Kurdistan Regional Government- Iraq Salahaddin University – Erbil College of Engineering Civil Engineering Department Bologna System – Fall Semester

Final Exam (2022 - 2023) Date: 09 / 01 / 2023

Time: 2 Hours

Subject: Airport and Railway Engineering

Lecturer: Dr. Aso Faiz Talabany

Q.1: (25 MARKS: 9 + 16)

A- Draw suitable sketches for the following:

- 1- The runway markings.
- 2- Taxiway lighting
- 3- The conventional railway track.
- **B-** Determine the total hourly delay using a single 11,000 ft runway with hourly demand = 40 operations per hour, peak 15-minute demand = 14 operations, hourly capacity = 40 operations per hour, arrivals and departures are equal and the mix index = 60.

Q.2: (25 MARKS)

The length of a common approach path $\gamma = 6$ nautical mi and the minimum separation = 3 nautical miles for an airport having the following aircraft landing population on a single runway:

Percentage of aircraft	30	30	40
Approach speed knots)	95	100	110

Calculate the ultimate runway capacity assuming that the runway occupancy times are smaller than the time separations during approach and have no effect on the capacity and allowing a buffer zone with standard deviation = 15 sec. Use 20% probability of violation.

Q.3: (25 MARKS)

For a design traffic of 25,000 departures, determine the thickness requirements for a flexible pavement with subgrade CBR = 10 and subbase CBR = 20. The design aircraft has dual-tandem landing gear and a maximum weight of 300,000 lb.

Q.4: (25 MARKS: 10+15)

- A- Design a 2.00 m long wood tie (sleeper) for axle load of 16,000 kg for Meter gauge railway track. The allowable stress of the tie material = 8,300,000 Pa.
- B- Find the maximum pressure between a wheel with cylindrical rim of radius = 30 cm and rail with the radius of head = 30 cm. The design wheel load = 2000 kg, poisons ratio = 0.25, and the modulus of elasticity = $206.8 * 10^9$ Pa.

Useful Formulas and Tables

	$m(v_2, v_1)$	$=\frac{\delta}{v_2}$ f	for v₂ i	$> \nu_1$							$\sigma_0 = \sigma_0 q$		
$m(v_2, v_1) = \frac{\delta}{v_2} + \gamma \left(\frac{1}{v_2} - \frac{1}{v_1}\right) \text{ for } v_2 < v_1$							$b(v_2, v_1) = \sigma_0 q(p_v) - \delta\left(\frac{1}{v_2} - \frac{1}{v_1}\right)$						
$C_{w} = \frac{\sum_{i=1}^{n} C_{i} W_{i} P_{i}}{\sum_{i=1}^{n} W_{i} P_{i}}$							$C = \min_{\text{att},i} \left[\frac{G_i}{T_i M_i} \right]$						
		= ADI ×						σ_r			p(A - C +		
DTE	DDF $I = HD\{ PA \times I$	= DDI × DAHA] +	0.5%() 0.5%) × DAHI	DJ}			Δ	$z = \frac{p(}{}$	$\frac{1+\mu}{E}$	$\frac{a}{a} \left[\frac{z}{a} A \right]$	+ (1-	$\mu)H$
	Win You In-		Weigh	Terror Sales									
	Mix Index in VFR			Mix Inde									
Percentage of Predominant Capacity	0-180	0-2	20	21-50		51-180		Z_w :	$=Z-\frac{\Delta h}{2a}$	[w + 0.53]	$(h-\Delta h)$	imperica	l formu
91 or more	1	1		1		1			30	4			
80-90 66-80	5	1		3									
	1.5					5							
	15	2		8		15							
51-65 0-50	20 25	2 3 4											
51-65	20 25 m n= A = Co:	2	$\frac{1}{r_2}$ $\left -\frac{1}{r_2}\right $	8 12		15 20			τη	$a_{ax} = \frac{1}{2*}$	$\frac{23500 * R}{(\frac{R_1}{R_2})^{0.271}}$	$\frac{p^{1}/_{3}}{*R_{2}^{2/3}}$	
51-65 0-50	20 25 m n= A = Co:	$= \frac{4}{\frac{1}{r_1} + \frac{4E}{3(1-\mu)}}$ $= \frac{2}{m}$ $= \frac{1}{2} \left \left(\frac{1}{r_1} \right) \right $ $= \theta = \frac{B}{A}$ $= \alpha \sqrt{\frac{P_m}{n}}$	$\frac{1}{r_2}$ $\left -\frac{1}{r_2}\right $	8 12	55	15 20	65	5	τ _m	75	$23500 * R < (\frac{R_1}{R_2})^{0.271}$	$p^{1/3}$ * $R_2^{2/3}$	90
51-65 0-50 0 20 3	20 25 m n= A = B = Co: a =	$= \frac{4}{\frac{1}{r_1} + \frac{4E}{3(1-\mu)}}$ $= \frac{2}{m}$ $= \frac{1}{2} \left \left(\frac{1}{r_1} \right) \right $ $= s \theta = \frac{8}{A}$ $= \alpha \sqrt[3]{\frac{P_m}{n}}$ $= \beta \sqrt[3]{\frac{P_m}{n}}$	$\frac{1}{r_2}$ $-\frac{1}{r_2}$	8 12 16	55 1.611	15 20 25	65 1.39	_			R ₂		90 1