Kurdistan Regional Government- Iraq Salahaddin University - Erbil College of Engineering
Civil Engineering Department Bologna System - Fall Semester

Final Exam (2022-2023)
Date: 09 / 01 / 2023
Time: 2 Hours
Subject: Airport and Railway Engineering
Lecturer: Dr. Aso Faiz Talabany
Q.1: (25 MARKS: $9+16$)

A-Draw suitable sketches for the following:
1- The runway markings.
2- Taxiway lighting
3- The conventional railway track.
B- Determine the total hourly delay using a single $\mathbf{1 1 , 0 0 0}$ ft runway with hourly demand $=\mathbf{4 0}$ operations per hour, peak 15 -minute demand $=\mathbf{1 4}$ operations, hourly capacity $=\mathbf{4 0}$ operations per hour, arrivals and departures are equal and the mix index $=\mathbf{6 0}$.

Q.2: (25 MARKS)

The length of a common approach path $\gamma=\mathbf{6}$ nautical mi and the minimum separation $=\mathbf{3}$ nautical miles for an airport having the following aircraft landing population on a single runway:

Percentage of aircraft	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
Approach speed knots)	$\mathbf{9 5}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$

Calculate the ultimate runway capacity assuming that the runway occupancy times are smaller than the time separations during approach and have no effect on the capacity and allowing a buffer zone with standard deviation $=\mathbf{1 5} \mathrm{sec}$. Use $\mathbf{2 0 \%}$ probability of violation.

Q. 3 : (25 MARKS)

For a design traffic of $\mathbf{2 5 , 0 0 0}$ departures, determine the thickness requirements for a flexible pavement with subgrade $\mathrm{CBR}=\mathbf{1 0}$ and subbase $\mathrm{CBR}=\mathbf{2 0}$. The design aircraft has dual-tandem landing gear and a maximum weight of $\mathbf{3 0 0 , 0 0 0} \mathrm{lb}$.
Q.4: (25 MARKS: $10+15$)

A- Design a 2.00 m long wood tie (sleeper) for axle load of $\mathbf{1 6 , 0 0 0} \mathrm{kg}$ for Meter gauge railway track. The allowable stress of the tie material $=\mathbf{8 , 3 0 0 , 0 0 0} \mathrm{Pa}$.

B-Find the maximum pressure between a wheel with cylindrical rim of radius $=\mathbf{3 0} \mathrm{cm}$ and rail with the radius of head $=\mathbf{3 0} \mathrm{cm}$. The design wheel load $=\mathbf{2 0 0 0} \mathrm{kg}$, poisons ratio $=\mathbf{0 . 2 5}$, and the modulus of elasticity $=\mathbf{2 0 6 . 8} \boldsymbol{*} \mathbf{1 0}^{9} \mathrm{~Pa}$.

