x and Version 9), and Version 3 (released in 2003, also 

known as Version 10). All three versions have been cracked. As you would expect in this day 

and age, someone figures out how to strip away the DRM protection associated with, say, a 

movie and makes both the unprotected movie and the protection stripping algorithm available 

anonymously on the web. In the meantime, the content provider (like Apple, Sony, Microsoft, 

etc.) comes out with a patch to fix the exploit. Thus continues the cat and mouse game between 

the big content providers and the anonymous "crackers." 

Again, as you would expect, the actual implementation details of most DRM algorithms are 

proprietary to the content providers and distributors. But, on October 20, 2001, an individual, 

under the pseudonym Beale Screamer, posted a detailed description of the inner workings of 

the WM-DRM Version 2. This information is still available at the URLs http://cryptome.org/ 

ms-drm.htm and http://cryptome. org. beale-sci-crypt. htm where you will find a command-line 

tool named FreeMe for stripping away the DRM protection of the older versions of Windows 

Media documents. Since Version 2 is now considered out of date, the main usefulness of the 

information posted at the web site lies in its educational value. 

WM-DRM Version 2 used elliptic curve cryptography for exchanging a secret session key 

between a user's computer and the license server at the content provider's location.  

The ECC used in WM-DRM V. 2 is based on the first elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. The 

ECC algorithm used is based on the points on the curve whose 𝑥 and 𝑦 coordinates are drawn 

from the finite field (𝑍/𝑝𝑍)×, with the number 𝑝 set to 

𝑝 = 785963102379428822376694789446897396207498568951 

In the WM-DRM ECC, all are represented using 20 bytes. Here is the hex representation 

of the modulus 𝑝 shown above: 

http://cryptome.org/
http://cryptome/
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𝑝 = 0𝑥89𝑎𝑏𝑐𝑑𝑒𝑓012345672718281831415926141424𝑓7 

We also need to specify values for the parameters 𝑎 and 𝑏 of the elliptic curve 𝑦2 =

𝑥3 + 𝑎𝑥 + 𝑏. As you would expect, these parameters are also drawn from (𝑍/𝑝𝑍)×and their 

values are given by 

𝑎  = 317689081251325503476317476413827693272746955927
𝑏  = 79052896607878758718120572025718535432100651934

 

Since all numbers in the ECC implementation under consideration are stored as blocks of 20 

bytes, the hex representations of the byte blocks stored for 𝑎 and 𝑏 are 

𝑎  = 0𝑥37𝑎5𝑎𝑏𝑐𝑐𝑑277𝑏𝑐𝑒87632𝑓𝑓3𝑑4780𝑐009 ebe 41497
𝑏  = 0𝑥0𝑑𝑑8𝑑𝑎𝑏𝑓725𝑒2𝑓3228𝑒85𝑓1𝑎𝑑78𝑓 dedf9328239e 

 

Following the discussion, the ECC algorithm would also need to choose a base point 𝐺 

on the elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. The 𝑥 and the 𝑦 coordinates of this point in the ECC 

as implemented in WM-DRM are 

𝐺𝑥 = 771507216262649826170648268565579889907769254176

𝐺𝑦 = 390157510246556628525279459266514995562533196655
 

The 20-byte hex representations for these two coordinates are 

𝐺𝑥 = 0𝑥8723947𝑓𝑑6𝑎3𝑎1𝑒53510𝑐07𝑑𝑏𝑎38𝑑𝑎𝑓0109𝑓𝑎120

𝐺𝑦 = 0𝑥445744911075522𝑑8𝑐3𝑐5856𝑑4𝑒𝑑7𝑎𝑐𝑑𝑎379936𝑓
 

As mentioned, an ECC protocol must also make publicly available the order of the base 

point. For the present case, this order is given by 

#𝐸𝑝(𝑎, 𝑏) = 785963102379428822376693024881714957612686157429 

With the elliptic curve and its parameters set as above, the next question is how exactly 

the ECC algorithm is used in WM-DRM. When you purchase media content from a Microsoft 

partner peddling their wares through the Window Media platform, you would need to download 

a "license" to be able play the content on your computer. Obtaining the license consists of your 

computer randomly generating a number 𝑛 ∈ 𝑍𝑝 for your computer's private key. Your 

computer then multiplies the base point 𝐺 with the private key to obtain the public key. 

Subsequently your computer can interact with the content provider's license server in the 

manner described to establish a secret session key for the transfer of license related information 

into your computer. 
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In order to ensure that only your computer can use the downloaded license, WM-DRM 

makes sure that you cannot access the private that your computer generated for the ECC 

algorithm. Obviously, if you could get hold of that 𝑛, you could pass the encrypted content file 

and the private key to your friend and they would be able to pretend to be your vis-a-vis the 

license server. WM-DRM hides an RC4 encrypted version of the private key in the form of a 

linked list in which each nodes stores one half of the key. When DRM software is cracked, it is 

usually done by what is known as "hooking" the DRM libraries on a computer as they dump 

out either the keys or the encrypted content. 

4. Conclusions  

In conclusion, Elliptic Curve Cryptography (ECC) is a modern cryptographic technique that 

uses the properties of elliptic curves over finite fields to provide efficient and secure public key 

encryption. ECC offers advantages over traditional public key systems such as RSA, including 

smaller key sizes, resistance to attacks from quantum computers, and flexibility. 

ECC has become increasingly popular in modern applications due to its efficiency and 

security, and its continued development is expected to have a significant impact on the field of 

cryptography. However, it is important to note that the security of ECC depends on the correct 

implementation of the system and the use of strong parameters. 

Overall, ECC is a powerful cryptographic tool that has enabled secure communications, 

digital signatures, and other applications. Its importance in modern cryptography is expected to 

grow as technology advances and security concerns become increasingly important. 
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