1. Consider the function $f(x)=x^{3}-2 x^{2}+x-1$. Use the bisection method to find a root of this function within the interval [1,2]. Perform three iterations and show the intermediate steps and approximations.
2. Given the system of linear equations:

$$
\begin{gathered}
3 x+2 y-z=1 \\
2 x-2 y+4 z=-2 \\
-x+0.5 y-z=0
\end{gathered}
$$

Use the Gauss elimination method to solve this system. Show each step of the elimination process and the final solution.
3. Use the Newton-Raphson method to find an approximation of the root of the function $f(x)=x^{3}-3 x+1$, starting from the initial guess $x_{0}=1$. Perform two iterations and show the intermediate approximations.
4. Use the bisection method to find a root of the function $f(x)=x^{3}-4 x^{2}+5 x-2$ within the interval [0,2]. Perform four iterations and show the intermediate steps and approximations.
5. Given the system of linear equations:

$$
\begin{gathered}
2 x+3 y-z=4 \\
x-2 y+3 z=7 \\
3 x+2 y+4 z=10
\end{gathered}
$$

Use the Gauss-Seidel method to solve this system. Show each step of the iterative process and the final solution after three iterations.
6. Use the Newton-Raphson method to find an approximation of the root of the function $f(x)=\cos (x)-x^{2}$, starting from the initial guess $x_{0}=1$. Perform three iterations and show the intermediate approximations.
7. Use the secant method to find a root of the equation $f(x)=e^{x}-x^{3}-5$ within the interval [1, 2]. Perform four iterations and show the intermediate approximations.
8. Given the system of linear equations:

$$
\begin{gathered}
4 x-y+3 z=8 \\
x+2 y-3 z=-1 \\
2 x-y+z=3
\end{gathered}
$$

Use the Gauss-Jordan elimination method to solve this system. Show each step of the elimination process and the final solution.
9. Use the fixed-point iteration method to find a root of the equation $x=e^{(-x)}$ within the interval $[0,1]$. Perform four iterations and show the intermediate approximations.
10. Use the Newton-Raphson method to find an approximation of the root of the function $f(x)=x^{3}-2 x-5$, starting from the initial guess $\mathrm{x}_{0}=2$. Perform three iterations and show the intermediate approximations.
11.Use the Newton-Raphson method to find an approximation of the root of the equation $f(x)=x^{3}-4 x-9$, starting from the initial guess $\mathrm{x}_{0}=2$. Perform five iterations and show the intermediate approximations.
12. Use the fixed-point iteration method to find a root of the equation $x=\cos (x)$ within the interval $[0, \pi / 2]$. Perform four iterations and show the intermediate approximations.
13. Use the bisection method to find a root of the function $f(x)=x^{3}-6 x^{2}+11 x-6$ within the interval [1,2]. Perform five iterations and show the intermediate steps and approximations.
14. Given the system of linear equations:

$$
\begin{gathered}
3 x+2 y-z=1 \\
2 x-4 y+3 z=-5 \\
-x+y-z=0
\end{gathered}
$$

Use the Jacobi method to solve this system. Show each step of the iterative process and the final solution after three iterations.
15. Use the secant method to find a root of the equation $f(x)=x^{3}-5 x+2$ within the interval $[0,1]$. Perform five iterations and show the intermediate approximations.
16. Given the system of linear equations:

$$
\begin{aligned}
& 2 x-3 y+z=7 \\
& x+2 y+2 z=10 \\
& -x-y+3 z=5
\end{aligned}
$$

Use the LU decomposition method to solve this system. Show each step of the decomposition process and the final solution.
17. Use the fixed-point iteration method to find a root of the equation $x=2-e^{(-x)}$ within the interval $[0,2]$. Perform five iterations and show the intermediate approximations.
18. Use the Newton-Raphson method to find an approximation of the root of the equation $f(x)=2 x^{3}-5 x-3$, starting from the initial guess $\mathrm{x}_{0}=1.5$. Perform four iterations and show the intermediate approximations.
19. Use the fixed-point iteration method to find a root of the equation $x=\ln (x)$ within the interval $[1,2]$. Perform four iterations and show the intermediate approximations.
20.Use the bisection method to find a root of the function $f(x)=x^{4}-3 x^{2}+2 x-1$ within the interval $[0,1]$. Perform five iterations and show the intermediate steps and approximations.
21. Given the system of linear equations:

$$
\begin{gathered}
4 x-2 y+3 z=10 \\
-x+3 y-2 z=-5 \\
2 x-y+4 z=3
\end{gathered}
$$

Use the Gauss-Seidel method to solve this system. Show each step of the iterative process and the final solution after four iterations.
22.Use the secant method to find a root of the equation $f(x)=\sin (x)-x$ within the interval [1, 2]. Perform five iterations and show the intermediate approximations.
23. Given the system of linear equations:

$$
\begin{gathered}
3 x-y+2 z=8 \\
x+2 y-4 z=-7 \\
-2 x+y-3 z=1
\end{gathered}
$$

Use the Gauss-Jordan elimination method to solve this system. Show each step of the elimination process and the final solution.
24.Use the fixed-point iteration method to find a root of the equation $x=2+3 \sin (x)$ within the interval $[0,1]$. Perform five iterations
25.Use the fixed-point iteration method to find a root of the equation $x=2+3 \sin (x)$ within the interval $[0,1]$. Perform five iterations and show the intermediate approximations.
26.Use the Newton-Raphson method to find an approximation of the root of the equation $f(x)=3 x^{3}-5 x^{2}+2$, starting from the initial guess $\mathrm{x} 0=0.5$. Perform four iterations and show the intermediate approximations.
27.Use the fixed-point iteration method to find a root of the equation $x=\ln (2+x)$ within the interval [1, 2]. Perform five iterations and show the intermediate approximations.

Second: Numerical Analysis II

28. Approximate the definite integral $\int_{0}^{6} e^{\left(-x^{2}\right)} d x$ using the composite trapezoidal rule with four subintervals. Show the step-by-step process and the final approximation.
29. Solve the initial value problem $d y / d x=x^{2}+y, y(0)=1$, using the fourth-order Runge-Kutta method. Calculate the approximate value of y at $\mathrm{x}=0.1$, showing the intermediate steps.
30.Approximate the definite integral $\int_{0}^{1} \sin (x) d x$ using the composite midpoint rule with six subintervals. Show the step-by-step process and the final approximation.
30. Solve the initial value problem $d y / d x=x^{2}+y, y(0)=1$, using the fourth-order Runge-Kutta method. Calculate the approximate value of y at $\mathrm{x}=0.5$, showing the intermediate steps.
32.Approximate the derivative of the function $f(x)=\sin (x)$ at $x=\pi / 4$ using the three-point forward difference formula. Show the step-by-step calculations and the final approximation.
31. Approximate the definite integral $\int_{0}^{2} x^{2} d x$ using the composite Simpson's rule with four subintervals. Show the step-by-step process and the final approximation.
32. Solve the initial value problem $d y / d x=x^{2}+y, y(0)=1$, using the Euler's method with a step size of 0.1 . Calculate the approximate value of y at $\mathrm{x}=0.4$, showing the intermediate steps.
33. Approximate the definite integral $\int_{1}^{3} e^{x} d x$ using the composite trapezoidal rule with six subintervals. Show the step-by-step process and the final approximation.
34. Approximate the derivative of the function $f(x)=e^{(-2 x)}$ at $\mathrm{x}=1$ using the three-point backward difference formula. Show the step-by-step calculations and the final approximation.
37.Approximate the definite integral $\int_{0}^{1} \ln (x) d x$ using the composite trapezoidal rule with eight subintervals. Show the step-by-step process and the final approximation.
35. Solve the initial value problem $d y / d x=x^{2}+y, y(0)=1$, using the second-order Runge-Kutta method with a step size of 0.1. Calculate the approximate value of y at x $=0.5$, showing the intermediate steps.
39.Approximate the definite integral $\int_{0}^{\pi} \sin (x) d x$ using the composite midpoint rule with eight subintervals. Show the step-by-step process and the final approximation.
40.Approximate the derivative of the function $f(x)=\sin (2 x)$ at $x=\pi / 6$ using the three-point central difference formula. Show the step-by-step calculations and the final approximation.
41.Approximate the definite integral $\int_{0}^{3} x^{2} d x$ using the composite Simpson's rule with eight subintervals. Show the step-by-step process and the final approximation.
36. Solve the initial value problem $d y / d x=x^{2}+y, y(0)=1$, using the fourth-order Adams-Bashforth method with a step size of 0.2 . Calculate the approximate value of y at $x=1$, showing the intermediate steps.
37. Approximate the derivative of the function $f(x)=\sqrt{(x)}$ at $\mathrm{x}=4$ using the five-point stencil method. Show the step-by-step calculations and the final approximation.
38. Approximate the definite integral $\int_{0}^{2} e^{(-x)} d x$ using the composite trapezoidal rule with ten subintervals. Show the step-by-step process and the final approximation.
39. Solve the initial value problem $d y / d x=x^{2}+y, y(0)=1$, using the fourth-order Runge-Kutta method with a step size of 0.2. Calculate the approximate value of y at x $=0.8$, showing the intermediate steps.
46.Approximate the definite integral $\int_{0}^{\pi / 2} \cos (x) d x$ using the composite midpoint rule with ten subintervals. Show the step-by-step process and the final approximation.
40. Solve the initial value problem $d y / d x=x^{2}+y, y(0)=1$, using the second-order Runge-Kutta method with a step size of 0.2 . Calculate the approximate value of y at x $=0.6$, showing the intermediate steps.
41. Approximate the derivative of the function $f(x)=e^{(-3 x)}$ at $\mathrm{x}=0$ using the three-point forward difference formula. Show the step-by-step calculations and the final approximation.
49.Approximate the definite integral $\int_{0}^{4} x^{3} d x$ using the composite Simpson's rule with twelve subintervals. Show the step-by-step process and the final approximation.
50.Approximate the derivative of the function $f(x)=\cos (2 x)$ at $\mathrm{x}=\pi / 3$ using the threepoint central difference formula. Show the step-by-step calculations and the final approximation.
51.Approximate the definite integral $\int_{0}^{5} e^{(-2 x)} d x$ using the composite trapezoidal rule with fourteen subintervals. Show the step-by-step process and the final approximation.
